1887

Chapter 14 : Extremophiles: pH, Temperature, and Salinity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Extremophiles: pH, Temperature, and Salinity, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap14-2.gif

Abstract:

During the past 20 years, rapidly growing research activities focused on the elucidation of the basic rules that govern extreme microorganisms such as prokaryotes, have been conducted all over the world. This new field was strongly supported by industry and academia because it became obvious that the extremophilic organisms provide a unique resource for a variety of biomolecules such as enzymes and compounds with high potential for applications in the biotechnological industry. Furthermore, the finding of novel biocatalysts will allow the development of more efficient and environmentally friendly industrial processes. This chapter focuses on a general description of the ecology, the general properties, and some examples of the biotechnological application of microorganisms that are able to grow optimally under very low or very high temperature, extreme pH, and high salinity. Such extremophiles can be found in terrestrial and marine environments all over the world and particularly in exotic ecological niches such as polar regions, solfataric fields, soda lakes, and abyssal hypothermal vents. Most of the bacteria identified were classified in four phylogenetic groups: , , , and the division, as were supported by cultivation data.

Citation: Vorgias C, Antranikian G. 2004. Extremophiles: pH, Temperature, and Salinity, p 146-153. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch14

Key Concept Ranking

Bacteria and Archaea
1.6146322
Chemicals
0.79850924
Bacteria
0.6389855
Salt Lakes
0.5576252
Citric Acid
0.5477018
1.6146322
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817770.chap14
1. Baross, J. A.,, and J. W. Deming,. 1995. Growth at high temperatures: isolation and taxonomy, physiology, and ecology, p. 169 217. In D. M. Karl (ed.), The Microbiology of Deep-Sea Hydrothermal Vents. CRC Press, Boca Raton, Fla.
2. Bowman, M. V.,, and J. P. Bowman. 2001. A molecular phylogenetic survey of sea-ice microbial communities. FEMS Microbiol. Ecol. 35: 267 275.
3. Canganella, F.,, W. J. Jones,, A. Gambacorta,, and G. Antranikian. 1998. Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydro thermal vent site. Int. J. Syst. Bacteriol. 48: 1181 1185.
4. De Costa, M. S.,, H. Santos,, and E. A. Galinski. 1998. An overview of the role and diversity of compatible solutes in Bacteria and Archaea. Adv. Biochem. Eng. Biotechnol. 61: 117 153.
5. Deming, J. W. 2002. Psychrophiles and polar regions. Curr. Opin. Microbiol. 5: 301 309.
6. Demirjian, D. C, F. Moris-Varas, and C. S. Cassidy. 2001. Enzymes from extremophiles. Curr. Opin. Chem. Biol. 5: 144 151.
7. Feller, G.,, E. Narinx,, J. L. Arpigny,, M. Aittaleb,, E. Baise,, S. Genicot,, and C. Gerday. 1996. Enzyme from extremophilic mocroorganisms. FEMS Microbiol. Rev. 18: 189 202.
8. Frey, B., and B. Suppmann. 1995. Demonstration of the Expand PCR System's greater fidelity and higher yields with a lacI-based fidelity assay. Biochemica 2: 3435.
9. Galinski, E. A. 1993. Compatible solutes of halophilic eubacteria: molecular principles, water-soluble interactions, stress protection. Experientia 49: 487 496.
10. Gerday, C, M. Aittaleb, M. Bentahir, J. P. Chessa, P. Claverie, T. Collins, S. D'Amico, J. Dumont, G. Garsoux, D. Georlette, A. Hoyoux, T. Lonhienne, M. A. Meuwis, and G. Feller. 2000. Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol. 18: 103107.
11. Gonzáles, J. M.,, Y. Masuchi,, F. T. Robb,, J. W. Ammerman,, D. L. Maeder,, M. Yanagibayashi,, J. Tamaoka,, and C. Kato. 1998. Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2: 123 130.
12. Grant, W. D.,, R. T. Gemmell,, and T. J. McGenity,. 1998>. Halophiles, p. 93 133. In K. Horikoshi ,and W. D. Grant (ed.), Halophiles. Wiley-Liss, New York, N.Y.
13. Grote, R.,, L. Li,, J. Tamoaoka,, C. Kato,, K. Horikoshi,, and G. Antranikian. 1999. Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3: 55 62.
14. Hallberg, K.B., , and E. B. Lindström. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140: 3451 3456.
15. Herbert, R. A. 1992. A perspective on the biotechnological potential of extremophiles. Trends Biotechnol. 110: 395 402.
16. Horikoshi, K.,, and W. D. Grant (ed.). 1998. Extremophiles— Microbial Life in Extreme Environments. Wiley-Liss, New York, N.Y.
17. Jaenicke R.,, and G. Bohm. 1998. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 8: 738 748.
18. Jeanthon, C.,, S. L'Haridon,, A. L. Reysenbach,, M. Vernet,, P. Mess-ner,, U. B. Sleytr,, and D. Prieur. 1998. Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48: 913 919.
19. Jeanthon, C.,, S. L.'Haridon,, A. L. Reysenbach,, E. Corre,, M. Vernet,, P. Messner,, U. B. Sleytr,, and D. Prieur. 1999. Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int. J. Syst. Bacteriol. 49: 583 589.
20. Jones, B. E.,, W. D., Grant,, A. W. Duckworth,, and G. G. Owenson. 1998. Microbial diversity of soda lakes. Extremophiles 2: 191 200.
21. Kamekura, M. 1998. Diversity of extremely halophilic bacteria. Extremophiles 2: 289 295.
22. Koch, R.,, K. Spreinat,, K. Lemke,, and G. Antranikian. 1991. Purification and properties of a hyperthermoactive alpha-amylase from the archaeobaterium Pyrococcus woesei. Arch. Microbiol. 155: 572 578.
23. Ladenstein, R.,, and G. Antranikian. 1998. Proteins from hyperthermophiles: stability and enzymatic catalysis close to the boiling point of water. Adv. Biochem. Eng. Biotechnol. 61: 37 85.
24. Leuschner, C, and G. Antranikian. 1995. Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World Microbiol. Biotechnol. 11: 95114.
25. Lien, T.,, M. Madsen,, F. A. Rainey,, and N. K. Birkeland. 1998. Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48: 1007 1013.
26. Madigan, M. T.,, and A. Oren. 1999. Thermophilic and halophilic extremophiles. Curr. Opin. Microbiol. 2: 265 269.
27. Margesin, R.,, and F. Schinner. 2001. Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5: 73 83.
28. Morita, R. Y. 1975. Psychrophilic bacteria. Bacteriol. Rev. 39: 144 167.
29. Niehaus, F.,, C. Bertoido,, M. Kahler,, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711 729.
30. Prowe, S. G.,, and G. Antranikian. 2001. Anaerobrances gottschalkii sp. nov., a new hermoalkaliphilic bacterium that grows anaerobically at high pH and temperature. Int. J. Syst. Evol. Microbiol. 51: 457 465.
31. Ross, H. N. M.,, M. D. Collins,, B. J. Tindall,, and W. D. Grant. 1981. A rapid method for detection of archaeabacterial lipids in halophilic bacteria. J. Gen. Microbiol. 123: 75 80.
32. Rothschild, L. J.,, and R. L. Mancinelli. 2001. Life in extreme environments. Nature 22: 1092 1101.
33. Russell, N. J. 2000. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4: 83 90.
34. Russell, N. J., and T. Hamamoto,. 1998. Psychrophiles, p. 25 47. In K. Horikoshi ,and W. D. Grant (ed.), Extremophiles—Microbial Life in Extreme Environments, Wiley-Liss, New York, N.Y.
35. Sievert, S. M.,, W. Ziebis,, J. Kuever,, and K. Sahm. 2000. Relative abundance of Archaea and Bacteria along a thermal gradient of a shallow-water hydrothermal vent quantified by rRNA slot-blot hybridization. Microbiol 146: 1287 1293.
36. Stetter, K. O. 1996. Hyperthermophilic procaryotes. FEMS Microbiol. Rev. 18: 149 158.
37. Stetter, K. O., 1998. Hyperthermophiles: isolation, classification and properties, p. 1 24. In K. Horikoshi ,and W. D. Grant (ed.), Extremophiles—Microbial Life in Extreme Environments. Wiley-Liss, New York, N.Y.
38. Stetter, K. O.,, H. König,, and E. Stackebrandt. 1983. Pyrodictium gen. nov., a new genus of submarine disc-shaped sulfur reducing archaebacteria growing optimally at 105°C. Syst. Appl. Microbiol 4: 535 551.
39. Stetter, K. O.,, G. Fiala,, G. Huber,, R. Huber,, and A. Segerer. 1990. Hyperthermophilic microorganisms. FEMS Microbiol. Rev. 75: 117 124.
40. Sunna, A.,, M. Moracci,, M. Rossi,, and G. Antranikian. 1997. Glycosyl hydrolases from hyperthermophiles. Extremophiles 1: 2 13.
41. Ventosa, A.,, and J. J. Bieto. 1995. Biotechnological applications and potentialities of halophilic microorganisms. World J. Microbiol. Technol. 11: 85 94.
42. Ventosa, A.,, M. C. Marquez,, M. J. Garabito,, and D. R. Arahal. 1998. Moderately halophilic gram-positive bacterial diversity in hypersaline environments. Extremophiles 2: 297 304.
43. Vetriani, C.,, D. L. Maeder,, N. Tolliday,, K. S. P. Yip,, T. J. Stillman,, K. L. Britton,, D. W. Rice,, H. H. Klump,, and F. T. Robb. 1998. Protein thermostability above 100°C: a key.role for ionic interactions. Proc. Nat. Acad. Sci. USA 95: 12300 12305.
44. Vorgias, C. E.,, and G. Antranikian,. 2000. Glycosyl hydrolases from extremophiles, p. 313 339. In Doyle (ed.), Glycomicrobiology. Kluwer Academic, New York, N.Y.
45. Wiegel, J. 1998. Anaerobic alkalithermophiles, a novel group of extremophiles. Extremophiles 2: 257 267.
46. Winterhalter, C.,, and W. Liebl. 1995. 2 Extremely thermostable xylamases of the hyperthermophilic bacterium Thermotoga marítima MSB8. Appl. Environ. Microbiol. 61: 1810 1815.

Tables

Generic image for table
Table 1

Microorganisms living at extreme pHs

Citation: Vorgias C, Antranikian G. 2004. Extremophiles: pH, Temperature, and Salinity, p 146-153. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch14
Generic image for table
Table 2

Microorganisms growing at low temperature

Citation: Vorgias C, Antranikian G. 2004. Extremophiles: pH, Temperature, and Salinity, p 146-153. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch14
Generic image for table
Table 3

Microorganisms growing at elevated temperatures

Citation: Vorgias C, Antranikian G. 2004. Extremophiles: pH, Temperature, and Salinity, p 146-153. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch14
Generic image for table
Table 4

Microorganisms living at high salt concentrations

Citation: Vorgias C, Antranikian G. 2004. Extremophiles: pH, Temperature, and Salinity, p 146-153. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error