1887

Chapter 15 : Extremophiles: Pressure

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Extremophiles: Pressure, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap15-2.gif

Abstract:

The study of deep-sea microorganisms may not only enhance our understanding of specific adaptations to abyssal and hadal ocean realms, but also may provide valuable insights into the origin and evolution of all life. Thermophilic microorganisms have also been examined physiologically under high-pressure conditions. Thus, studies on the effects of pressure on microorganisms have mainly been performed using two types of microorganism, psychrophilic piezophiles and thermophilic piezophiles. Because the effect of pressure on membrane structures is considerable, the function of membrane proteins must also be affected by increasing pressure. A pressure-regulated operon has five transcription initiation sites and is controlled at the transcriptional level by elevated pressure. Transcription of the operon is controlled by elevated pressure conditions in . The integration of basic knowledge of the effects of pressure on biochemical or biophysical reactions and knowledge acquired through recent advances in molecular biology and entire genome sequencing information will enable us to understand the mechanisms of piezoadaptation as well as the microbial diversity in the deep sea.

Citation: Abe F, Horikoshi K, Kato C. 2004. Extremophiles: Pressure, p 154-159. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch15

Key Concept Ranking

Bacterial Proteins
0.76768637
Unsaturated Fatty Acids
0.6237102
Electron Transport System
0.51297814
Monounsaturated Fatty Acids
0.48906115
Fatty Acids
0.47090393
0.76768637
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

A model for the electron transport system in DB172F. The respiratory system seems to be abbreviated under high pressure compared with 0.1 MPa. Q, quinone; QH2, quinol.

Citation: Abe F, Horikoshi K, Kato C. 2004. Extremophiles: Pressure, p 154-159. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagrammatic representation of tlie pressure-regulated genes in DSS 12. (A) Pressure-regulated operon. Arrow #2 shows the transcription controlled by the sigma 54 factor. (B) Glutamine synthetase operon. Arrow #1 shows the transcription controlled by the sigma 54 factor.

Citation: Abe F, Horikoshi K, Kato C. 2004. Extremophiles: Pressure, p 154-159. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

A model of the transcription mechanism of pressure-regulated gene expression in piezophilic bacterium, DSS12.

Citation: Abe F, Horikoshi K, Kato C. 2004. Extremophiles: Pressure, p 154-159. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap15
1. Abe, F.,, and K. Horikoshi. 1998. Analysis of intracellular pH in the yeast Succharotnyces cerevhiae under elevated hydrostatic pressure: a study in baro-(piezo-)physiology. Extremophiles 2: 223 228.
2. Abe, F.,, and K. Horikoshi. 2000. Tryptophan permease gene TAT2 confers high-pressure growth in Saccbnromyces cerevisiae. Mol. Cell. Biol. 20: 8093 8102.
3. Abe, F.,, and K. Horikoshi. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19: 102 108.
4. Abe, F.,, C. Kato,, and K. Horikoshi. 1999. Pressure-regulated metabolism in microorganisms. Trends Microbiol. 7: 447 452.
5. Allen, E. E.,, D. H. Facciotti,, and D. H. Bartlett. 1999. Monoun saturated but not polyunsaturated fatty acids are required for growth of the deep-sea bacterium Pbotobacterium profundum SS9 at high pressure and low temperature. Appl. Environ. Microbiol. 65: 1710 1720.
6. Bartlett, D. H. 1999. Microbial adaptations to the psychrosphere/peizosphere. J. Mol. Microbiol. Biotechnol. 1: 93 100.
7. Bartlett, D. H. 2002. Pressure effects on in vivo microbial processes. Biochim. Biophys. Acta 1595: 367 381.
8. Bartlett, D. H.,, M. Wright,, A. A. Yayanos,, and M. Silverman. 1989. Isolation of a gene regulated by hydrostatic pressure. Nature 342: 572 574.
9. Canganella, F.,, J. M. Gonzalez,, M. Yanagibayashi,, C. Kato,, and K. Horikoshi. 1997. Pressure and temperature effects on growth and viability of the hyperthermophilic archaeon Thermococcus peptonophilus. Arch. Microbiol. 168: 1 7.
10. DeLong, E. F.,, and A. A. Yayanos. 1985. Adaptation of the membrane lipids of a deep-sea bacterium to changes in hydrostatic pressure. Science 228: 1101 1103.
11. DeLong, E. F.,, D. G. Franks,, and A. A. Yayanos. 1997. Evolutionary relationship of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63: 2105 2108.
12. Deming, J. W.,, L. K. Somers,, W. L. Straube,, D. G. Swartz,, and M. T. Macdonnel. 1988. Isolation of an obligatory barophilic bacterium and description of a new genus, Colwellia gen. nov. Syst. Appl. Microbiol. 10: 152 160.
13. Hei, D. J.,, and D. S. Clark. 1994. Pressure stabilization of proteins from extreme thermophiles. Appl. Environ. Microbiol. 60: 932 939.
14. Ikegami, A.,, K. Nakasone,, S. Fujii,, C. Kato,, R. Usami,, and K. Horikoshi. 2000. Cloning and characterization of the gene encoding RNA polymerase sigma factor σ 54 of deep-sea piezophilic Shewanella violacea. Biochim. Biophys. Acta 1491: 315 320.
15. Jannasch, H. W.,, and C. D. Taylor. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38: 487 514.
16. Jannasch, H. W.,, C. O. Wirsen,, and S. J. Molyneaux. 1992. Comparative physiological studies on hyperthermophilic archaea isolated from deep-sea hot vent with emphasis on Pyrococcus strain GB-D. Appl. Environ. Microbiol. 58: 3472 3481.
17. Kato, C.,, and D. H. Bartlett. 1997. The molecular biology of barophilic bacteria. Extremophiles 1: 111 116.
18. Kato, C.,, and Y. Nogi. 2001. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. FEMS Microbiol. Ecol. 35: 223 230.
19. Kato, C.,, H. Tamegai,, A. Ikegami,, R. Usami,, and K. Horikoshi. 1996. Open reading frame 3 of the barotolerant bacterium strain DSS12 is complementary with cydD in Escherichia coli: cydD functions are required for cell stability at high pressure. J. Biochem. 120: 301 305.
20. Kato, C.,, A. Ikegami,, M. Smorawinska,, R. Usami,, and K. Horikoshi. 1997. Structure of genes in a pressure-regulated operon and adjacent regions from a barotolerant bacterium strain DSS12. J. Mar. Biotechnol. 5: 210 218.
21. Kato, C.,, L. Li,, Y. Nogi,, Y. Nakamura,, J. Tamaoka,, and K. Horikoshi. 1998. Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11000 meters. Appl. Environ. Microbiol. 64: 1510 1513.
22. Macdonald, A. G., 1987. The role of membrane fluidity in complex processes under high pressure, p. 207 223. In R. E. Marquis,, A. M. Zimmerman,, and H. W. Jannasch (ed.), Current Perspectives in High Pressure Biology. Academic Press, London, United Kingdom.
23. Marteinsson, V. T.,, P. Moulin,, J.-L. Birrien,, A. Gambacorta,, M. Vernet,, and D. Prieur. 1997. Physiological responses to stress conditions and barophilic behavior of the hyperthermophilic vent archaeon Pyrococcus abyssi. Appl. Environ. Microbiol. 63: 1230 1236.
24. Miller, J. F.,, N. N. Shah,, C. M. Nelson,, J. M. Ludlow,, and D. S. Clark. 1988. Pressure and temperature effects on growth and methane production of the extreme thermophile Methanococcus jannaschii. Appl. Environ. Microbiol. 54: 3039 3042.
25. Nakasone, K.,, A. Ikegami,, C. Kato,, R. Usami,, and K. Horikoshi. 1998. Mechanisms of gene expression controlled by pressure in deep-sea microorganisms Extremophiles 2: 149 154.
26. Nakasone, K.,, A. Ikegami,, H. Kawano,, C. Kato,, R. Usami,, and K. Horikoshi. 2002. Transcriptional regulation under pressure conditions by RNA polymerase sigma54 factor with a two-component regulatory system in Shewanella violacea. Extremophiles 6: 89 95.
27. Nogi, Y.,, C. Kato,, and K. Horikoshi. 1998a. Taxonomie studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch. Microbiol. 170: 331 338.
28. Nogi, Y.,, C. Kato,, and K. Horikoshi. 1998b. Moritella japonica sp. nov., a novel barophilic bacterium isolated from a Japan Trench sediment. J. Gen. Appl. Microbiol. 44: 289 295.
29. Pande, C.,, and A. Wishnia. 1986. Pressure dependence of equilibria and kinetics of Escherichia coli ribosomal subunit association, J. Biol. Chem. 261: 6272 6278.
30. Pledger, R. J.,, B. C. Crump,, and J. A. Baross. 1994. A barophilic response by two hyperthermophilic, hydrothermal vent Archaea: an upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure. FEMS Microbiol. Ecol. 14: 233 242.
31. Qureshi, M. H.,, C. Kato,, and K. Horikoshi. 1998a. Purification of two pressure-regulated c-type cytochromes from a deep-sea barophilic bacterium. Shewanella sp. strain DB-172F. FEMS Microbiol. Lett. 161: 301 309.
32. Qureshi, M. H.,, C. Kato,, and K. Horikoshi. 1998b. Purification of a ccb-type quinol oxidase specifically induced in a deep-sea barophilic bacterium, Shewanella sp. strain DB-172F. Extremophiles 2: 93 99.
33. Takai, K.,, A. Sugai,, T. Itoh,, and K. Horikoshi. 2000. Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperther-mophlic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 50: 489 500.
34. Tamegai, H.,, C. Kato,, and K. Horikoshi. 1998. Pressure-regulated respiratory system in barotolerant bacterium, Shewanella sp. strain DSS12. J. Biochem. Mol. Biol. Biophys. 1: 213 220.
35. Welch, T. J.,, and D. H. Bartlett. 1996. Isolation and characterization of the structural gene for OmpL, a pressure-regulated porin-like protein from the deep-sea bacterium Photobacterium species strain SS9. J. Bacteriol. 178: 5027 5031.
36. Welch, T. J.,, and D. H. Bartlett. 1998. Identification of a regulatory protein required for pressure-responsive gene expression in the deep-sea bacterium Photobacterium species strain SS9. Mol. Microbiol. 27: 977 985.
37. Yamada, M.,, K. Nakasone,, H. Tamegai,, C. Kato,, R. Usami,, and K. Horikoshi. 2000. Pressure regulation of soluble cytochromes c in a deep-sea piezophilic bacterium, Shewanella violacea. J. Bacteriol. 182: 2945 2952.
38. Yayanos, A. A.,, S. Dietz,, and R. Van Boxtel. 1979. Isolation of a deep-sea barophilic bacterium and some of its growth characteristics. Science 205: 808 810.
39. ZoBell, C. E.,, and F. H. Johnson. 1949. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 57: 179 189.
40. ZoBell, C. E.,, and R. Y. Morita. 1957. Barophilic bacteria in some deep-sea sediments. J. Bacteriol. 73: 563 568.

Tables

Generic image for table
Table 1

Investigations of the effects of high pressure on piezophiles

Citation: Abe F, Horikoshi K, Kato C. 2004. Extremophiles: Pressure, p 154-159. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error