Chapter 13 : Earth's Icy Biosphere

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Earth's Icy Biosphere, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap13-2.gif


Studies of Earthly ice-bound microbes are relevant to the evolution and persistence of life on extraterrestrial bodies. Great diversity of icy environments make up Earth's cold biosphere. This chapter describes research conducted in laboratories on the newly discovered life associated with permanent Antarctic lake ice, glaciers and ice sheets (polar and temperate), and sub-glacial Antarctic lakes. Molecular-based approaches to microbial ecology yield data that measure the natural evolutionary relationships between microorganisms. The chapter illustrates the phylogenetic relatedness, based on 16S rDNA identity, between bacteria recovered in the laboratories and by others from Antarctica and permanently cold nonpolar locales. As indicated, these psychrophilic and psychrotrophic isolates originate from locations ranging from aquatic and marine ecosystems to terrestrial soils and glacial ice, with little in common between these environments except that all are permanently cold or frozen. Such information, coupled with a dedicated effort to further investigate microbial diversity within the planet's frozen realms, will provide the perspective necessary to understand the evolution and ecological impacts of microbial ecosystems residing within Earth's icy biosphere.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13

Key Concept Ranking

Microbial Ecology
Bacteria and Archaea
Scanning Electron Microscopy
Scanning Electron Microscope
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Lake Bonney 16S rDNA summary comparing lake ice sequences with water column sequences. The ice sample was collected about 2 m beneath the surface of the 4-m-thick permanent ice cover; the 4.5- and 13-m samples were from the east lobe, and the 25-m sample was from the west lobe of Lake Bonney. See Priscu et al (1997) for hydrographie characteristics of the water column of these lake basins and Priscu et al. (1998) for details of the ice column. GP, gram positive.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Scanning electron microscope (SEM) images of microbial assemblages collected 2 m beneath the surface of the east lobe Lake Bonney ice cover, (a) and (b) represent low- and high-magnification images of cyanobacterial filaments attached to lithogenic material; (c) a single cyanobacterial filament attached to a surface, (d) small unknown organic filaments attached to a surface. Images were obtained by cryogenic SEM (JEOL-6100 SEM with an Oxford Instruments cryogenic preparation stage) on particles captured by 0.2-µm filtration of melted ice.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The cryoconite hole environment in the McMurdo Dry Valleys. In summer, sediment collects on glacial surfaces, and exposure to solar irradiation produces (a) melt pools within the ice, which may subsequently freeze on the surface (b) and completely freeze during the winter. The cryoconite hole illustrated in (c) was located on the Canada glacier and was completely frozen when sampled in January 2001. (d) A comparison of cores retrieved from the cryoconite hole (left) with a core from the adjacent glacial ice. Note the dense layer of sediment and organic material present within the bottom 5 cm of the cryoconite hole core.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Global locations of existing glacial ice sheets and caps (denoted by shading). At each geographical location, the nearest terrestrial or marine ecosystem that would most likely contribute the majority of airborne particles are very different.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Incorporation of [H]thymidine into trichloroacetic acid (TCA)-precipitable material and the number of CFU mL for the glacial isolate sp. Trans 1 after 9 months at -15°C. Cells in logarithmic growth were suspended in distilled water with 1 µCi of [H]thymidine, frozen rapidly at -70°C, and incubated at -15°C for an extended period. Under these circumstances, cells were able to conduct a low level of macromolecular synthesis, but this activity was not sufficient for reproductive growth. For more details, see Christner 2002.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Phylogenetic analysis of bacteria obtained in microbiological surveys of permanently cold and frozen environments. Isolates from cold habitats are shown in bold, followed by the source environment and geographical location. The 16S rDNA sequences corresponding to nucleotides 27-1492 of the 16S rDNA were aligned based on secondary structure and used to construct this neighbor-joining tree. The scale bar represents 0.1 fixed substitutions per nucleotide position. GP, gram positive.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abyzov, S. S., 1993. Microorganisms in the Antarctic ice, p. 265295. In E. I. Friedmann (éd.), Antarctic Microbiology. Wiley-Liss, Inc., New York, N.Y..
2. Abyzov, S. S.,, I. N. Mitskevich,, and M. N. Poglazova. 1998. Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67:6673.
3. Adams, E. E.,, J. C. Priscu,, C. H. Fritsen,, S. R. Smith,, and S. L. Brackman,. 1998. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: bubble formation and metamorphism. In J. Priscu (éd.), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Ant. Res. Ser. 72:281296.
4. Bada, J. L.,, X. S. Wang,, H. N. Poinar,, S. Paabo,, and G. O. Poinar. 1994. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta 58:31313135.
5. Balkwill, D. L.,, R. H. Reeves,, G. R. Drake,, J. Y. Reeves,, F. H. Crocker,, M. B. King,, and D. R. Boone. 1997. Phylogentic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol. Rev. 20:201216.
6. Baiter, M. 1999. Did life begin in hot water? Science 280:31.
7. Bell, R. E.,, M. Studinger,, A. A. Tikku,, G. K., C. Clarke,, M. M. Gutner,, and C. Meertens. 2002. Origin and fate of Lake Vostok water refrozen to the base of the East Antarctic ice sheet. Nature 416:307310.
8. Benson, D. A.,, I. Karsch-Mizrachi,, D. J. Lipman,, J. Ostell,, B. A. Rapp,, and D. L. Wheeler. 2000. GenBank. Nucl. Acids Res. 28:1518.
9. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63:30683078.
10. Boynton, W. V.,, W. C. Feldman,, S. W. Squyres,, T. H. Prettyman,, J. Bruckner,, L. G. Evans,, R. C. Reedy,, R. Starr,, J. R. Arnold,, D. M. Drake,, P. A. J. Englert,, A. E. Metzger,, I. Mitrofanov,, J. I. Trombka,, C. d'Uston,, H. Wanke,, O. Gasnault,, D. K. Hamara,, D. M. Janes,, R. L. Marcialis,, S. Maurico,, I. Mikheeva,, G. J. Taylor,, R. Tokar,, and C. Shinohara. 2002. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297:8185.
11. Bulat, S. A.,, I. A. Alekhina,, M. Blot,, J.-R. Petit,, D. Waggenbach,, V. Y. Lipenkov,, D. Raynaud,, and V. V. Lukin. 2002. Thermophiles microbe signature in Lake Vostok, Antarctica. American Geophysical Union Spring 2002 Meeting. Washington, D.C..
12. Bunt, J. S. 1964. Primary productivity under sea ice in Antarctic waters. 2. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarct. Res. 1:2731.
13. Carpenter, E. J.,, S. Lin,, and D. G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66:45144517.
14. Castello, J. D.,, S. O. Rogers,, W. T. Starmer,, C. M. Catranis,, L. Ma,, G. D. Bachand,, Y. Zhao,, and J. E. Smith. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol. 22:207212.
15. Chen, F.,, J. Lu,, B. Binder,, Y. Liu,, and R. Hodson. 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl. Environ. Microbiol. 67:539545.
16. Christner, B. C. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl. Environ. Microbiol. 68:64356438.
17. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, V. Zagorodnov,, K. Sandman,, and J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144:479485.
18. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3:570577.
19. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2003a. Recovery of bacteria from ancient ice. Environ. Microbiol. 5:433436.
20. Christner, B. C.,, B. H., Kvitko,, and J. N. Reeve. 2003b. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177183.
21. Chyba, C. F. 2000. Energy for microbial life on Europa. Nature 403:381382.
22. Chyba, C. F.,, and K. P. Hand. 2001. Life without photosynthesis. Science 292:20262027.
23. Chyba, C. F.,, and C. B. Phillips. 2001. Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. USA 98:801804.
24. Clifford, S. M.,, D. Crisp,, D. A. Fisher,, K. E. Herkenhoff,, S. E. Smrekar,, P. C. Thomas,, D. D. Wynn Williams,, R. W. Zurek,, J. R. Barnes,, B. G. Bills,, E. W. Blake, et al. 2000. The state and future of Mars polar science and exploration. Icarus 144:210242.
25. Dancer, S. J.,, P. Shears,, and D. J. Platt. 1997. Isolation and characterization of coliforms from glacial ice and water in Canada's high Arctic. J. Appl. Microbiol. 82:597609.
26. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin,, and R. V. M. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371:695697.
27. De Smet, W. H.,, and E. A. Van Rompu. 1994. Rotifera and tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg. J. Zool. 124:2737.
28. Doolittle, W. F. 1999. Phylogenetic classification and the universal tree. Science 284:21242128.
29. Doran, P. T.,, J. C. Priscu,, W. B. Lyons,, J. E. Walsh,, A. G. Fountain,, D. M. McKnight,, D. L. Moorhead,, R. A. Virginia,, D. H. Wall,, G. D. Clow,, C. H. Fritsen,, C. P. McKay,, and A. N. Parsons. 2002a. Antarctic climate cooling and terrestrial ecosystem response. Nature 415:517520.
30. Doran, P. T.,, C. P. McKay,, G. D. Clow,, G. L. Dana,, A. G. Fountain,, T. Nylen,, and W. B. Lyons. 2002b. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986-2000. J. Geophys. Res. 107(D24, 4772):112.
31. Eschenmoser, A. 1999. Chemical etiology of nucleic acid structure. Science 284:21182124.
32. Franzmann, P. D.,, Y. Liu,, D. L. Balkwill,, H. C. Aldrich,, E. ConwaydeMarcario,, and D. R. Boone. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H2-using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47:10681072.
33. Fritsen, C. H.,, and J. C. Priscu. 1998. Cyanobacterial assemblages in permanently ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. J. Phycol. 34:587597.
34. Fritsen, C. H.,, E. E. Adams,, C. M. McKay,, and J. C. Priscu,. 1998. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: liquid water content. In J. C. Priscu (éd.), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarct. Res. Ser. 72:269280.
35. Fulthorpe, R. R.,, A. N. Rhodes,, and J. M. Tiedje. 1998. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64:16201627.
36. Fuzzi, G.,, P. Mandrioli,, and A. Perfetto. 1997. Fog droplets—an atmospheric source of secondary biological aerosol particles. Atmos. Environ. 31:287290.
37. Gaidos, E. J.,, and F. Nimmo. 2000. Tectonics and water on Europa. Nature 405:637.
38. Gaidos, E. J.,, K. H. Nealson,, and J. L. Kirschvink. 1999. Life in ice-covered oceans. Science 284:16311633.
39. Galtier, N.,, N. Tourasse,, and M. Gouy. 1999. A non-hyperthermophilic common ancestor to extant life forms. Science 283:220222.
40. Garcia-Pichel, F.,, L. Prufert-Bebout,, and G. Muyzer. 1996. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 62:32843291.
41. Gerdel, R. W.,, and F. Drouet. 1960. The cryoconite of the Thule Area, Greenland. Trans. Am. Microsc. Soc. 79:256272.
42. Giorgio, C. D.,, A. Krempff,, H. Guiraud,, P. Binder,, C. Tiret,, and G. Dumenil. 1996. Atmospheric pollution by airborne microorganisms in the city of Marseilles. Atmos. Environ. 30:155160.
43. Gordon, D. A.,, B. Lanoil,, S. Giovannoni,, and J. C. Priscu. 1996. Cyanobacterial communities associated with mineral particles in Antarctic lake ice. Antarct. J. US 31:224225.
44. Gordon, D. A.,, J. C. Priscu,, and S. Giovannoni. 2000. Distribution and phylogeny of bacterial communities associated with mineral particles in Antarctic lake ice. Microb. Ecol. 39:197202.
45. Greenberg, R.,, P. Geissler,, B. R. Tufts,, and G. V. Hoppa. 2000. Habitability of Europa's crust: the role of tidal-tectonic processes. J. Geophys. Res. 105:1755117562.
46. Grøngaard, A.,, P. J. A. Pugh,, and S. J. Mclnnes. 1999. Tardigrades, and other cryoconite biota, on the Greenland ice sheet. Zool. Anz. (Germany) 238:211214.
47. Grue, A. M.,, C. H. Fritsen,, and J. C. Priscu. 1996. Nitrogen fixation within permanent ice covers on lakes in the McMurdo Dry Valleys, Antarctica. Antarct. J. US 2:218220.
48. Hoffman, P. F.,, and D. P. Schrag. 2000. Snowball Earth. Sci. Am. 282:6875.
49. Hoffman, P. F.,, A. J. Kaufman,, G. P. Halverson,, and D. P. Schrag. 1998. A neoproterozoic snowball Earth. Science 281:13421346.
50. Hollibaugh, J. T.,, N. Bano,, and H. W. Ducklow. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68:14781484.
51. Huber, R.,, H. Huber,, and K. O. Stetter. 2000. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev. 24: 615623.
52. Hughes, T. J. 1998. Ice Sheets. Oxford University Press Inc., New York, N.Y. 1992.
53. Jouzel, J.,, J. R. Petit,, R. Souchez,, N. I. Barkov,, V. Y. Lifenkov,, D. Raymond,, M. Stievenard,, N. I. Vassiliev,, V. Verbeke,, and F. Vimeux. 1999. More than 200 meters of lake ice above sub-glacial Lake Vostok, Antarctica. Science 286:21382141.
54. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperatures. Microb. Ecol. 43:315328.
55. Kapitsa, A. P.,, J. K. Ridley,, G. deQ Robin,, M. J. Siegert,, and I. A. Zotikov. 1996. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381:684686.
56. Karl, D. M.,, D. F. Bird,, K. Björkman,, T. Houlihan,, R. Shackelford,, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286:21442147.
57. Kepner, R. L.,, R. A. Wharton, Jr.,, and C. A. Suttle. 1998. Viruses in Antarctic lakes. Limnol. Oceanogr. 43:17541761.
58. Kirschvink, J. L., 1992. Late Proterozoic low-latitude global glaciation: the Snowball Earth, p. 5152. In J. W. Schopt,, C. Klein,, and D. Des Maris (ed.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, United Kingdom.
59. Kirschvink, J. L.,, E. J. Gaidos,, L. E. Bertani,, N. J. Beukes,, J. Gutzmer,, L. N. Maepa,, and R. E. Steinberger. 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA 97:14001405.
60. Kivelson, M. G.,, K. K. Khurana,, C. T. Russell,, M. Volwerk,, R. J. Walker,, and C. Zimmer. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289:13401343.
61. Knoll, A. H. 1994. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Natl. Acad. Sci. USA 91:67436750.
62. Kohshima, S. 1989. Glaciological importance of microorganisms in the surface mud-like material and dirt layer particles of the Chongce Ice Cap and Gozha Glacier, West Kunlun Mountains, China. Bull. Glacier Res. (Japan) 7:5965.
63. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 94139417.
64. Lighthart, B.,, and B. T. Shaffer. 1995. Airborne bacteria in the atmospheric surface layer: temporal distribution above a grass seed field. Appl. Environ. Microbiol. 61:14921496.
65. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709715.
66. Lipenkov, V. Y.,, and N. I. Barkov. 1998. Internal structure of the Antarctic ice sheet as revealed by deep core drilling at Vostok station, p. 3135. In Lake Vostok Study: Scientific Objectives and Technological Requirements. Abstracts of an International Workshop (24 to 26 March 1998). Arctic and Antarctic Research Institute, St. Petersburg, Russia.
67. Lipenkov, V. Y.,, and V. A. Istomin. 2001. On the stability of air clathrate-hydrate crystals in subglacial Lake Vostok. Mater. Glyatsiol. Issled. [Data Glaciol. Stud.] 91:138149.
68. Lipenkov, V. Y.,, N. I. Barkov,, and A. N. Salamatin. 2000. Istoriya klimata i oledeneniya Antarktidy po rezul'tatam izucheniya ledanogo kerna so stantsii Vostok [The history of climate and glaciation of Antarctica from results of the ice core study at Vostok Station]. Probl. Arktiki Antarkt. [Probl. Arctic Antarct.] 72:197236.
69. Lisle, J. T.,, and J. C. Priscu. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microb. Ecol., in press.
70. Mader, H. 1992a. Observations of the water-vein system in polycrystalline ice. J. Glaciol. 38:333347.
71. Mader, H. 1992b. The thermal behaviour of the water-vein system in polycrystalline ice. J. Glaciol. 38:359374.
72. Malin, M. C.,, and M. H. Carr. 1999. Groundwater formation of Martian valleys. Nature 397:589591.
73. Margulis, L.,, and D. Sagan. 1997. Micro-Cosmos: Four Billion Years of Microbial Evolution, p. 304. University of California Press, Berkeley, Calif..
74. Marshall, W. A.,, and M. O. Chalmers. 1997. Airborne dispersal of Antarctic algae and cyanobacteria. Ecography 20:585594.
75. McKay, C. P., 2001. The deep biosphere: lessons for planetary exploration, p. 315327. In J. K. Fredrickson, and M. Fletcher (éd.), Subsurface Microbiology and Biogeochemistry, Wiley-Liss Inc., New York, N.Y..
76. McKay, C. P.,, K. P. Hand,, P. T. Dolan,, D. T. Anderson,, and J. C. Priscu. Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica. Geophys. Res. Lett., in press.
77. McKay, C. P.,, and C. R. Stoker. 1989. The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27:189214.
78. McKay, D. S.,, E. K. Gibson,, K. L. Thomas-Keptra,, H. Vali,, S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924930.
79. Mueller, D. R.,, W. F. Vincent,, W. H. Pollard,, and C. H. Fritsen,. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats, p. 173197. In J. Eister,, J. Seckbach,, W. F. Vincent,, and O. Lhotsky (ed.), Algae and Extreme Environments; Ecology and Physiology. Proceedings of the International Conference, 11 to 16 September 2000, Trebon, Czech Republic. J. Cramer, Berlin, Germany.
80. Naish, T. R.,, K. J. Woolfe,, P. J. Barrett,, G. S. Wilson,, C. Atkins,, S. M. Bohaty,, C. J. Bücker,, M. Claps,, F. J. Davey,, G. B. Dunbar,, A. G. Dunn,, C. R. Fielding,, F. Florindo,, M. J. Hannah,, D. M. Harwood,, S. A. Henrys,, L. A. Krissek,, M. Lavelle,, J. van der Meer,, W. C. Mclntosh,, F. Niessen,, S. Passchier,, R. D. Powell,, A. P. Roberts,, L. Sagnotti,, R. P. Scherer,, C. P. Strong,, F. Talarico,, K. L. Verosub,, G. Villa,, D. K. Watkins,, P. N. Webb,, and T. Wonik 2001. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413:719723.
81. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter,, and C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritime. Nature 399:323328.
82. Olson, J. B.,, T. F. Steppe,, R. W. Litaker,, and H. W. Paerl. 1998. N2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36:231238.
83. Orton, G. S.,, J. R. Spencer,, L. D. Travis,, T. Z. Martin,, and L. K. Tamppari. 1996. Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites. Science 274:389391.
84. Paerl, H. W.,, and J. L. Pinckney. 1996. Ice aggregates as a microbial habitat in Lake Bonney, dry valley lakes, Antarctica: nutrient-rich micro-ozones in an oligotrophic ecosystem. Antarct. J. US 31:220222.
85. Paerl, H. W.,, and J. C. Priscu. 1998. Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36:221230.
86. Page, R. R. M.,, and E. C. Holmes. 1998. Molecular Evolution: A Phylogenetic Approach, p. 352. Blackwell Science, Oxford, United Kingdom.
87. Patterson, W. S. B. 1994. The Physics of Glaciers,, 3rd ed. Elsevier Science Inc., Tarrytown, N.Y..
88. Pederson, K. 1997. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20:399414.
89. Pennisi, E. 1998. Genome data shake tree of life. Science 280:672674.
90. Pennisi, E. 1999. Is it time to uproot the tree of life? Science 284:13051307.
91. Petit, J.-R.,, J. Jouzel,, D. Raynaud,, N. I. Barkov,, J. M. Barnola,, I. Basile,, M. Benders,, J. Chappellaz,, M. Davis,, G. Delaygue,, M. Dolmotte,, V. M. Dotlyakov,, M. Legrand,, V. Y. Lipendoc,, C. Lorius,, L. Pepin,, C. Ritz,, F. Saltzman,, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429436.
92. Petit, J.-R.,, C. Ritz,, P. Jean Baptiste,, R. Souchez,, V. Y. Lipenkov,, and A. Salamatin. 2002. Hot spots in Lake Vostok? American Geophysical Union Spring 2002 Meeting. Washington, D.C..
93. Pinckney, J. L.,, and H. W. Paerl. 1996. Lake ice algal phototroph community composition and growth rates, Lake Bonney, Dry Valley Lakes, Antarctica. Antarct. J. US 31:215216.
94. Poinar, H. N.,, M. Hoss,, J. L. Bada,, and S. Paabo. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272:864866.
95. Price, B. P. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97:12471251.
96. Priscu, J. C. 1997. The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Glob. Change Biol. 3:301305.
97. Priscu, J. C.,, M. T. Downes,, and C. P. McKay. 1996. Extreme super-saturation of nitrous oxide in a permanently ice-covered Antarctic Lake. Limnol. Oceanogr. 41:15441551.
98. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, S. J. Giovannoni,, H. W. Paerl,, C. P. McKay,, P. T. Doran,, D. A. Gordon,, B. D. Lanoil,, and J. L. Pinckney. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280:20952098.
99. Priscu, J. C.,, C. F. Wolf,, C. D. Takacs,, C. H. Fritsen,, J. Laybourn-Parry,, E. C. Roberts,, and W. Berry Lyons. 1999a. Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49:9971008.
100. Priscu, J. C.,, E. E. Adams,, W. B. Lyons,, M. A. Voytek,, D. W. Mogk,, R. L. Brown,, C. P. McKay,, C. D. Takacs,, K. A. Welch,, C. F. Wolf,, J. D. Kirschtein,, and R. Avci. 1999b. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:21412144.
101. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, H. W. Paerl,, J. T. Lisle,, J. E. Dore,, C. F. Wolf,, and J. Milucki,. Perennial Antarctic lake ice: a refuge for cyanobacteria in an extreme environment. In S. O. Rogers, and J. Castello (ed.), Life in Ancient Ice. Princeton University Press, Princeton, N. J., in press.
102. Psenner, R.,, B. Sattler,, A. Willie,, C. H. Fritsen,, J. C. Prisai,, M. Felip,, and J. Catalan,. 1999. Lake ice microbial communities in alpine and Antarctic lakes, p. 1731. In P. Schinner, and R. Margesin (éd.), Adaptations of Organisms to Cold Environments. Springer-Verlag, New York.
103. Reysenbach, A. L.,, and E. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296:10771082.
104. Riemann, B.,, and M. Søndergaard. 1986. Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier, Amsterdam, The Netherlands. 1992.
105. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay,, and D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66:32303233.
106. Sattler, B.,, H. Puxbaum,, and R. Psenner. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28:239242.
107. Schrag, D. P.,, and P. F. Hoffman. 2001. Life, geology and snowball Earth. Nature 409:306.
108. Siegert, M. J. 2000. Antarctic subglacial lakes. Earth-Sci. Rev. 50:2950.
109. Siegert, M. J.,, J. A. Dowdeswell,, M. R. Gorman,, and N. F. Mclntyre. 1996. An inventory of Antarctic subglacial lakes. Antarct. Sci. 8:281286.
110. Siegert, M. J.,, R. Kwok,, C. Mayer,, and B. Hubbard. 2000. Water exchange between subglacial Lake Vostok and the overlying ice sheet. Nature 403:643646.
111. Siegert, M. J.,, J. C. Ellis-Evans,, M. Tranter,, C. Mayer,, J.-R. Petit,, A. Salamatin,, and J. C. Priscu. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603609.
112. Siegert, M. J.,, M. Tranter,, J. C. Ellis-Evans,, J. C. Priscu,, and W. B. Lyons. 2003. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydro. Process. 17:795814.
113. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66:32143220.
114. Sömme, L. 1996. Anhydrobiosis and cold tolerance in tardigrades. Eur. J. Entomol. 93:349357.
115. Souchez, R.,, M. Janssens,, M. Lemmens,, and B. Stauffer. 1995. Very low oxygen concentration in basal ice from Summit, Central Greenland. Geophys. Res. Lett. 22:20012004.
116. Souchez, R.,, A. Bouzette,, H. B. Clausen,, S. J. Johnsen,, and J. Jouzel. 1998. A stacked mixing sequence at the base of the Dye 3 core. Geophys. Res. Lett. 25:19431946.
117. Sowers, T. 2001. The N2O record spanning the penultimate déglaciation from the Vostok ice core. J. Geograph. Res. 106:3190331914.
118. Staley, J. T.,, and J. J. Gosink. 1999. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53:189215.
119. Stetter, K. O.,, R. Huber,, E. Blochl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743745.
120. Takacs, C. D.,, J. C. Priscu,, and D. McKnight. 2001. Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol. Oceanogr. 46:11891194.
121. Takeuchi, N.,, S. Kohshima,, Y. Yoshimura,, K. Seko,, and K. Fujita. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bull. Glaciol. Res. (Japan) 17:5159.
122. Thomas, D. N.,, and G. S. Dieckmann. 2002. Antarctic sea ice—a habitat for extremophiles. Science 295:641644.
123. Thomas-Keprta, K. L.,, S. J. Clemett,, D. A. Bazylinski,, J. L. Kirschvink,, D. S. McKay,, S. J. Wentworth,, H. Valli,, E. K. Gibson, Jr.,, and C. S. Romanek. 2002. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 68:36633672.
124. Tikku, A. A.,, R. E. Bell,, and M. Studinger. 2002. Lake Concordia: a second Significant Lake Beneath the East Antarctic Ice Sheet. American Geophysical Union 2002 Spring Meeting,Washington, D.C..
125. Tobacco, I. E.,, A. Passerini,, F. Corbelli,, and M. Gorman. 1998. Determination of the surface and bed topography at Dome C, East Antarctica. J. Glaciol. 44:185190.
126. Turtle, E. P.,, and E. Pierazzo. 2001. Thickness of a Europan ice shell from impact crater simulations. Science 294:13261328.
127. Van Dover, C. L.,, S. E. Humphris,, D. Fornari,, C. M. Cavanaugh,, R. Collier,, S. K. Goffredi,, J. Hashimoto,, M. D. Lilley,, A. L. Reysenbach,, T. M. Shank,, K. L. Von Damm,, A. Banta,, R. M. Gallant,, D. Götz,, D. Green,, J. Hall,, T. L. Harmer,, L. A. Hurtado,, P. Johnson,, Z. P. McKiness,, C. Meredith,, E. Olson,, I. L. Pan,, M. Turnipseed,, Y. Won,, C. R. Young III,, and R. C. Vrijenhoek. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294:818823.
128. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, and V. Villenueve. 2000. Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball Earth. Naturwissenshaften 87:137141.
129. Vincent, W. F.,, and C. Howard-Williams. 2001. Life on snowball Earth. Science 287:2421.
130. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, V. Villeneuve,, P. A. Broady,, P. B. Hamilton,, and C. Howard-Williams. 2002. Ice shelf microbial ecosystems in the High Arctic and implications for life on Snowball Earth. Naturwissenschaften 87:137141.
131. Wharton, R. A., Jr.,, W. C. Vinyard,, B. C. Parker,, G. M. Simmons, Jr.,, and K. G. Seaburg. 1981. Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20:208211.
132. Wharton, R. A., Jr.,, C. P. McKay,, G. M. Simmons, Jr.,, and B. C. Parker. 1985. Cryoconite holes on glaciers. Bioscience 35:499503.
133. Wharton, R. A., Jr.,, R. A. Jamison,, M. Crosby,, C. P. McKay,, and J. W. Rice, Jr. 1995. Paleolakes on Mars. J. Paleolimn. 13:267283.
134. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 65786583.
135. Willerslev, E.,, A. J. Hansen,, B. Christensen,, J. P. Steffensen,, and P. Arctander. 1999. Diversity of Holocene life forms in fossil glacier ice. Proc. Natl. Acad. Sci. USA 96:80178021.
136. Williams, D. M.,, J. F. Kasting,, and L. A. Frakes. 1998. Low-latitude glaciation and rapid changes in the earth's obliquity explained by obliquity-oblateness feedback. Nature 396:453455.
137. Wilson, W. H.,, D. Lane,, D. A. Pearce,, and J. S. Ellis-Evans. 2000. Transmission electron microscope analysis of virus-like particles in freshwater lakes of Signy Island, Antarctica. Polar Biol. 23:657660.
138. Wing, K. T.,, and J. C. Priscu. 1993. Microbial communities in the permanent ice cap of Lake Bonney, Antarctica: relationships among chlorophyll a, gravel and nutrients. Antarct. J. US 28: 246249.
139. Wommack, E.,, and R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64:69114.
140. Zhang, X.,, T. Yao,, X. Ma,, and N. Wang. 2001. Analysis of the characteristics of microorganisms packed in the ice core of Malan Glacier, Tibet. Sci. China (Series D) 44:165170.


Generic image for table
Table 1

Summary of the bacterial cell number and organic carbon contribution from Antarctic subglacial lakes and the Antarctic and Greenland ice sheets

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error