1887

Chapter 12 : Deep Biospheres

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Deep Biospheres, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap12-2.gif

Abstract:

Large bacterial populations are present in surface soils and sediments where they efficiently degrade deposited organic matter and thus recycle nutrients that are essential for continued photosynthetic primary production. This microbial filter is so efficient that in marine sediments <0.5% of water column primary production is preserved. The application of modern microbial ecological techniques to investigate subsurface environments from the mid 1980s has slowly provided evidence for the presence of deep biosphere microorganisms. The positive results from a range of different approaches used on the same sample have produced convincing evidence for a deep biosphere in a range of different environments. This chapter reviews some of these environments, including marine sediments and rocks, petroleum and coal reservoirs, terrestrial surface, and cold deep biosphere. The presence of a deep biosphere on Earth that can obtain energy from subsurface geochemical processes has clear implications for the possibility of life on other planets, whether these are hot or cold. However, we still need to know much more about our own deep biosphere as there are implications for the origin of life, biodiversity, and biosphere:geosphere interactions (e.g., climate feedbacks, gas hydrates) in addition to potential biotechnological applications such as microbial-enhanced oil recovery, petroleum and gas formation, subsurface bioremediation, and as a source of novel enzymes and compounds.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12

Key Concept Ranking

Marine Sediments Bacteria
0.43739402
0.43739402
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Bacterial distributions in deep marine sediments. The solid line is the regression line and the dotted lines on either side are the 95% prediction limits. ODP, Ocean Drilling Program; OM, organic matter.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Bacterial populations and activity in gas hydrate sediments from Blake Ridge, Atlantic Ocean (modified from ). Thymidine incorporation into bacterial DNA is a measure of growth rates.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Bacterial distributions and growth rates in Mediterranean sapropels. Where the high organic matter sapropel layers (horizontal bars on the depth axis) were sampled (dashed horizontal lines), bacterial populations increased significantly (from ). ky, thousands of years.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(a) Pressure and (b) temperature characteristics of the deep marine sediment bacterium (photomicrograph) strain 80-55 [●] and strain 500-1 [¦]compared with other (○) and (■) ( ).

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model of bacterial metabolic interactions between clay and sand layers in deep terrestrial formations.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Glacial biosphere habitat.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Schematic diagram of possible deep-biosphere energy sources and bacterial: thermogenic interactions in deep marine sediments, including increasing reactivity of buried components as temperature increases with depth ( ). LMW ?С, low-molecular-weight hydrocarbons.

Citation: Parkes R, Wellsbury P. 2004. Deep Biospheres, p 120-129. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap12
1. Anderson, R. T.,, F. H. Chapelle,, and D. R. Lovley. 1998. Evidence against hydrogen-based microbial ecosystems in basalt aquifers. Science 281:976977.
2. Anderson, R. T.,, F. H. Chapelle,, and D. R. Lovley. 2001. Comment on "Abiotic controls on H-2 production from basalt-water reactions and implications for aquifer biogeochemistry." Environ. Sci. Tecbnol. 35:15561557.
3. Bale, S. J.,, K. Goodman,, P. A. Rochelle,, J. R. Marchesi,, J. C. Fry,, A.J. Weightman,, and R. J. Parkes. 1997. Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int. J. Sys. Bacterial. 47: 515521.
4. Barnes, S. P.,, S. D. Bradbrook,, B. A. Cragg,, J. R. Marchesi,, A. J. Weightman,, J. C. Fry,, and R. J. Parkes. 1998. Isolation of sulfate-reducing bacteria from deep sediment layers of the Pacific Ocean. Geomicrobiol. J. 15:6783.
5. Bastin, E. S. 1926. The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10:12701299.
6. Berner, R. A.,, and A. C. Lasaga. 1989. Modeling the geochemical carbon cycle. Set. Am. 260:7481.
7. Chandler, D. P.,, S. M. Li,, C. M. Spadoni,, G. R. Drake,, D. L. Balk-will,, J. K. Fredrickson,, and F. J. Broekman. 1997. A molecular comparison of culturable aerobic heterotrophic bacteria and I6S rDNA clones derived from a deep subsurface sediment. FEMS Microbiol. Ecol. 23:131144.
8. Chapelle, F. H.,, and D. R. Lovley. 1990. Rates of microbial-metabolism in deep coastal-plain aquifers. AppL Environ. Microbiol. 56:18651874.
9. Chapelle, F. H.,, K. O'Neil,, P. M. Bradley,, B. A. Methe,, S. A. Ciufo,, L. L. Knobel,, and D. R. Lovley. 2002. A hydroyen-based sub-surface microbial community dominated by methanogens. Nature 415: 312315.
10. Chester, R. 1990. Marine Geochemistry. Unwin Hyman Ltd, London, United Kingdom.
11. Colwell, F. S., et al. 1997. Microorganisms from deep, high temperature sandstones: constraints on microbial colonization. FEMS Microbiol. Rev. 20:425435.
12. Cragg, B. A.,, S. M. Harvey,, J. C. Fry,, R. A. Herbert,, and R. J. Parkes,. 1992. Bacterial biomass and activity in the deep sediment layers of the Japan Sea, Hole 798B, p. 761776. In K. A. Pisciotto,, J. C. Ingle, Jr.,, M. T. Bryemann,, J. Barron, et al. (ed.), Proceeding of the Ocean Drilling Program Scientific Research, vol. 127/128. Ocean Drilling Program, College Station, Tex..
13. Cragg, B. A.,, R. J. Parkes,, J. C. Fry,, A. J. Weightman,, P. A. Rochelle,, and J. R. Maxwell. 1996. Bacterial populations and processes in sediments containing gas hydrates (ODP Leg 146: Cascadia Margin). Earth Planet. Set. Lett. 139:497507.
14. Cragg, B. A.,, K. M. Law,, A. Cramp,, and R. J. Parkes,. 1998. The response of bacterial populations to sapropels in deep sediments of the Eastern Medierranean (Site 969), p. 303307. In A. H. F. Robertson,, K.-C. Emeis,, C. Richter,, and A. Camerlenghi (ed.), Proceedings of the Ocean Drilling Program Scientific Research, Vol. 160. Ocean Drilling Program, College Station, Tex..
15. Cragg, B. A.,, K. M. Law,, G. M. O'Sullivan,, and R. J. Parkes,. 1999. Bacterial profiles in deep sediments of the Alboran Sea, Western Mediterranean (Sites 976-978), p. 433438. In R. Zahn,, M. C. Comas,, and A. Klaus (ed.), Proceedings of the Ocean Drilling Program Scientific Results, vol. 161. Ocean Drilling Program, College Station, Tex..
16. Egeberg, P. K.,, and T. Barth. 1998. Contribution of dissolved organic species to the carbon and energy budgets of hydrate bearing deep sea sediments (Ocean Drilling Program Site 997 Blake Ridge). Chem. Geol. 149:2535.
17. Fish, S. A.,, T. J. Shepherd,, T. J. McGenity,, and W. D. Grant. 2002. Recovery of 16S ribosomal RNA gene fragments from ancient halite. Nature 417:432436.
18. Fisk, M. R.,, S. J. Giovannoni,, and H. Fumes. 1998. Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978980.
19. Froelich, P. N.,, G. P. Klinkhammer,, M. L. Bender,, N. A. Luedtke,, G. R. Heath,, D. Cullen,, P. Dauphin,, D. Hammond,, B. Hartmen,, and V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43:10751090.
20. Ghiorse, W. C.,, and F. J. Wobber. 1989. Special issue on deep subsurface microbiology. Geomicrobiol. J. 7:1135.
21. Gold, T. 1999. The Deep Hot Biosphere. Springer-Verlag New York, N.Y..
22. Haridon, S. L.,, A. Reysenbach,, P. Glenat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in continental oil reservoir. Nature 377:223224.
23. Hedges, J. I.,, and R. G. Keil. 1995. Marine chemistry discussion paper. Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar. Chem. 4:81115.
24. Jannasch, H. W.,, and G. E. Jones. 1959. Bacterial populations in seawater as determined by different methods of enumeration. Limnol. Oceanogr. 4:128139.
25. Karl, D. M.,, D. F. Bird,, K. Bjorkman,, T. Houlihan,, R. Shackelford,, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostock, Antarctica. Science 286:21442147.
26. Kotelnikova, S., and K. Pedersen. 1997. Evidence for methanogenic Archaea and homoacetogenic Bacteria in deep granitic rock aquifers. FEMS Microbiol. Rev. 20:339349.
27. Krumholz, L. R.,, J. P. Mckinley,, G. A. Ulrich,, and J. M. Suflita. 1997. Confined subsurface microbial communities in Cretaceous rock. Nature 386:6466.
28. Kvenvolden, K. A. 1988. Methane hydrate—a major reservoir of carbon in the shallow geosphere. Chem. Geol. 71:4151.
29. Kvenvolden, K. A. 1995. A review of the geochemistry of methane in natural gas hydrate. Org. Geochem. 23:9971008.
30. Lovley, D. R.,, and F. H. Chapelle. 1995. Deep subsurface microbial processes. Rev. Geophys. 33:365381.
31. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek Int. J. Gen. Mol. Microbiol. 77:103116.
32. Marchesi, J. R.,, A. J. Weightman,, B. A. Cragg,, R. J. Parkes,, and J. C. Fry. 2001. Methanogen and bacterial diversity and distribution in deep gas hydrate sediments from the Cascadia Margin as revealed by 16SrRNA molecular analysis. FEMS Microbiol. Ecol. 34:221228.
33. Martens, C. S.,, J. P. Chanton,, and C. K. Paull. 1991. Biogenic methane from abyssal brine seeps at the base of the Florida escarpment. Geology 19:851854.
34. Mather, I. D.,, and R. J. Parkes,. 2000. Bacterial populations in sediments of the Eastern Flank of the Juan de Fuca Ridge, Sites 1026 and 1027, p. 161165. In A. Fisler,, E. E. Davis,, and C. Escutia (ed.), Proceedings of the Ocean Drilling Program Scientific Results, vol. 168. Ocean Drilling Program, College Station, Tex..
35. McMahon, P. B.,, and F. H. Chapelle. 1991. Microbial production of organic acids in aquitard sediments and its role in aquifer geochemistry. Nature 349:233235.
36. Morita, R. Y.,, and C. E. Zobell. 1955. Occurrence of bacteria in pelagic sediments collected during the Mid-Pacific Expedition. Deep-Sea Res. 3:6673.
37. Nickle, D. C.,, G. H. Learn,, M. W. Rain,, J. I. Mullins,, and J. E. Mittler. 2002. Curiously modern DNA for a "250 million-year-old" bacterium.J. Mol. Evol. 54:134137.
38. Parkes, R. J. 2000. A case of bacterial immortality? Nature 407:844845.
39. Parkes, R. J.,, B. A. Cragg,, J. C. Fry,, R. A. Herbert,, and J. W. T. Wimpenny. 1990. Bacterial biomass and activity in deep sediment layers from the Peru Margin. hil. Trans. R. Soc. London Ser. A 331:139153.
40. Parkes, R. J., et al. 1994. Deep bacterial biosphere in Pacific-Ocean sediments. Nature 371:410413.
41. Parkes, R. J.,, B. A. Cragg,, S. J. Bale,, K. Goodman,, and J. C. Fry. 1995. A combined ecological and physiological approach to studying sulfate reduction within deep marine sediment layers. J. Microbiol. Methods 23:235249.
42. Parkes, R. J.,, B. A. Cragg,, and P. Wellsbury. 2000. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol. J. 8:1128.
43. Pedersen, K. 1997. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20:399414.
44. Pedersen, K. 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185:916.
45. Price, P. B. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Nat. Acad. Sci. USA 97:12471251.
46. Priscu, J. C., et al. 1999. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:21412144.
47. Rochelle, P. A.,, B. A. Cragg,, J. C. Fry,, R. J. Parkes,, and A. J. Weightman. 1994. Effect of sample handling on estimation of bacterial diversity in marine-sediments by 16s ribosomal-RNA gene sequence-analysis. FEMS Microbiol. Ecol. 15:215225.
48. Rothschild, L. J.,, and R. L. Mancinelli. 2001. Life in extreme environments. Nature 409:10921101.
49. Scott, A. R.,, W. R. Kaiser,, and J. W. B. Ayers. 1994. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico—implications for coalbed gas productivity. Am. Assoc. Pet. Geol. Bull. 78:11861209.
50. Sharp, M.,, J. Parkes,, B. Cragg,, I. J. Fairchild,, H. Lamb,, and M. Tranter. 1999. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling. Geology 27:107110.
51. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66:32143220.
52. Smith, S.,, F. Whitaker,, R. Parkes,, P. Smart,, P. Beddows,, and S. Bottrell,. 2002. Active dolomitisation by saline groundwaters in the Yucatan Peninsula, Mexico. In J. B. Marten,, C. M. Wicks,, and I. D. Sasaowsky (ed.), Hydrogeology and Biology of Post-Paleozoic Carbonate Aquifers, Karst Waters Institute Special Publication 7. Karst Waters Institute, Charles Town, W.V..
53. Stetter, K. O., et al. 1993. Hyperthermophilic Archaea are thriving in deep North-Sea and Alaskan oil-reservoirs. Nature 365: 743745.
54. Stevens, T. O.,, and J. P. McKinley. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450454.
55. Stevens, T. O.,, and J. P. McKinley. 2000. Abiotic controls on H-2 production from basalt-water reactions and implications for aquifer biogeochemistry. Environ. Sci. Technol. 34:826831.
56. Takai, K.,, D. P. Moser,, M. DeFlaun,, T. C. Onstott,, and J. K. Fredrickson. 2001. Archaeal diversity in waters from deep South African gold mines. Appl. Environ. Microbiol. 67:57505760.
57. Vreeland, R. H.,, W. D. Rosenzweig,, and D. W. Powers. 2000. Isolation of a 250 million year old halotolerant bacterium from a primary salt crystal. Nature 407:897900.
58. Wellsbury, P.,, K. Goodman,, T. Barth,, B. A. Cragg,, S. P. Barnes,, and R. J. Parkes. 1997. Deep marine biosphere fuelled by increasing organic matter availability during burial and heating. Nature 388:573576.
59. Wellsbury, P.,, K. Goodman,, B. A. Cragg,, and R. J. Parkes,. 2000. The geomicrobiology of deep marine sediments from Blake Ridge containing methane hydrate (Sites 994, 995 and 997), p. 379391. In C. K. Paull,, R. Matsumoto,, P. J. Wallace,, and W. P. Dillon (ed.), Proceedings of the Ocean Drilling Program Scientific Results, vol. 164. Ocean Drilling Program, College Park, Tex..
60. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Nat. Acad. Sci. USA 95: 65786583.
61. Wilhelms, A.,, S. R. Larter,, I. Head,, P. Farrimond,, R. di-Primio,, and C. Zwach. 2001. Biodégradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:10341037.
62. Zengler, K.,, H. H. Richnow,, R. Rossello-Mora,, W. Michaelis,, and F. Widdel. 1999. Methane formation from long chain alkanes by anaerobic microorganisms. Nature 401:266269.
63. Zobell, C. E. 1938. Studies on the bacterial flora of marine bottom sediments. J. Sed. Petrol. 8:1018.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error