1887

Chapter 35 : Biotreatment

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biotreatment, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap35-2.gif

Abstract:

Biotreatment covers a broad field and it likely has different definitions in the view of different individuals. This chapter covers some aspects of biotreatment, and then briefly discusses different biotreatment topics. There are many different technologies used in biotreatment from classical to procedures that are still under development. The chapter focuses on the approaches from the biotreatment industry and some of the limitations of biotreatment. The biotreatments presume the employment of microorganisms. Several novel microorganisms have been discovered in the biotreatment industry, and many of them are as yet not in pure culture. A plethora of studies have explored the microbial community structures of different biotreatment systems where novel biodiversity is a common theme. Different biotreatment processes collectively accommodate an extremely wide spectrum of the diversity of microorganisms. The chapter concludes with a detailed case study of enhanced biological phosphorus removal (EBPR). The EBPR is a widely applied process to facilitate the removal of phosphorus from wastewater via microbial activity.

Citation: Blackall L, Yeates C. 2004. Biotreatment, p 397-404. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch35

Key Concept Ranking

Microbial Ecology
0.9326765
Enhanced Biological Phosphorus Removal
0.6708726
Viruses
0.46429297
Anaerobic Ammonium Oxidation
0.45295423
Chemicals
0.450521
0.9326765
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic diagram of the configuration of wastewater treatment plants designed for complete nitrogen removal by predenitrification.

Citation: Blackall L, Yeates C. 2004. Biotreatment, p 397-404. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Diagram of nitrification (left arrows) and denitrificarion (right arrows). Shaded squiggle line shows pathways that could be eliminated and save energy and carbon for biotreatment processes.

Citation: Blackall L, Yeates C. 2004. Biotreatment, p 397-404. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Diagrams showing the hypothesized transformations of major components of (A) PAOs and (B) GAOs in EBPR.

Citation: Blackall L, Yeates C. 2004. Biotreatment, p 397-404. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch35
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap35
1. Attaway, H., C. H. Gooding, and M. G. Schmidt. 2001. Biodegradation of BTEX vapors in a silicone membrane bioreactor system. J. Indust. Microbiol. Biotechnol. 26: 316 325.
2. Béjà, O.,, L. Aravind,, E. V. Koonin,, M. T. Suzuki,, A. Hadd,, L. P. Nguyen,, S. Jovanovich,, C. M. Gates,, R. A. Feldman,, J. L. Spudich,, E. N. Spudich,, and E. F. DeLong. 2000a. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902 1906.
3. Béjà, O.,, M. T. Suzuki,, E. V. Koonin,, L. Aravind,, A. Hadd,, L. P. Nguyen,, R. Villacorta,, M. Amjadi,, C. Garrigues,, S. B. Jovanovich,, R. A. Feldman,, and E. F. DeLong. 2000b. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2: 516 529.
4. Bernal, M. A., B. O. Gonzalez, and M. S. Gonzalez. 2000. Nutrient removal and sludge age in a sequencing batch reactor. Bioprocess. Eng. 23: 41 45.
5. Björnsson, L.,, P. Hugenholtz,, G. W. Tyson,, and L. L. Blackall. 2002. Filamentous Chloroflexi (green non-sulfur bacteria) are abundant in wastewater treatment processes with biological nutrient removal. Microbiology 148: 2309 2318.
6. Bond, P. L.,, P. Hugenholtz,, J. Keller,, and L. L. Blackall. 1995. Bacterial community structures of phosphate-removing and non-phosphate-removing activated sludges from sequencing batch reactors. Appl. Environ. Microbiol. 61: 1910 1916.
7. Bott, C. B., and N. G. Love. 2001. The immunochemical detection of stress proteins in activated sludge exposed to toxic chemicals. Water Res. 35: 91100.
8. Brady, S. F.,, C. J. Chao,, J. Handelsman,, and J. Clardy. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3: 1981 1984.
9. Bull, A. T. 2001. Biotechnology for industrial sustainability. Korean J. Chem. Eng. 18: 137 148.
10. Burgess, J. E.,, S. A. Parsons,, and R. M. Stuetz. 2001. Developments in odour control and waste gas treatment biotechnology: a review. Biotechnol. Adv. 19: 35 63.
11. Burrell, P. C., , J. Keller,, and L. L. Blackall. 1998. Microbiology of a nitrite-oxidizing bioreactor. Appl. Environ. Microbiol. 64: 1878 1883.
12. Crocetti, G. R.,, P. Hugenholtz,, P. L. Bond,, A. Schuier,, J. Keller,, D. Jenkins,, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 66: 1175 1182.
13. Crocetti, G. R.,, J. F. Banfield,, J. Keller,, P. L. Bond,, and L. L. Blackall. 2002. Glycogen accumulating organisms in laboratory-scale and full-scale activated sludge processes. Microbiology 148: 3353 3364.
14. Deshusses, M. A.,, W. Chen,, A. Mulchandani,, and I. J. Dunn. 1997. Innovative bioreactors. Curr. Opin. Biotechnol. 8: 165 168.
15. Duncan, A.,, G. E. Vasiliadis,, R. C. Bayly,, J. W. May,, and W. G. C. Raper. 1988. Genospecies of Acinetobacter isolated from activated sludge showing enhanced removal of phosphate during pilot-scale treatment of sewage. Biotech. Lett. 10: 831 836.
16. Entcheva, P.,, W. Liebl,, A. Johann,, T. Hartsch,, and W. R. Streit. 2001. Direct cloning from enrichment cultures, a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl. Environ. Microbiol. 67: 89 99.
17. Fuhs, G. W.,, and M. Chen. 1975. Microbiological basis of phosphate removal in the activated sludge process for the treatment of wastewater. Microbial. Ecol. 2: 119 138.
18. Grady, C. P. L., and C. D. M. Filipe. 2000. Ecological engineering of bioreactors for wastewater treatment. Water Air Soil Poll. 123: 117132.
19. Grady, C. P. L.,, G. T. Daigger,, and H. C. Lim. 1999. Biological Wastewater Treatment. Marcel Dekker, Inc., New York, N.Y.
20. Guschin, D. U.,, B. K. Mobarry,, E. Proudnikov,, D. A. Stahl, B. E. Rittmann, and A. D. Mirzabekov. 1997. Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl. Environ. Microbiol. 63: 2397 2402.
21. Hamer, G. 1997. Microbial consortia for multiple pollutant biodégradation. Pure Appl. Chem. 69: 2343 2356.
22. Hesselmann, R. P. X.,, C. Werlen,, D. Hahn,, J. R. van der Meer,, and A. J. B. Zehnder. 1999. Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphate removal in activated sludge. Syst. Appl. Microbiol. 22: 454 465.
23. Holliger, C. 1995. The anaerobic microbiology and biotreatment of chlorinated ethenes. Curr. Opin. Biotechnol. 6: 347 351.
24. Huber, S.,, S. Minnebusch,, S. Wuertz,, P. A. Wilderer,, and B. Helmreich. 1998. Impact of different substrates on biomass protein composition during wastewater treatment investigated by two-dimensional electrophoresis. Water Sci. Technol. 37: 363 366.
25. Iranzo, M.,, I. Sainz-Pardo,, R. Boluda,, J. Sanchez,, and S. Mormeneo. 2001. The use of microorganisms in environmental remediation. Ann. Microbiol. 51: 135 143.
26. Jetten, M. S. M.,, M. Wagner,, J. Fuerst,, M. van Loosdrecht,, G. Kuenen,, and M. Strous. 2001. Microbiology and application of the anaerobic ammonium oxidation ("anammox") process. Curr. Opin. Biotechnol. 12: 283 288.
27. Juretschko, S.,, G. Timmermann,, M. Schmid,, K.-H. Schleifer,, A. Pommerening-Röser,, H.-P. Koops,, and M. Wagner. 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64: 3042 3051.
28. Juretschko, S.,, A. Loy,, A. Lehner,, and M. Wagner. 2002. The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst. Appl. Microbiol. 25: 84 99.
29. Keller, J.,, Z. Yuan,, and L. L. Blackall. 2002. Integrating process engineering and microbiology tools to advance activated sludge wastewater treatment research and development. Rev. Environ. Sci. Biotechnol. 1: 83 97.
30. Kennes, C, and F. Thalasso. 1998. Waste gas biotreatment technology, J. Chem. Technol. Biotechnol. 72: 303319.
31. Kumar, M. S.,, A. N. Vaidya,, N. Shivaraman,, and A. S. Bal. 2000. Biotreatment of oil-bearing coke-oven wastewater in fixed-film reactor: a viable alternative to activated sludge process. Environ. Eng. Sci. 17: 221 226.
32. Liu, W.-T.,, T. Mino, K. Nakamura, and T. Matsuo. 1994. Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobic-aerobic activated sludge with a minimized polyphosphate content. J. Ferment. Bioeng. 5: 535 540.
33. Mason, C. A., A. Haner, and G. Hamer. 1992. Aerobic thermophilic waste sludge treatment. Water Sci. Technol. 25: 113118.
34. Maymó-Gatell, X.,, Y. Chien,, J. M. Gossett,, and S. H. Zinder. 1997. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276: 1568 1571.
35. McMahon, K. D.,, D. Jenkins,, and J. D. Keasling. 2002. Polyphosphate kinase genes from activated siduge carrying out enhanced biological phosphorus removal. Water Sci. Technol. 46: 155 162.
36. Rondon, M. R.,, P. R. August,, A. D. Bettermann,, S. F. Brady,, T. H. Grossman,, M. R. Liles, K. A. Loiacono, B. A. Lynch, I. A. Mac-Neil, C. Minor, C. L. Tiong, M. Gilman, M. S. Osburne, J. Clardy, J. Handelsman, and R. M. Goodman. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 2541 2547.
37. Schmid, M.,, U. Twachtmann,, M. Klein,, M. Strous,, S. Juretschko,, M. S. M. Jetten,, J. W. Metzger,, K.-H. Schleifer,, and M. Wagner. 2000. Molecular evidence for genus-level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23: 93 106.
38. Seviour, R. J., 1999. The normal microbial communities of activated sludge plants, p. 76 98. In R. J. Seviour, and L. L. Blackall (éd.), The Microbiology of Activated Sludge. Kluwer Academic Publishers, London, United Kingdom.
39. Stein, J. L.,, T. L. Marsh,, K. J. Wu,, H. Shizuya,, and E. F. DeLong. 1996. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic archaeon. J. Bacteriol. 178: 591 599.
40. Turk, O.,, and D. S. Mavinic. 1989. Stability of nitrite build-up in an activated sludge system. J. Water Pollut. Control Fed. 61: 1440 1448.
41. van Loosdrecht, M. C. M., G. J. Smolders, T. Kuba, and J. J. Heijnen. 1997. Metabolism of microorganisms responsible for enhanced biological phosphorus removal from wastewater. Antonie Leeuwenhoek 71: 109 116.
42. Wagner, M.,, R. Erhart,, W. Manz,, R. Amann,, H. Lemmer,, D. Wedi,, and K.-H. Schleifer. 1994. Development of an rRNA-targeted oligonucleotide probe specific for the genus Acinetobacter and its application for in situ monitoring in activated sludge. Appl. Environ. Microbiol. 60: 792 800.
43. Wu, L.,, D. K. Thompson,, G. Li,, R. A. Hurt,, J. M. Tiedje,, and J. Zhou. 2001. Development and evaluation of functional gene arrays for detection of selected genes in the environment. Appl. Environ. Microbiol. 67: 5780 5790.
44. Yeates, C, A. J. Holmes, and M. R. Gillings. 2000. Novel forms of ring-hydroxylating dioxygenases are widespread in pristine and contaminated soils. Environ. Microbiol. 2: 644653.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error