1887

Chapter 10 : Resuscitation of “Uncultured” Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Resuscitation of “Uncultured” Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap10-2.gif

Abstract:

As this chapter is about the resuscitation of uncultured or nonculturable microbes, and such microbes that are successfully resuscitated must by definition have been dormant or latent, it concentrates on the issue, particularly with reference to the actinobacteria that are the source of most of the bioactive secondary metabolites of industrial or applied interest. It shows the loss of culturability of as a decrease in the plate count at more or less constant total count. It also shows what at first sight appears to be the resuscitation of most of these previously unculturable cells (which could not form a colony in a plate count assay) as an increase in culturable (plate) count. For different cultures, the presence of appropriate concentrations of supernatant increased the culturable count of starved cells in an most-probable-number (MPN) assay by 3 to 5 orders of magnitude: the supernatant contained a resuscitation-promoting factor (Rpf) produced by culturable cells. Pheromones are substances produced by an organism that have specific effects on other organisms of the same species; although the presence of pheromones in prokaryotes was not widely recognized at the time when the existence of Rpf was proposed , this was a clear example of pheromonal activity. Given the resuscitation assay for the Rpf, the authors were able to purify it to homogeneity and thus to characterize it. If individual microbes make cell signals that can resuscitate other organisms, this raises a number of evolutionary issues.

Citation: Kell D, Mukamolova G, Finan C, Zhao H, Goodacre R, Young M, Kaprelyants A. 2004. Resuscitation of “Uncultured” Microorganisms, p 100-108. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch10

Key Concept Ranking

Micrococcus luteus
0.82142854
Gram-Positive Bacteria
0.7572174
Escherichia coli
0.75
0.82142854
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Dormancy and resuscitation in (A) Changes in the viable and total counts of grown in batch culture and subjected to starvation. Cells were grown and starved, and the total (microscopic) and viable (plate) counts were measured as described by . Time zero corresponds to the onset of the stationary phase. (B) Changes in viable and total counts and the percentage of small cells during resuscitation of a starved culture of Cells were starved for 75 days, incubated with penicillin G for 10 hours, washed, and resuscitated by the addition of growth medium as described by . Total counts, open circles; viable counts, closed circles; percentage of small cells (<0.5 μm in diameter), squares.

Citation: Kell D, Mukamolova G, Finan C, Zhao H, Goodacre R, Young M, Kaprelyants A. 2004. Resuscitation of “Uncultured” Microorganisms, p 100-108. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Schematic of the organization of the five Rpf homologs present in the genome.

Citation: Kell D, Mukamolova G, Finan C, Zhao H, Goodacre R, Young M, Kaprelyants A. 2004. Resuscitation of “Uncultured” Microorganisms, p 100-108. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sequence and alignment of Rpf with the five Rpf-like gene products found in

Citation: Kell D, Mukamolova G, Finan C, Zhao H, Goodacre R, Young M, Kaprelyants A. 2004. Resuscitation of “Uncultured” Microorganisms, p 100-108. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap10
1. Alvarez-Barrientos, A.,, J. Arroyo,, R. Canton,, C. Nombela,, and M. Sanchez-Perez. 2000. Applications of flow cytometry to clinical microbiology. Clin. Microbiol. Rev. 13: 167 195.
2. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143 169.
3. Bakken, L. R.,, and R. A. Olsen. 1987. The relationship between cell size and viability of soil bacteria. Microb. Ecol. 13: 103 114.
4. Barer, M. R.,, and C. R. Harwood. 1999. Bacterial viability and culturability. Adv. Microb. Physiol. 41: 93 137.
5. Barer, M. R.,, L. T. Gribbon,, C. R. Harwood,, and C. E. Nwoguh. 1993. The viable but non-culturable hypothesis and medical microbiology. Rev. Med. Microbiol. 4: 183 191.
6. Barer, M. R.,, A. S. Kaprelyants,, D. H. Weichart,, C. R. Harwood,, and D. B. Kell. 1998. Microbial stress and culturability: conceptual and operational domains. Microbiology ( UK) 144: 2009 2010.
7. Bateman, A.,, and M. Bycroft. 2000. The structure of a LysM domain from E. coli membrane-bound lytic murein transglycosy-lase d (MltD). J. Mol. Biol. 299: 1113 1119.
8. Bentley, S. D.,, K. F. Chater,, A.-M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C.-H. Huang,, T. Kieser,, L. Larke,, L. Murphey,, K. Oliver,, S. O'Neil,, E. Rabbinowitsch,, M.-A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model acti-nomycete Streptomyces coelicolor A3(2). Nature 417: 141 147.
9. Biketov, S.,, G. V. Mukamolova,, V. Potapov,, E. Gilenkov,, G. Vostroknutova,, D. B. Kell,, M. Young,, and A. S. Kaprelyants. 2000. Culturability of Mycobacterium tuberculosis cells isolated from murine macrophages: a bacterial growth factor promotes recovery. FEMS Immunol. Med. Microbiol. 29: 233 240.
10. Bogosian, G., and E. V. Bourneuf. 2001. A matter of bacterial life and death. EMBO Rep. 2: 770 774.
11. Bogosian, G.,, P. J. L. Morris,, and J. P. O'Neil. 1998. A mixed culture recovery method indicates that enteric bacteria do not enter the viable but nonculturable state. Appl. Environ. Microbiol. 64: 1736 1742.
12. Bogosian, G.,, N. D. Aardema,, E. V. Bourneuf,, P. J. L. Morris,, and J. P. O'Neil. 2000. Recovery of hydrogen peroxide-sensitive culturable cells of Vibrio vulnificus gives the appearance of resuscitation from a viable but nonculturable state. J. Bacteriol. 182: 5070 5075.
13. Bull, A. T.,, A. C. Ward,, and M. Goodfellow. 2000. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573 606.
14. Bull, H. J.,, M. J. Lombardo,, and S. M. Rosenberg. 2001. Stationary-phase mutation in the bacterial chromosome: recombination protein and DNA polymerase IV dependence. Proc. Natl. Acad. Sci. USA 98: 8334 8341.
15. Cairns, J.,, J. Overbaugh,, and S. Miller. 1988. The origin of mutants. Nature 335: 142 145.
16. Callard, R.,, and A. Gearing. 1994. The Cytokine Facts Book. Academic Press, London, United Kingdom.
17. Chaisson, R. W. 2000. New developments in the treatment of latent tuberculosis. Int. J. Tuber. Lung Dis. 4: S176ndash; S181.
18. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. B. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M. A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
19. Corne, D. W.,, M. J. Oates,, and D. B. Kell,. 2002. On fitness distributions and expected fitness gains of parallelised mutation operators: implications for high mutation rates and rate adaptation in parallel evolutionary algorithms, p. 132 141. In J. J. Merelo Guervós,, P. Adamidis,, H.-G. Beyer,, J.-L. Fernández-Villacañas,, and H.-P. Schwefel (ed.), Parallel Problem Solving from Nature—PPSN VII. Springer, Berlin, Germany.
20. Davey, H. M.,, and D. B. Kell. 1996. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analysis. Microbiol. Rev. 60: 641 696.
21. Dobrovol'skaya, T. G.,, L. V. Lysak,, G. M. Zenova,, and D. G. Zvyagintsev. 2001. Analysis of soil bacterial diversity: methods, potentiality, and prospects. Microbiology 70: 119 132.
22. Domingue, G. J.,, and H. B. Woody. 1997. Bacterial persistence and expression of disease. Clin. Microbiol. Rev. 10: 320 344.
23. Errington, J. 1996. Determination of cell fate in Bacillus subtilis. Trends Genet. 12: 31 34.
24. Flynn, J. L.,, and J. Chan. 2001. Tuberculosis: latency and reactivation, Infect. Immun. 69: 4195 4201.
25. Foster, P. L. 1999. Mechanisms of stationary phase mutation: a decade of adaptive mutation. Annu. Rev. Genet. 33: 57 88.
26. Fredricks, D. N.,, and D. A. Relman. 1996. Sequence-based identification of microbial pathogens—a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9: 18 33.
27. Freeman, R.,, J. Dunn,, J. Magee,, and A. Barrett. 2002. The enhancement of isolation of mycobacteria from a rapid liquid culture system by broth culture supernate of Micrococcus luteus. J. Med. Microbiol. 51: 92 93.
28. Fuqua, C.,, and E. P. Greenberg. 1998. Self perception in bacteria: quorum sensing with acylated homoserine lactones. Curr. Opin. Microbiol. 1: 183 189.
29. Gangadharam, P. R. J. 1995. Mycobacterial dormancy. Tuber. Lung Dis. 76: 477 479.
30. Gao, S. J.,, and P. S. Moore. 1996. Molecular approaches to the identification of unculturabie infectious agents. Emerg. Infect. Dis. 2: 159 167.
31. Hamilton, W. D. 1963. The evolution of altruistic behaviour. Am. Nat. 97: 354 356.
32. Hamilton, W. D. 1964. The genetical evolution of social behaviour, I and II. J. Theor. Biol. 7: 1 52.
33. Haupts, U.,, M. Rüdiger,, and A. J. Pope. 2000. Macroscopic versus microscopic fluorescence techniques in (ultra)-high-throughput screening. Drug Discov. Today, HTS Suppl. 1: 3 9.
34. Head, I. M.,, J. R. Saunders,, and R. W. Pickup. 1998. Microbial evolution, diversity, and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35: 1 21.
35. Heath, J. K. 1993. Growth Factors. IRL Press, Oxford, United Kingdom.
36. Hernandez-Pando, R.,, M. Jeyanathan,, G. Mengistu,, D. Aguilar,, H. Orozco,, M. Harboe,, G. A. W. Rook,, and G. Bjune. 2000. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356: 2133 2138.
37. Höner zu Bentrup, K.,, and D. G. Russell. 2001. Mycobacterial persistence: adaptation to a changing environment. Trends Microbiol. 9: 597 605.
38. Kaprelyants, A. S.,, and D. B. Kell. 1993. Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl. Environ. Microbiol. 59: 3187 3196.
39. Kaprelyants, A. S.,, and D. B. Kell. 1996. Do bacteria need to communicate with each other for growth? Trends Microbiol, 4: 237 242.
40. Kaprelyants, A. S.,, J. C. Gottschal,, and D. B. Kell. 1993. Dormancy in nonsporulating bacteria. FEMS Microbiol. Rev. 104: 271 286.
41. Kaprelyants, A. S.,, G. V. Mukamolova,, and D. B. Kell. 1994. Estimation of dormant Micrococcus luteus cells by penicillin lysis and by resuscitation in cell-free spent medium at high dilution. FEMS Microbiol. Lett. 115: 347 352.
42. Kaprelyants, A. S.,, G. V. Mukamolova,, H. M. Davey,, and D. B. Kell. 1996. Quantitative analysis of the physiological heterogeneity within starved cultures of Micrococcus luteus using flow cytometry and cell sorting. Appl. Environ. Microbiol. 62: 1311 1316.
43. Kaprelyants, A. S.,, G. V. Mukamolova,, S. S. Kormer,, D. H. Weichart,, M. Young,, and D. B. Kell. 1999. Intercellular signalling and the multiplication of prokaryotes: bacterial cytokines. Symp. Soc. Gen. Microbiol. 57: 33 69.
44. Kell, D. B.,, and M. Young. 2000. Bacterial dormancy and culturability: the role of autocrine growth factors. Curr. Opin. Microbiol. 3: 238 243.
45. Kell, D. B.,, A. S. Kaprelyants,, and A. Grafen. 1995. On pheromones, social behaviour and the functions of secondary metabolism in bacteria. Trends Ecol. Evol. 10: 126 129.
46. Kell, D. B.,, A. S. Kaprelyants,, D. H. Weichart,, C. L. Harwood,, and M. R. Barer. 1998. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Leeuwenhoek 73: 169 187.
47. Kjelleberg, S. (ed.). 1993. Starvation in Bacteria. Plenum Press, New York, N.Y.
48. Kleerebezem, M.,, and L. E. Quadri. 2001. Peptide pheromone-dependent regulation of antimicrobial peptide production in Gram-positive bacteria: a case of multicellular behavior. Peptides 22: 1579 1596.
49. Kleerebezem, M.,, L. E. N. Quadri, O. P. Kuipers, and W. M. deVos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol. Microbiol. 24: 895 904.
50. Koch, A. L., 1987. The variability and individuality of the bacterium, p. 1606 1614. In F. C. Neidhardt,, K. B. Low,, B. Magasanik,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, vol. 2. American Society for Microbiology, Washington, D.C.
51. Kolter, R.,, D. A. Siegele,, and A. Tormo. 1993. The stationary phase of the bacterial life cycle. Annu. Rev. Microbiol. 47: 855 874.
52. Lazazzera, B. A. 2001. The intracellular function of extracellular signaling peptides. Peptides 22: 1519 1527.
53. Lazazzera, B. A.,, and A. D. Grossman. 1998. The ins and outs of peptide signaling. Trends Microbiol. 6: 288 294.
54. Losick, R.,, and J. Dworkin. 1999. Linking asymmetric division to cell fate: teaching an old microbe new tricks. Genes Devel. 13: 377 381.
55. MacDonell, M. T.,, and M. A. Hood. 1982. Isolation and characterization of ultramicrobacteria from a gulf coast estuary. Appl. Environ. Microbiol. 43: 566 571.
56. McDougald, D.,, S. A. Rice,, D. Weichart,, and S. Kjelleberg. 1998. Nonculturability: adaptation or debilitation? FEMS Microbiol. Ecol. 25: 1 9.
57. McKenzie, G. J.,, R. S. Harris,, P. L. Lee,, and S. M. Rosenberg. 2000. The SOS response regulates adaptive mutation. Proc. Natl. Acad. Sci. USA 97: 6646 6651.
58. McKinney, J. D.,, K. H. zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs,, and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735 738.
59. McLuhan, M.,, and Q. Fiore. 1971. The medium is the Massage. Penguin Books, London, United Kingdom. 1994
60. McVeigh, H. P.,, J. Munro,, and T. M. Embley. 1996. Molecular evidence for the presence of novel actinomycete lineages in a temperate forest soil. J. Ind. Microbiol. 17: 197 204.
61. Mukamolova, G. V.,, A. S. Kaprelyants,, and D. B. Kell. 1995a. Secretion of an antibacterial factor during resuscitation of dormant cells in Micrococcus luteus cultures held in an extended stationary phase. Antonie Leeuwenhoek 67: 289 295.
62. Mukamolova, G. V.,, N. D. Yanopolskaya,, T. V. Votyakova,, V. I. Popov,, A. S. Kaprelyants,, and D. B. Kell. 1995b. Biochemical changes accompanying the long-term starvation of Micrococcus luteus cells in spent growth medium. Arch. Microbiol. 163:373379.
63. Mukamolova, G. V.,, A. S. Kaprelyants,, D. I. Young,, M. Young,, and D. B. Kell. 1998a. A bacterial cytokine. Proc. Natl. Acad. Sci. USA 95: 8916 8921.
64. Mukamolova, G. V.,, N. D. Yanopolskaya,, D. B. Kell,, and A. S. Kaprelyants. 1998b. On resuscitation from the dormant state of Micrococcus luteus. Antonie Leeuwenhoek 73: 237 243.
65. Mukamolova, G. V.,, S. S. Kormer,, D. B. Kell,, and A. S. Kaprelyants. 1999. Stimulation of the multiplication of Micrococcus luteus by an autocrine growth factor. Arch. Microbiol. 172: 9 14.
66. Mukamolova, G. V.,, O. A. Turapov,, K. Kazaryan,, M. Telkov,, A. S. Kaprelyants,, D. B. Kell,, and M. Young. 2002a. The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol. Microbiol. 46: 611 621.
67. Mukamolova, G. V.,, O. A. Turapov,, D. I. Young,, A. S. Kaprelyants,, D. B. Kell,, and M. Young. 2002b. A family of autocrine growth factors in Mycobacterium tuberculosis. Mol. Microbiol. 46: 623 635.
68. Nystrom, T. 2001. Not quite dead enough: on bacterial life, culturability, senescence, and death. Arch. Microbiol. 176: 159 164.
69. Oates, M.,, D. Come,, and R. Loader,. 2000. A tri-phase multimodal evolutionary search performance profile on the "hierarchical if and only if" problem, p. 339 346. In D. Whitley,, D. Goldberg,, E. Cantú-Paz,, L. Spector,, I. Parmee,, and H.-G. Beyer (ed.), Proceedings of GECCO-2000. Morgan Kaufmann, San Francisco, Calif.
70. Oliver, A.,, R. Canton,, P. Campo,, F. Baquero,, and J. Blazquez. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251 1253.
71. Parrish, N. M.,, J. D. Dick,, and W. R. Bishai. 1998. Mechanisms of latency in Mycobacterium tuberculosis. Trends Microbiol. 6: 107 112.
72. Phyu, S.,, T. Mustafa,, T. Hofstad,, R. Nilsen,, R. Fosse,, and G. Bjune. 1998. A mouse model for latent tuberculosis. Scand. J. Infect. Dis. 30: 59 68.
73. Poindexter, J. S. 1987. Bacterial responses to nutrient limitation. Symp. Soc. Gen. Microbiol. 41: 283 317.
74. Postgate, J. R. 1967. Viability measurements and the survival of microbes under minimum stress. Adv. Microbiol. Physiol. 1: 1 23.
75. Postgate, J. R. 1969. Viable counts and viability. Methods Microbiol. 1: 611 628.
76. Postgate, J. R., 1976. Death in microbes and macrobes, p. 1 19. In T. R. G. Gray, and J. R. Postgate (ed.), The Survival of Vegetative Microbes. Cambridge University Press, Cambridge, United Kingdom.
77. Postgate, J. R. 1995. Danger of sleeping bacteria. The London Times, Nov. 13, p. 19.
78. Primas, H. 1981. Chemistry, Quantum Mechanics and Reductionism. Springer, Berlin, Germany. 1994
79. Relman, D. A. 1999. The search for unrecognized pathogens. Science 284: 1308 1310.
80. Riley, M. S.,, V. S. Cooper,, R. E. Lenski,, L. J. Forney,, and T. L. Marsh. 2001. Rapid phenotypic change and diversification of a soil bacterium during 1000 generations of experimental evolution. Microbiology 147: 995 1006.
81. Rondon, M. R.,, R. M. Goodman,, and J. Handelsman. 1999. The Earth's bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17: 403 409.
82. Rosenberg, S. M. 1997. Mutation for survival. Curr. Opin. Genet. Dev. 7: 829 834.
83. Rudiger, M.,, U. Haupts,, K. J. Moore,, and A. J. Pope. 2001. Single-molecule detection technologies in miniaturized high throughput screening: binding assays for G protein-coupled receptors using fluorescence intensity distribution analysis and fluorescence anisotropy. J. Biomol. Screen. 6: 29 37.
84. Schut, F.,, R. A. Prins,, and J. C. Gottschal. 1997. Oligotrophy and pelagic marine bacteria: facts and fiction. Aquat. Microbial. Ecol. 12: 177 202.
85. Shleeva, M. O.,, K. Bagramyan,, M. V. Telkov,, G. V. Mukamolova,, M. Young,, D. B. Kell,, and A. S. Kaprelyants. 2002. Formation and resuscitation of "non-culturable" cells of Rhodococcus rhodochrous and Mycobacterium tuberculosis in prolonged stationary phase. Microbiology 148: 1581 1591.
86. Smith, R. J.,, A. T. Newton,, C. R. Harwood,, and M. R. Barer. 2002. Active but nonculturable cells of Salmonella enterica serovar Typhimurium do not infect or colonize mice. Microbiology 148: 2717 2728.
87. Sniegowski, P. D.,, P. J. Gerrish,, and R. E. Lenski. 1997. Evolution of high mutation rates in experimental populations of E. coli. Nature 387: 703 705.
88. Stephens, K. 1986. Pheromones among the prokaryotes. CRC Crit. Rev. Microbiol. 13: 309 334.
89. Sumner, E. R.,, and S. V. Avery. 2002. Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology 148: 345 351.
90. Tiedje, J. M.,, and J. L. Stein,. 1999. Microbial biodiversity: strategies for its recovery, p. 682 692. In R. M. Atlas,, G. Cohen,, C. L. Hershberger,, W.-S. Hu,, D. H. Sherman,, R. C. Willson,, and J. H. D. Wu (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. American Society for Microbiology, Washington, D.C.
91. Torsvik, V.,, J. Goksøyr,, and F. L. Daae. 1990a. High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56: 782 787.
92. Torsvik, V.,, K. Sake,, R. Sorheim,, and J. Goksøyr. 1990b. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria. Appl. Environ. Microbiol. 56: 776 781.
93. Torsvik, V.,, R. Sorheim,, and J. Goksøyr. 1996. Total bacterial diversity in soil and sediment communities—a review. J. Ind. Microbiol. 17: 170 178.
94. van Piuxteren, L. A. H.,, J. P. Cassidy,, B. H. C. Smedegaard,, E. M. Agger,, and P. Andersen. 2000. Control of latent Mycobacterium tuberculosis infection is dependent on CD8 T cells. Eur. J. Immunol. 30: 3689 3698.
95. Votyakova, T. V.,, A. S. Kaprelyants,, and D. B. Kell. 1994. Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteus cultures held in extended stationary phase. The population effect. Appl. Environ. Microbiol. 60: 3284 3291.
96. Watts, J.E. M., , A. S. Huddleston-Anderson,, and E. M. H. Wellington,. 1999. Bioprospecting, p. 631 641. In R. M. Atlas,, G. Cohen,, C. L. Hershberger,, W.-S. Hu,, D. H. Sherman,, R. C. Willson,, and J. H. D. Wu (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. American Society for Microbiology, Washington, D.C.
97. Wayne, L. G. 1994. Dormancy of Mycobacterium tuberculosis and latency of disease. Eur. J. Clin. Microbiol. Infect. Dis. 13: 908 914.
98. Zaccolo, M.,, and E. Gherardi. 1999. The effect of high-frequency random mutagenesis on in vitro protein evolution: a study on TEM-1 β-lactamase J. Mol. Biol. 285: 775 783.

Tables

Generic image for table
Table 1

Some organisms that have been shown to contain Rpf-like genes, with the number of homologs known to date

Citation: Kell D, Mukamolova G, Finan C, Zhao H, Goodacre R, Young M, Kaprelyants A. 2004. Resuscitation of “Uncultured” Microorganisms, p 100-108. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error