Chapter 18 : Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap18-2.gif


Microbes associated with marine sponges are of interest in marine biotechnology for several reasons. Sponge-associated microbes are a resource for drug discovery. Studies on the diversity of microbes associated with sponges and development of methods to culture additional sponge symbionts are important in order to contribute to the future production of new pharmaceuticals. Of particular importance for natural products discovery is the presence in marine sponges of groups of bacteria such as cyanobacteria and actinomycetes, with a good track record for production of bioactive compounds. More generally, the tremendous diversity of bacteria in marine sponges will remain largely untapped as long as >99% of these bacteria remain uncultured and advances are needed in culturing methods for sponge-derived microbes. Many bioactive compounds of potential pharmaceutical importance have already been obtained from microbes isolated from marine sponges. In the examples given here, sponges are used solely as sources of microbes for screening rather than attempts being made to isolate specific microbes that are producers of bioactive compounds previously characterized from the sponges themselves.

Citation: Hill R. 2004. Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery, p 177-190. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch18

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Densely packed bacteria within the mesohyl of ( ).

Citation: Hill R. 2004. Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery, p 177-190. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Neighbor-joining phylogenetic tree from analysis of about 500 bp of 16S rRNA gene sequence from clones obtained from the unidentified Indonesian sponge 01IND 35.The scale bar represents 0.1 substitutions per nucleotide position. Culturable isolates from sponge 35 are boxed. Sequences shown in bold are those whose nearest relatives, based on BLAST searches, are also from sponges.

Citation: Hill R. 2004. Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery, p 177-190. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure of halichondrin B.

Citation: Hill R. 2004. Microbes from Marine Sponges: A Treasure Trove of Biodiversity for Natural Products Discovery, p 177-190. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aicher, T. D.,, K. R. Buszek,, F. G. Fang,, C. J. Forsyth,, S. H. Jung,, Y. Kishi,, P. M. Scola,, D. M. Spero,, and S. K. Yoon. 1992. Total synthesis of halichondrin B and norhalichondrin B. J. Am. Chem. Soc. 114:31623264.
2. Ang, K. K.,, M. J. Holmes,, T. Higa,, M. T. Hamann,, and U. A. Kara. 2000. In vivo antimalarial activity of the beta-carboline alkaloid manzamine. A. Antimicrob. Agents Chemother. 44:16451649.
3. Berthold, R. J.,, M. A. Borowitzka,, and M. A. Mackay. 1982. The ultrastructure of Oscillatoria spongeliae, the blue-green algal endosymbiont of the sponge Dysidea herbacea. Phycologia 21:327335.
4. Bewley, C. A.,, and D. J. Faulkner. 1998. Lithistid sponges: star performers or hosts to the stars. Angew. Chem. Int. Ed. 37:21622178.
5. Bewley, C. A.,, N. D. Holland,, and D. J. Faulkner. 1996. Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52:716722.
6. Borowitzka, M. A.,, R. Hinde,, and F. Pironet,. 1988. Carbon fixation by the sponge Dysidea herbacea and its endosymbiont Oscillatoria spongeliae, p. 151155. In J. H. Choat,, D. J. Barnes,, M. A. Borowitzka,, J. C. Coll,, P. J. Davies,, P. Flood,, B. G. Hatcher,, D. Hopley,, P. A. Hutchings,, D. Kingsey,, G. R. Orme,, M. Pichón,, P. F. Sale,, P. W. Sammarco,, C. C. Wallace,, C. R. Wilkinson,, E. Wolanski,, and O. Bellwood (ed.), Proceedings of the 6th International Coral Reef Symposium. Symposium Executive Committee, Townsville, Australia.
7. Brauers, G.,, R. A. Edrada,, R. Ebel,, P. Proksch,, V. Wray,, A. Berg,, U. Grafe,, C. Schachtele,, F. Totzke,, G. Finkenzeller,, D. Marme,, J. Kraus,, M. Munchbach,, M. Michel,, G. Bringmann,, and K. Schaumann. 2000. Anthraquinones and betaenone derivatives from the sponge-associated fungus Microsphaeropsis species: novel inhibitors of protein kinases. J. Nat. Prod. 63:739745.
8. Burja, A. M.,, and R. T. Full. 2001. Microbial symbionts of the Australian Great Barrier Reef sponge Candidaspongia flabellata. Hydrobiologia 461:4147.
9. Chen, F.,, and R. E. Hodson,. 2001. In situ PCR/RT-PCR coupled with in situ hybridization for detection of functional gene and gene expression in prokaryotic cells, p. 409424. In J. Paul (ed.), Methods in Marine Microbiology. Academic Press, San Diego, Calif.
10. Davidson, S. K.,, and M. G. Haygood. 1999. Identification of sibling species of the bryozoan Bugula neritina that produce different anticancer bryostatins and harbor distinct strains of the bacterial symbiont "Candidatus Endobugula sertula." Biol. Bull. 196:273280.
11. Davidson, S. K.,, S. W. Allen,, G. E. Lim,, C. M. Anderson,, and M. G. Haygood. 2001. Evidence for the biosynthesis of bryostatins by the bacterial symbiont "Candidatus Endobugula sertula" of the bryozoan Bugula neritina. Appl. Environ. Microbiol. 67:45314537.
12. Dickey, R. W.,, S. C. Bobzin,, D. J. Faulkner,, F. A. Bencsath,, and D. Andrzejewski. 1990. The identification of okadaic acid from a Caribbean dinoflagellate Prorocentrum concavum. Toxicon 28:371377.
13. Draisci, R.,, L. Giannetti,, L. Lucentini,, C. Marchiafava,, K. J. James,, A. G. Bishop,, B. M. Healy,, and S. S. Kelly. 1998. Isolation of a new okadaic acid analogue from phytoplankton implicated in diarrhetic shellfish poisoning. J. Chromatogr. A 798:137145.
14. El Sayed, K. A.,, M. Kelly,, U. A. Kara,, K. K. Ang,, I. Katsuyama,, D. C. Dunbar,, A. A. Khan,, and M. T. Hamann. 2001. New manzamine alkaloids with potent activity against infectious diseases. J. Am. Chem. Soc. 123:18041808.
15. Elyakov, G. B.,, T. Kuznetsova,, V. V. Mikhailov,, I. I. Maltsev,, V. G. Voinov,, and S. A. Fedoreyev. 1991. Brominated diphenyl ethers from a marine bacterium associated with the sponge Dysidea sp. Experientia 47:632633.
16. Faulkner, D. J. 2002. Marine natural products. Nat. Prod. Rep. 19:148.
17. Faulkner, D. J.,, M. K. Harper,, M. G. Haygood,, C. E. Salomon,, and E. W. Schmidt,. 2000. Symbiotic bacteria in sponges: sources of bioactive substances, p. 107119. In N. Fusetani (ed.), Drugs from the Sea. Karger, Basel, Switzerland.
18. Friedrich, A. B.,, H. Merkert,, T. Fendert,, J. Hacker,, P. Proksch,, and U. Hentschel. 1999. Microbial diversity in the marine sponge Aplyina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134: 461470.
19. Friedrich, A. B.,, I. Fischer,, P. Proksch,, J. Hacker,, and U. Hentschel. 2001. Temporal variation of the microbial community associated with the Mediterranean sponge Aplysina aerophoba. FEMS Microbiol. Ecol. 38:105113.
20. Fuerst, J. A.,, R. I. Webb,, M. J. Garson,, L. Hardy,, and H. M. Reiswig. 1999. Membrane-bounded nuclear bodies in a diverse range of microbial symbionts of Great Barrier Reef sponges. Mem. Qld. Mus. 44:193203.
21. Fusetani, N.,, K. Shinoda,, and S. Matsunaga. 1993. Cinachyrolide A: a potent cytotoxic macrolide possessing two spiroketals from marine sponge Cinachyra. J. Am. Chem. Soc. 115:39773981.
22. Garson, M. J.,, J. E. Thompson,, R. M. Larsen,, C. N. Battershill,, P. T. Murphy,, and P. R. Bergquist. 1992. Terpenes in sponge cell membranes: cell separation and membrane fractionation studies with the tropical marine sponge Amphimedon sp. Lipids 27:378388.
23. Gillespie, D. E.,, S. F. Brady,, A. D. Bettermann,, N. P. Cianciotto,, M. R. Liles,, M. R. Rondón,, J. Clardy,, R. M. Goodman,, and J. Handelsman. 2002. Isolation of antibiotics turbomycin a and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68:43014306.
24. Gillor, O.,, S. Carmeli,, Y. Rahamin,, Z. Fishelson,, and M. Ilan. 2000. Immunolocalization of the toxin latrunculin B within the Red Sea sponge Negombata magnifica (Demospongiae, Latrunculiidae). Mar. Biotechnol. 2:213223.
25. Groweiss, A.,, U. Shmueli,, and Y. Kashman. 1983. Marine toxins of Latrunculia magnifica. J. Org. Chem. 48:35123516.
26. Gulavita, N. K.,, S. P. Gunasekera,, and S. A. Pomponi. 1992. Isolation of latrunculin A, 6,7-epoxylatrunculin A, fijianolide A, and euryfuran from a new genus of the family Thorectidae. J. Nat. Prod. 55:506508.
27. Hart, J. B.,, R. E. Lili,, S. J. H. Hichford,, J. W. Blunt,, and M. H. G. Munro,. 2000. The halichondrins: chemistry, biology, supply and delivery, p. 134153. In N. Fusetani (ed.), Drugs from the Sea. Karger, Basel, Switzerland.
28. Haygood, M. G.,, and S. K. Davidson,. 1998. Bacterial symbionts of the bryostatin-producing bryozoan Bugula neritina, p. 281284. In Y. Le Gal, and H. O. Halvorson (ed.), New Developments in Marine Biotechnology. Plenum, New York, N.Y.
29. Haygood, M. G.,, E. W. Schmidt,, S. K. Davidson,, and D. J. Faulkner. 1999. Microbial symbionts of marine invertebrates: opportunities for microbial biotechnology. J. Mol. Microbiol. Biotechnol. 1:3343.
30. Hentschel, U.,, J. Hopke,, M. Horn,, A. B. Friedrich,, M. Wagner,, J. Hacker,, and B. S. Moore. 2002. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl. Environ. Microbiol. 68:44314440.
31. Hill, R. T.,, O. Peraud,, J. J. Enticknap,, and M. T. Hamann. 2002. Molecular analysis of the microbial communities associated with marine sponges: importance for natural products discovery, p. 6775. In Proceedings of the 2002 International Meeting of the Federation of Korean Microbiological Societies, 22 to 23 October 2002, Millenium Town, Chungcheongbuk-do, Korea. Federation of Korean Microbiology Societies, Korea.
32. Hodson, R. E.,, W. A. Dustman,, R. P. Garg,, and M. A. Moran. 1995. In situ PCR for visualization of microscale distribution of specific genes and gene products in prokaryotic communities. Appl. Environ. Microbiol. 61:40744082.
33. Hooper, J. N. A.,, and R. W. M. Van Soest. 2002. Systema Porifera: A Guide to the Classification of Sponges. Kluwer Academic/Plenum Publishers, New York, N.Y.
34. Hu, J.-F.,, M. T. Hamann,, R. Hill,, and M. Kelly,. 2003. The manzamine alkaloids. In G. A. Cordell (ed.), The Alkaloids. Academic Press, San Diego, Calif.
35. Imamura, N.,, M. Nishijima,, K. Adachi,, and H. Sano. 1993. Novel antimycin antibiotics, urauchimycins A and B, produced by marine actinomycete. J. Antibiot. 46:241246.
36. Jensen, P. R.,, and W. Fenical,. 2000. Marine microorganisms and drug discovery: current status and future potential, p. 619. In N. Fusetani (ed.), Drugs from the Sea. Karger, Basel, Switzerland.
37. Kakou, Y.,, P. Crews,, and G. J. Bakus. 1987. Dendrolasin and latrunculin A from the Fijian sponge Spongia mycofijiensis and an associated nudibranch Chromodoris lochi. J. Nat. Prod. 50:482484.
38. Kelman, D.,, Y. Kashman,, E. Rosenberg,, M. Ilan,, I. Ifrach,, and Y. Loya. 2001. Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquat. Microb. Ecol. 24:916.
39. Kobayashi, J.,, and M. Ishibashi. 1993. Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev. 93:83058308.
40. Kobayashi, M., 2000. Search for biologically active substances from marine sponges, p. 4658. In N. Fusetani (ed.), Drugs from the Sea. Karger, Basel, Switzerland.
41. Lee, Y. K.,, J.-H. Lee,, and H. K. Lee. 2001. Microbial symbiosis in marine sponges. J. Microbiol. 39:254264.
42. Lopez, J. V.,, P. J. McCarthy,, K. E. Janda,, R. Willoughby,, and S. A. Pomponi. 1999. Molecular techniques reveal wide phyletic diversity of heterotrophic microbes associated with Discodermia spp. (Porifera: Demospongia). Mem. Qld. Mus. 44:329341.
43. Mendola, D., 2000. Aquacultural production of bryostatin 1 and ecteinascidin 743, p. 120133. In N. Fusetani (ed.), Drugs from the Sea. Karger, Basel, Switzerland.
44. Molinski, T. F. 1993. Marine pyridoacridine alkaloids: structure, synthesis, and biological chemistry. Chem. Rev. 93:18251838.
45. Muller, W. E.,, B. Diehl-Seifert,, C. Sobel,, A. Bechtold,, Z. Kljajic,, and A. Dorn. 1986. Sponge secondary metabolites: biochemical and ultrastructural localization of the antimitotic agent avarol in Dysidea avara. J. Histochem. Cytochem. 34:16871690.
46. Murakami, Y.,, Y. Oshima,, and T. Yasumoto. 1982. Identification of okadaic acid as a toxic component of a marine dinoflagellate Prorocentrum lima. Bull. Jpn. Soc. Sci. Fish. 48:6972.
47. Muyzer, G.,, E. C. de Waal,, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695700.
48. Nickel, M.,, S. Leininger,, G. Proll,, and F. Brümmer. 2001. Comparative studies on two potential methods for the biotechnological production of sponge biomass. J. Biotechnol. 92: 169178.
49. Oclarit, J. M.,, H. Okada,, S. Ohta,, K. Kaminura,, Y. Yamaoka,, T. Iizuka,, S. Miyashiro,, and S. Ikegami. 1994. Anti-bacillus substance in the marine sponge, Hyatella species, produced by an associated Vibrio species bacterium. Microbios 78:716.
50. Olson, J. B.,, C. C. Lord,, and P. J. McCarthy. 2000. Improved recoverability of microbial colonies from marine sponge samples. Microb. Ecol. 40:139147.
51. Osinga, R.,, J. Tramper,, and R. H. Wijffels. 1999. Cultivation of marine sponges. Mar. Biotechnol. 1:509532.
52. Osinga, R.,, R. Kleijn,, E. Groenendijk,, P. Niesink,, J. Tramper,, and R. H. Wijffels. 2001. Development of in vivo sponge cultures: particle feeding by the tropical sponge Pseudosuberites aff. andrewsi. Mar. Biotechnol. 3:544554.
53. Pettit, G. R.,, Z. A. Cichacz,, F. Gao,, C. L. Herald,, M. R. Boyd,, J. M. Schmidt,, and J. N. A. Hooper. 1993. Isolation and structure of spongiostatin 1. J. Org. Chem. 58:13021304.
54. Preston, C. M.,, K. Y. Wu,, T. F. Molinski,, and E. F. DeLong. 1996. A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov. Proc. Natl. Acad. Sci. USA 93:62416246.
55. Rein, K. S.,, and J. Borrone. 1999. Polyketides from dinoflagellates: origins, pharmacology and biosynthesis. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 124:117131.
56. Rinehart, K. L. 2000. Antitumor compounds from tunicates. Med. Res. Rev. 20:127.
57. Rondón, M. R.,, P. R. August,, A. D. Bettermann,, S. F. Brady,, T. H. Grossman,, M. R. Liles,, K. A. Loiacono,, B. A. Lynch,, I. A. MacNeil,, C. Minor,, C. L. Tiong,, M. Gilman,, M. S. Osburne,, J. Clardy,, J. Handelsman,, and R. M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66:25412547.
58. Ruby, E. G.,, and K.-H. Lee. 1998. The Vibrio fischeri-Euprymna scolopes light organ association: current ecological paradigms. Appl. Environ. Microbiol. 64:805812.
59. Sakai, R.,, T. Higa,, C. W. Jefford,, and G. Bernardinelli. 1986. Manzamine A: an antitumor alkaloid from a sponge. J. Am. Chem. Soc. 108:64046405.
60. Salomon, C. E.,, T. Deerinck,, M. H. Ellisman,, and D. J. Faulkner. 2001. The cellular localization of dercitamide in the Palauan sponge Oceanapia sagittaria. Mar. Biol. 139:313319.
61. Santavy, D. L.,, P. Willenz,, and R. R. Colwell. 1990. Phenotypic study of bacteria associated with the Caribbean sclerosponge, Ceratoporella nicholsoni. Appl. Environ. Microbiol. 56:17501762.
62. Schleper, C.,, E. F. DeLong,, C. M. Preston,, R. A. Feldman,, K. Y. Wu,, and R. V. Swanson. 1998. Genomic analysis reveals chromosomal variation in natural populations of the uncultured psychrophilic archaeon Cenarchaeum symbiosum. J. Bacteriol. 180:50035009.
63. Schmidt, E. W.,, C. A. Bewley,, and D. J. Faulkner. 1998. Theopalauamide, a bicyclic glycopeptide from filamentous bacterial symbionts of the lithistid sponge Theonella swinhoei. J. Org. Chem. 63:12541258.
64. Schmidt, E. W.,, A. Y. Obraztsova,, S. K. Davidson,, D. J. Faulkner,, and M. G. Haygood. 2000. Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ -proteobacterium, "Candidatus Entotheonella palauensis." Mar. Biol. 136:969977.
65. Schmitz, F. J.,, D. J. Vanderah,, K. H. Hollenbeak,, C. E. L. Enwall,, Y. Gopichand,, P. K. Sengupta,, M. B. Hossain,, and C. van der Helm. 1983. Metabolites from the marine sponge Tedania ignis—a new atisanedial and several known diketopiperazines.J. Org. Chem. 48:39413945.
66. Smith, A. B., III,, M. D. Kaufman,, T. J. Beauchamp,, M. J. LaMarche,, and H. Arimoto. 1999. Gram-scale synthesis of (+)-discodermolide. Org. Lett. 1:18231826.
67. Stierle, A. C.,, J. H. I. Cardellina,, and F. L. Singleton. 1988. A marine Micrococcus produces metabolites ascribed to the sponge Tedania ignis. Experientia 44:1021.
68. Tachibana, K.,, P. J. Scheuer,, Y. Tsukitani,, H. Kikuchi,, D. van Engen,, J. Clardy,, Y. Gopichand,, and F. J. Schmitz. 1981. Okadaic acid, a cytotoxic polyether from two marine sponges of the genus Halichondria. J. Am. Chem. Soc. 103:24692471.
69. Thompson, J. E.,, K. D. Barrow,, and D. J. Faulkner. 1983. Localization of two brominated metabolites, aerothionin and homoaerothionin, in the spherulous cells of the marine sponge Aplysina fistularis (= Verongia thiona). Acta Zool. 64:199210.
70. Unson, M. D.,, N. D. Holland,, and D. J. Faulkner. 1994. A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119:111.
71. Uriz, M. J.,, X. Turon,, J. Galera,, and J. M. Tur. 1996. New light on the cell location of avarol within the sponge Dysidea avara (Dendroceratida). Cell Tissue Res. 285:519527.
72. Vacelet, J. 1970. Description de cellules à bactéries intranucleaires chez des éponges Verongia. J. Microsc. (Paris) 9:333346.
73. Vacelet, J., and C. Donadey. 1977. Electron microscope study of the association between some sponges and bacteria. J. Exp. Mar. Biol. Ecol. 30:301314.
74. Vacelet, J.,, E. Vacelet,, E. Gaino,, and M.-F. Gallissian,. 1994. Bacterial attack of spongin skeleton during the 1986-1990 Mediterranean sponge disease, p. 355362. In R. W. M. van Soest,, T. M. G. van Kempen,, and J. C. Braekman (ed.), Sponges in Time and Space. Balkema, Rotterdam, The Netherlands.
75. Vogel, S. 1977. Current-induced flow through living sponges in nature. Troc. Nati. Acad. Sci. USA 74:20692071.
76. Webster, N. S.,, and R. T. Hill. 2001. The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α -Proteobacterium. Mar. Biol. 138: 843851.
77. Webster, N. S.,, J. E. M. Watts,, and R. T. Hill. 2001a. Detection and phylogenetic analysis of novel crenarchaeote and euryarchaeote 16S rRNA gene sequences from a Great Barrier Reef sponge. Mar. Biotechnol. 3:600608.
78. Webster, N. S.,, K. J. Wilson,, L. L. Blackall,, and R. T. Hill. 2001b. Phylogenetic diversity of bacteria associated with the marine sponge Rhopaloeides odorabile. Appl. Environ. Microbiol. 67:434444.
79. Webster, N. S.,, A. P. Negri,, R. I. Webb,, and R. T. Hill. 2002. A spongin-boring α -proteobacterium is the etiological agent of disease in the Great Barrier Reef sponge Rhopaloeides odorabile. Mar. Ecol. Prog. Ser. 232:305309.
80. Wicke, C.,, M. Huners,, V. Wray,, M. Nimtz,, U. Bilitewski,, and S. Lang. 2002. Production and structure elucidation of glycoglycerolipids from a marine sponge-associated Microbacterium species. J. Nat. Prod. 63:621626.
81. Wilkinson, C. R. 1978a. Microbial associations in sponges. I. Ecology, physiology and microbial populations of coral reef sponges. Mar. Biol. 49:161167.
82. Wilkinson, C. R. 1978b. Microbial associations in sponges. III. Ultrastructure of the in situ associations of coral reef sponges. Mar. Biol. 49:177185.
83. Wilkinson, C. R. 1983. Net primary productivity in coral reef sponges. Science 219:410412.
84. Wilkinson, C. R. 1987. Significance of microbial symbionts in sponge evolution and ecology. Symbiosis 4:135146.
85. Wilkinson, C. R.,, and R. Garrone,. 1980. Nutrition of marine sponges. Involvement of symbiotic bacteria in the uptake of dissolved carbon, p. 157161. In D. C. Smith, and Y. Tiffon (ed.), Nutrition in the Lower Metazoa. Pergamon Press, Oxford, United Kingdom.
86. Wilkinson, C. R.,, M. Nowak,, B. Austin,, and R. R. Colwell. 1981. Specificity of bacterial symbionts in Mediterranean and Great Barrier Reef sponges. Microb. Ecol. 7:1321.
87. Wilkinson, C. R.,, R. Garrone,, and J. Vacelet. 1984. Marine sponges discriminate between food bacteria and bacterial symbionts: electron microscope radioautography and in situ evidence. Proc. R. Soc. Lond. Sect. B. 220:519528.
88. Yousaf, M.,, K. A. El Sayed,, K. V. Rao,, C. W. Lim,, J.-F. Hu,, M. Kelly,, F. Franzblau,, O. Peraud,, R. T. Hill,, and M. T. Hamann. 2002. 12.34-Oxamanzamines, novel biocatalytic and natural products from manzamine producing Indo-Pacific sponges. Tetrahedron 58:73977402.
89. Zhu, G.,, M. J. LaGier,, F. Stejskal,, J. J. Millership,, X. Cai,, and J. S. Keithly. 2002. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298:7989.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error