1887

Chapter 17 : Anaerobes: the Sulfate-Reducing Bacteria as an Example of Metabolic Diversity

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Anaerobes: the Sulfate-Reducing Bacteria as an Example of Metabolic Diversity , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap17-2.gif

Abstract:

Life in the absence of oxygen has become possible because anaerobes can gain energy by using various metabolical strategies in anaerobiosis, especially fermentative pathways. In addition to anaerobes ability to perform fermentation, their use of inorganic (e.g., heavy metals, sulfur or nitrogen compounds, carbon dioxide) and organic electron acceptors (e.g. fumarate) is also widespread. During the past two decades, it has also been shown that microorganisms formerly known as strict anaerobes were capable of using oxygen under microaerobic conditions. In this case, oxygen serves as an electron acceptor or can be used to detoxify the immediate environment of anaerobes. Therefore, the discovery of such relationships between anaerobes and oxygen has fundamentally modified the concept of anaerobic microorganisms that will probably disclose in the near future other metabolical properties involving oxygen. Metabolical activities performed by anaerobic sulfate-reducing bacteria (SRB) may exemplify what are the metabolical options for anaerobes to live in the absence and in the presence of oxygen. In an attempt to briefly illustrate what is anaerobic life, this chapter focuses on the metabolism of SRB, which may have an autotrophic, lithoautotrophic, heterotrophic, or respiration type of life under anaerobiosis. As the enzymatic machinery adequate for aerobic respiration is present in bacteria classified as strict anaerobes, a revision of the classification of microorganisms in terms of their response to oxygen has to be done.

Citation: Fauque G, Ollivier B. 2004. Anaerobes: the Sulfate-Reducing Bacteria as an Example of Metabolic Diversity , p 169-176. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch17

Key Concept Ranking

Inorganic Compounds
0.4585695
Dissimilatory Nitrate Reduction to Ammonia
0.4026474
0.4585695
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817770.chap17
1. Akagi, J. M., 1995. Respiratory sulfate reduction, p. 89111. In L. L. Barton (ed.), Biotechnology Handbooks, vol. 8, Sulfate-Reducing Bacteria. Plenum Press, New York, N.Y.
2. Baena, S.,, M.-L. Fardeau,, M. Labat,, B. Ollivier,, J.-I. Garcia, and B. K. C. Patel. 1998. Desulfovibrio aminophilus sp. nov., a novel amino acid degrading and sulfate reducing bacterium from an anaerobic wastewater lagoon. Syst. Appl. Microbiol. 21: 498504.
3. Bak, F.,, and N. Pfennig. 1987. Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch. Microbiol. 147:184189.
4. Barton, L. L.,, J. LeGall,, J. M. Odom,, and H. D. Peck, Jr. 1983. Energy coupling to nitrite respiration in the sulfate-reducing bacterium Desulfovibrio gigas. J. Bacteriol. 153:867871.
5. Biebl, H.,, and N. Pfennig. 1977. Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch. Microbiol. 112: 115117.
6. Bursakov, S.,, M.-Y. Liu,, W. J. Payne,, J. LeGall,, I. Moura,, and J. J. G. Moura. 1995. Isolation and preliminary characterization of a soluble nitrate reductase from the sulfate reducing organism Desulfovibrio desulfuricans ATCC 27774. Anaerobe 1:5560.
7. Cammack, R.,, G. Fauque,, J. J. G. Moura,, and J. LeGall. 1984. ESR studies of cytochrome c3 from Desulfovibrio desulfuricans Norway 4: midpoint potentials of the four haems, and interactions with ferredoxin and colloidal sulphur. Biochim. Biophys. Acta 784:6874.
8. Castro, H. F.,, N. H. Williams,, and A. Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31:19.
9. Cypionka, H., 1995. Solute transport and cell energetics, p. 151184. In L. L. Barton (ed.), Biotechnology Handbooks, vol. 8, Sulfate-Reducing Bacteria. Plenum Press, New York, N.Y.
10. Cypionka, H. 2000. Oxygen respiration by Desulfovibrio species. Annu. Rev. Microbiol. 54:827848.
11. De Luca, G.,, P. De Philip,, Z. Dermoun,, M. Rousset,, and A. Verméglio. 2001. Reduction of technetium (VII) by Desulfovibrio fructosovorans is mediated by the nickel-iron hydrogenase. Appl. Environ. Microbiol. 67:45834587.
12. Dias, J. M.,, M. E. Than,, A. Humm,, R. Huber,, G. P. Bourenkov,, H. D. Bartunik,, S. Bursakov,, J. Calvete,, J. Caldeira,, C. Carneiro,, J. J. G. Moura,, I. Moura,, and M. J. Romac. 1999. Crystal structure of the first dissimilatory nitrate reductase at 1.9 A solved by MAD methods. Structure 1:6519.
13. Dilling, W.,, and H. Cypionka. 1990. Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol. Lett. 71:123128.
14. Fauque, G., 1989 Properties of [NiFe] and [NiFeSe] hydrogenases from methanogenic bacteria, p. 216236. In M. S. Da Costa,, J. C. Duarte,, and R. A. D. Williams (ed.), Microbiology of Extreme Environments and its Potential for Biotechnology. Elsevier Applied Science, London, United Kingdom.
15. Fauque, G. D. 1994. Sulfur reductase from thiophilic sulfate-reducing bacteria. Methods Enzymol. 243:353367.
16. Fauque, G. D., 1995. Ecology of sulfate-reducing bacteria, p. 217241. In L. L. Barton (ed.), Biotechnology Handbooks, vol. 8, Sulfate-Reducing Bacteria. Plenum Press, New York, N.Y.
17. Fauque, G.,, D. Herve,, and J. LeGall. 1979. Structure-function relationship in hemoproteins: the role of cytochrome C3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch. Microbiol. 121:261264.
18. Fauque, G. D.,, L. L. Barton,, and J. LeGall. 1980. Oxidative phosphorylation linked to the dissimilatory reduction of elemental sulphur by Desulfovibrio, p. 7186. In Sulphur in Biology, Ciba Foundation Symposium 72. Excerpta Medica, Amsterdam, The Netherlands.
19. Fauque, G.,, H. D. Peck, Jr.,, J. J. G. Moura,, B. H. Huynh,, Y. Berber,, D. V. DerVartanian,, M. Teixeira,, A. E. Przybyla,, P. A. Lespinat,, I. Moura,, and J. LeGall. 1988. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio. FEMS Microbiol. Rev. 54:299344.
20. Fauque, G.,, A. R. Lino,, M. Czechowski,, L. Kang,, D. V. DerVartanian,, J. J. G. Moura,, J. LeGall,, and I. Moura. 1990. Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands. Biochim. Biophys. Acta 1040:112118.
21. Fauque, G.,, J. LeGall,, and L. L. Barton,. 1991. Sulfate-reducing and sulfur-reducing bacteria, p. 271337. In J. M. Shively, and L. L. Barton (ed.), Variations in Autotrophic Life. Academic Press Ltd., London, United Kingdom.
22. Fauque, G.,, O. Klimmek,, and A. Kröger. 1994. Sulfur reductases from spirilloid mesophilic sulfur-reducing eubacteria. Methods Enzymol. 243:367383.
23. Gavel, O. Y.,, S. A. Bursakov,, J. J. Calvete,, G. N. George,, J. J. G. Moura,, and I. Moura. 1998. ATP sulfurylases from sulfate-reducing bacteria of the genus Desulfovibrio. A novel metallo-protein containing cobalt and zinc. Biochemistry 37:1622516232.
24. Hatchikian, E. C. 1994. Desulfofuscidin: dissimilatory, high-spin sulfite reductase of thermophilic, sulfate-reducing bacteria. Methods Enzymol. 243:276295.
25. Hedderich, R.,, O. Klimmek,, A. Kroger,, R. Dirmeier,, M. Keller, and K. O. Stetter. 1999. Anaerobic respiration with elemental sulfur and with disulfides. FEMS Microbiol. Rev. 22:353381.
26. Joubert, W. A.,, and T. J. Britz. 1987. Isolation of saccharolytic dissimilatory sulfate-reducing bacteria. FEMS Microbiol. Lett. 48:3540.
27. Kramer, M.,, and H. Cypionka. 1989. Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch. Microbiol. 151:232237.
28. Kremer, D. R.,, M. Veenhuis,, G. Fauque,, H. D. Peck, Jr.,, J. LeGall,, J. Lampreia,, J. J. G. Moura,, and T. A. Hansen. 1988. Immunocytochemical localization of APS reductase and bisulfite reductase in three Desulfovibrio species. Arch. Microbiol. 150:296301.
29. Kurtz, D. M.,, and E. D. Coulter. 2002. The mechanism(s) of superoxide reduction by superoxide reductases in vitro and in vivo. ). Biol. Inorg. Chem. 7:653658.
30. Lampreia, J.,, G. Fauque,, N. Speich,, C. Dahl,, I. Moura,, H. G. Trüper,, and J. J. G. Moura. 1991. Spectroscopie studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium. Archaeoglobus fulgidus. Biochem. Biophys. Res. Commun. 181:342347.
31. Lampreia, J.,, A. S. Pereira,, and J. J. G. Moura. 1994. Adenylylsulfate reductases from sulfate-reducing bacteria. Methods Enzymol. 243:241260.
32. Le Faou, A.,, B. S. Rajagopal,, L. Daniels,, and G. Fauque. 1990. Thiosulfate, polythionates and elemental sulfur assimilation and reduction in the bacterial world. FEMS Microbiol. Rev. 75:351382.
33. LeGall, J.,, and G. Fauque,. 1988. Dissimilatory reduction of sulfur compounds, p. 587639. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York, N.Y.
34. LeGall, J.,, and A. V. Xavier. 1996. Anaerobes response to oxygen: the sulfate-reducing bacteria. Anaerobe 2:19.
35. Lemos, R. S.,, C. M. Gomes,, M. Santana,, J. LeGall,, A. V. Xavier,, and M. Teixeira. 2001. The "strict" anaerobe Desulfovibrio gigas contains a membrane-bound oxygen-reducing respiratory chain. FEBS Lett. 496:4043.
36. Lespinat, P. A.,, Y. M. Berlier,, G. D. Fauque,, R. Toci,, G. Denariaz,, and J. LeGall. 1987. The relationship between hydrogen metabolism, sulfate reduction and nitrogen fixation in sulfate reducers. J. Ind. Microbiol. 1:383388.
37. Liu, M.-C.,, C. Costa,, and I. Moura. 1994. Hexaheme nitrite reductase from Desulfovibrio desulfuricans ATCC 27774. Methods Enzymol. 243:303319.
38. Lloyd, J. R.,, J. Ridley,, T. Khizniak,, N. N. Lyalikova,, and L. E. Macaskie. 1999a. Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl. Environ. Microbiol. 65:26912696.
39. Lloyd, J. R.,, G. H. Thomas,, J. A. Finley,, J. A. Cole,, and L. E. Macaskie. 1999b. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Biotechnol. Bioeng. 66:122130.
40. Lloyd, J. R.,, A. N. Mabbett,, D. R. Williams,, and L. E. Macaskie. 2001. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59:327337.
41. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263290.
42. Lovley, D. R.,, and E. J. P. Phillips. 1994. Reduction of chromate by Desulfovibrio vulgaris and its C3 cytochrome. Appl. Environ. Microbiol. 60:726728.
43. Lovley, D. R.,, P. K. Widman,, J. C. Woodward,, and E. J. P. Phillips. 1993. Reduction of uranium by cytochrome c3 of Desulfovibrio vulgaris. Appl. Environ. Microbiol. 59:35723576.
44. Macy, J. M.,, J. M. Santini,, B. V. Pauling,, A. H. O'Neill,, and L. I. Sly. 2000. Two new arsenate/sulfate-reducing bacteria: mechanism of arsenate reduction. Arch. Microbiol. 173:4957.
45. Michel, C, M. Brugna, C. Aubert, A. Bernadac, and M. Bruschi. 2001. Enzymatic reduction of chromate: comparative studies using sulfate-reducing bacteria. Key role of polyheme cytochromes c and hydrogenases. Appl. Microbiol. Biotechnol. 55:95100.
46. Moura, I.,, and A. R. Lino. 1994. Low-spin sulfite reductases. Methods Enzymol. 243:296303.
47. Moura, I.,, S. Bursakov,, C. Costa,, and J. J. G. Moura. 1997. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe 3:279290.
48. Moura, I.,, J. LeGall,, A. R. Lino,, H. D. Peck, Jr.,, G. Fauque,, A. V. Xavier,, D. V. DerVartanian,, J. J. G. Moura,, and B. H. Huynh. 1988a. Characterization of two dissimilatory sulfite reductases (desulforubidin and desulfoviridin) from the sulfate-reducing bacteria. Mossbauer and EPR studies. J. Am. Chem. Soc. 110:10751082.
49. Moura, J. J. G.,, I. Moura,, M. Teixeira,, A. V. Xavier,, G. D. Fauque,, and J. LeGall,. 1988b. Nickel-containing hydrogenases, p. 285ndash;314. In H. Sigel (ed.), Metal Ions in Biological Systems,vol. 23,Nickel and Its Role in Biology. Marcel Dekker, Inc., New York, N.Y.
50. Newman, D. K.,, E. K. Kennedy,, J. D. Coates,, D. Ahmann,, D. J. Ellis,, D. R. Lovley,, and F. M. M. Morel. 1997. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168:380388.
51. Noguera, D. R.,, G. A. Brusseau,, B. E. Rittmann,, and D. A. Stahl. 1998. A unified model describing the role of hydrogen in the growth of Desulfovibrio vulgaris under different environmental conditions. Biotechnol. Bioeng. 59:732746.
52. Ollivier, B.,, R. Cord-Ruwisch,, E. C. Hatchikian,, and J. L. Garcia. 1988. Characterization of Desulfovibrio fructosovorans sp. nov. Arch. Microbiol. 149:447450.
53. Pankhania, I. P.,, A. M. Spormann,, W. A. Hamilton,, and R. K. Thauer. 1988. Lactate conversion to acetate, CO2 and H2 in cells suspensions of Desulfovibrio vulgaris (Marburg): indications for the involvement of an energy driven reaction. Arch. Microbiol. 150:2631.
54. Peck, H. D., Jr. 1959. The ATP-dependent reduction of sulfate with hydrogen in extracts of Desulfovibrio desulfuricans. Proc. Natl. Acad. Sci. USA 45:701708.
55. Peck, H. D., Jr. 1960. Evidence for oxidative phosphorylation during the reduction of sulfate with hydrogen by- Desulfovibrio desulfuricans. J. Biol. Chem. 235:27342738.
56. Peck, H. D., Jr. 1993. Bioenergetics strategies of the sulfate-reducing bacteria, p. 41-76. In J. M. Odom and R. Singleton Jr. (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Brock/Springer Series in Contemporary Bioscience. Springer-Verlag, New York, N.Y.
57. Peck, H. D., Jr.,, and T. Lissolo,. 1988. Assimilatory and dissimilatory sulfate reduction: enzymology and bioenergetics, p. 99132. In J. A. Cole ,and S. J. Ferguson (ed.), The Nitrogen and Sulphur Cycles. Forty-Second Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, United Kingdom.
58. Peck, H. D., Jr.,, and J. M. Odom,. 1984. Hydrogen cycling in Desulfovibrio: a new mechanism for energy coupling in anaerobic microorganisms, p. 215243. In Y. Cohen,, R. W. Casten-holz,, and H. O. Halverson (ed.), Microbial Mats Stromatolites. Alan R. Liss, Inc., New York, N.Y.
59. Peck, H. D., Jr.,, J. LeGall,, P. A. Lespinat,, Y. Berlier,, and G. Fauque. 1987. A direct demonstration of hydrogen cycling by Desulfovibrio vulgaris employing membrane-inlet mass spec-trometry. FEMS Microbiol. Lett. 40:295299.
60. Pereira, I.C., , I. A. Abreu,, A. V. Xavier,, J. LeGall,, and M. Teixeira. 1996. Nitrite reductase from Desulfovibrio desulfuricans (ATCC 27774)—a heterooligomer heme protein with sulfite reductase activity. Biochem. Biophys. Res. Commun. 224: 611618.
61. Postgate, J. R.,, H. M. Kent,, and R. L. Robson,. 1988>. Nitrogen fixation by Desulfovibrio, p. 457471. In J. A. Cole, and S. J. Ferguson (ed.), The Nitrogen and Sulphur Cycles. Forty-Second Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge, United Kingdom.
62. Seitz, H.-J.,, and H. Cypionka. 1986. Chemolithotrophic growth of Desulfovibrio desulfuricans with hydrogen coupled to ammonification of nitrate or nitrite. Arch. Microbiol. 146:6367.
63. Smith, D. W., 1993. Ecological actions of sulfate-reducing bacteria, p. 161188. In J. M. Odom, and R. Singleton, Jr. (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Brock/Springer Series in Contemporary Bioscience. Springer-Verlag, New York, N.Y.
64. Stackebrandt, E.,, D. A. Stahl,, and R. Devereux,. 1995. Taxonomie relationships, p. 4987. In L. L. Barton (ed.), Biotechnology Handbooks, vol. 8, Sulfate-Reducing Bacteria. Plenum Press, New York, N.Y.
65. Steger, J. L.,, C. Vincent,, J. D. Ballard,, and L. R. Krumholz. 2002. Desulfovibrio sp. genes involved in the respiration of sulfate during metabolism of hydrogen and lactate. Appl. Environ. Microbiol. 68:19321937.
66. Tebo, B. M.,, and A. Y. Obraztsova. 1998. Sulfate-reducing bacterium grows with Cr(VI),U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett. 162:193198.
67. Tucker, M. D.,, L. L. Barton,, and B. M. Thomson. 1998. Reduction of Cr, Mo, Se and U by Desulfovibrio desulfuricans immobilized in polyacrylamide gels. J. Ind. Microbiol. Biotechnol. 20:1319.
68. Widdel, F., 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, p. 469585. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley & Sons, Inc., New York, N.Y.
69. Widdel, F.,, and T. A. Hansen,. 1992. The dissimilatory sulfate- and sulfur-reducing bacteria, p. 583624. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. vol. I. Springer-Verlag, New York, N.Y.
70. Widdel, F.,, and N. Pfennig,. 1992. The genus Desulfuromonas and other Gram-negative sulfur-reducing eubacteria, p. 33793389. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes: A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. vol. IV. Springer-Verlag, New York, N.Y.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error