1887

Chapter 36 : Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap36-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap36-2.gif

Abstract:

Fouling on the surfaces of ships or other submerged structures results in corrosion, a decrease in hydrodynamic efficiency, transport of introduced pests, and many other problems worldwide. Fouling generally occurs in a predictable sequence, with colonization by bacteria and biofilm formation happening in hours to days followed by colonization of higher organisms such as barnacles, tube worms, and algae. Other than repeated cleaning of surfaces, by far the most common commercial approach to fouling control is to coat surfaces with antifouling paints that slowly release toxic compounds to the surface, deterring initial colonization of the surface by fouling organisms or killing newly settled foulers. Two major alternatives to heavy metal-based paints have been proposed. The first, which are commercially available, are the so-called "nonstick" or foul-release coatings. The second major class of alternatives to heavy metal-based paints are organic compounds, either synthetic or naturally derived. The later category includes the so-called natural antifoulants. The focus on natural antifoulants to date has primarily been on marine invertebrates and algae. This chapter addresses methodological limitations in the research of marine microbial defenses and the progress that is being made in this research field. The genus is common in the marine environment and is often isolated from living surfaces, as demonstrated by both traditional culturing methods and culture-independent techniques such as denaturing gradient gel electrophoresis. The chapter suggests that marine host organisms that lack their own chemical defense mechanisms may be colonized by antifouling-producing bacteria, such as species.

Citation: Holmstrom C, Kjellberg S, Steinberg P. 2004. Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes, p 405-412. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch36

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.47304717
Denaturing Gradient Gel Electrophoresis
0.47304717
Restriction Fragment Length Polymorphism
0.47304717
Denaturing Gradient Gel Electrophoresis
0.47304717
0.47304717
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817770.chap36
1. Armstrong, E.,, K. G. Boyd,, A. Piscane, C. J. Peppiatt, and J. G. Burgess. 2000. Marine microbial natural products in antifouiing coatings. Biofouling 16:215224.
2. Armstrong, E.,, L. Yan,, K. G. Boyd,, P. C. Wright,, and J. G. Burgess. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:3740.
3. Ball, K. D.,, and J. T. Trevors. 2002. Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J. Microbiol. Methods 49:275284.
4. Beja, O.,, M. T. Suzuki,, E. V. Koonin,, L. Aravind,, A. Hadd,, L. P. Nguyen,, R. Villacorta,, M. Amjadi, C. Carrignes, S. B. Jovanovich, R. A. Feldman, and E. F. DeLong. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2:516529.
5. Boyd, K. G.,, D. R. Adams,, J. G. Burgess. 1999. Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 14:227236.
6. Brady, R. F. 2000. Clean hulls without poisons: devising and testing nontoxic marine coatings. Tech. Articles 72:4556.
7. Bruns, A.,, H. Cypionka,, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from Central baltic sea. Appl. Environ. Microbiol. 68:39783987.
8. Burgess, J. G.,, E. M. Jordan,, M. Bregu,, A. Mearns-Spragg,, and K. G. Boyd. 1999. Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70:2732.
9. Clare, A. S. 1996. Marine natural product antifoulants: status and potential. Biofouling 9:211229.
10. Connon, S. A.,, and S. J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68:38783885.
11. Dahllöf, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13:213217.
12. Dahllöf, I.,, H. Baillie,, and S. Kjelleberg. 2000. rpoβ-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies hetergeneity. Appl. Environ. Microbiol. 66:33763380.
13. Daims, H.,, J. L. Nielsen,, P. H. Nielsen,, K. H. Schleifer,, and M. Wagner. 2001. In situ characterisation of Nitrospira-like nitrite-oxidising bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67:52735284.
14. de Nys, R.,, and P. Steinberg. 2002. Linking marine biology and biotechnology. Curr. Opin. Biotechnol. 13:244248.
15. Dobretsov, S.,, and P. Y. Qian. 2002. Effect of bacteria associated with the green alga Viva reticulata on marine micro- and macro-fouling. Biofouling 18:217228.
16. Egan, S.,, T. Thomas,, C. Holmström,, and S. Kjelleberg. 2000. Phylogenetic relationship and antifouiing activity of bacterial epiphytes from the marine alga Viva lactuca. Environ. Microbiol. 2:343347.
17. Egan, S.,, C. Holmström,, and S. Kjelleberg. 2001a. Pseudoalteromomas ulvae sp., nov a bacterium with antifouiing activities isolated from the surface of a marine alga. Int. J. Syst. Bacteriol. 51:14991504.
18. Egan, S.,, S. James, C. Holmström, and S. Kjelleberg. 2001b. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol. Ecol. 35:6773.
19. Egan, S.,, S. James, C. Holmström, and S. Kjelleberg. 2002a. Correlation between pigmentation and antifouiing compounds produced by Pseudoalteromonas tunicata. Environ. Microbiol. 4:433442.
20. Egan, S.,, S. James,, and S. Kjelleberg. 2002b. Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl. Environ. Microbiol. 68:372378.
21. Franks, A. 1998. An investigation into the antifungal properties of Pseudoalteromonas tunicata. Honours thesis, University of New South Wales, Sydney, Australia.>
22. Gatenholm, P., C, Holmström, J. S. Maki, and S. Kjelleberg. 1995. Toward biological antifouiing surface coatings: marine bacteria immobilized in hydrogel coatings. Biofouling 8:293301.
23. Gauthier, M. J. 1976. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can. J. Microbiol. 22:138149.
24. Gauthier, M. J. 1979. Alteromonas rubra sp.nov., a new marine antibiotic-producing bacterium. Int. J. Syst. Bacteriol. 26:459466.
25. Gauthier, M. J.,, and V. A. Breittmayer. 1992. The genera Alteromonas and Marinomonas, the prokaryotes, p. 30463070. In A. Balows (éd.), A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, vol. HI. Springer, Berlin, Germany.
26. Gauthier, M. J.,, and G. N. Flatau. 1976. Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can. J. Microbiol. 22:16121619.
27. Gil-Turnes, M. S.,, M. E. Hay,, and W. Fenical. 1989. Symbiotic marine bacteria defend crustacean embryos from a pathogenic fungus. Science 240:116118.
28. Hadfield, M. G., C. Unabia, C. M. Smith, and T. M. Michael. 1994. Settlement Preferences of the Vbiquitous Fouler Hydraides elegans. A. A. Balkema, Rotterdam, The Netherlands.
29. Harder, T.,, and P. Y. Qian. 2000. Waterborne compounds from the green seaweed Viva reticulata as inhibitive ones for larval attachment and metamorphosis in the polychaete Hydroides elegans. Biofouling 16:205214.
30. Hentschel, J. R.,, and P. A. Cook. 1990. The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling 2:111.
31. Hentschel, U.,, M. Schmid,, M. Wagner,, L. Fieseler,, C. Gernert,, and J. Hacker. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the mediterranean sponges Aplysina aerophoba and Aplysina cavernícola. FEMS Microbiol. Ecol. 35:305312.
32. Holmes, A. J.,, N. A. Tujnia,, M. Holley,, A. Contos,, J. M. James,, B. Rogers,, and M. R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol. 3:256264.
33. Holmström, C., and S. Kjelleberg. 2000. Bacterial interactions with marine fouling organisms, p. 101117. In L. V. Evans (éd.), Biofilms: Recent Advances in Their Study and Control Overseas Publishing Associates (UK) Ltd., Amsterdam, The Netherlands.
34. Holmström, C., D. Rittschof, and S. Kjelleberg. 1992. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 58:21112115.
35. Holmström, C., S. James, S. Egan, and S. Kjelleberg. 1996. Inhibition of common fouling organisms by pigmented marine bacterial isolates. Biofouling 10:251259.
36. Holmström, C., S. James, B. A. Nellan, D. C. White, and S. Kjelleberg. 1998. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int. J. Syst. Bacteriol. 48:12051212.
37. Holmström, C., P. Steinberg, V. Christov, and S. Kjelleberg. 2000. Bacteria immobilized into hydrogels: a novel concept to prevent development of biofouling communities. Biofouling 15:109117.
38. Holmström, C., S. Egan, A. Franks, S. McCload, and S. Kjelleberg. 2002. Antifouling activity expressed by Pseudoalteramonas species. FEMS Microbiol. Ecol. 41:4758.
39. Ivanova, E. P.,, E. A. Kiprianova,, V. V. Mikhailov,, G. F. Levanova,, A. D. Garagulya,, N. M. Gorschkova,, M. V. Vysotskii,, D. V. Nicolau,, N. Yumoto,, T. Taguchi,, and S. Yoshikawa. 1998a. Phenotypic diversity of Pseudoaltermonas citrea from different marine habitats and emendation of the description. Int. J. Syst. Bacteriol. 48:247256.
40. Ivanova, E. P.,, D. V. Nicolau,, N. Yumoto,, T. Taguchi,, K. Okamoto,, Y. Tatsu,, and S. Yoshikawa. 1998b. Impact of conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Mar. Biol. 130:545551.
41. James, S.,, C. Holmström,, and S. Kjelleberg. 1996. Purification and characterisation of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol. 62:27832788.
42. Kjelleberg, S.,, and P. Steinberg,. 2002. Defenses against bacterial colonisation of marine plants, p. 157172. In S. E. Lindow,, E. I. Hecht-Poinar,, and V. J. Elliott (éd.), Phyllosphere Microbiology. APS Press, St Paul, Minn.
43. Kushmaro, A.,, E. Banin,, Y. Loya,, F. Stackebrandt,, and E. Rosenberg. 2001. Vibrio shilio sp. nov., the causative agent of bleaching of the coral Oculina patagónica. Int. J. Syst. Bacteriol. 51:13831388.
44. Lau, S. C. K., K. K. W. Mak, F. Chen, and P.-I. Qian. 2002. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 226:301610.
45. Lee, N.,, P. H. Nielson,, K. H. Andreasen,, S. Juretschko,, J. L. Nielsen,, K. H. Schleifer,, and M. Wagner. 1999. Combination of fluerscent in situ hybridization and microautoradiography—a new tool for structure-fiction analyses in microbial ecology. Appl. Environ. Microbiol. 65:12891297.
46. Lemos, M. L.,, A. E. Toranzo,, and J. L. Barja. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb. Ecol. 11:149163.
47. Lin, Z.,, K. Kumagai,, K. Baba,, J. J. Mekalanos,, and M. Nischibuchi. 1993. Vibrio parabaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the termostable direct hemolysis gene. J. Bacteriol. 175:38443855.
48. Littler, M. M.,, and D. S. Littler. 1995. Impact of CLOD pathogen on Pacific coral reefs. Science 267:13561360.
49. Loosdrecht, M. C. M. v., J. Lyklema, J. Norde, and A. J. B. Zehnder. 1989. Bacterial adhesion: a physicochemical approach. Microb. Ecol. 17:115.
50. Maki, J. S., 1999. The influence of marine microbes on biofouling, p. 147171. In M. Fingerman,, R. Nagabhushanam,, and M. F. Thompson (éd.), Biofilms, Bioadhesion, Corrosion and Biofouling, vol. 3. Science Publishers, Inc. New Delhi, India.
51. Maki, J. S.,, D. Rittschof,, J. D. Costlow,, and R. Mitchell. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97:199206.
52. Maki, J. S.,, D. Rittschof,, A. S. Schmidt,, and R. Mitchell. 1989. factors controlling attachment of bryozoan larvae. A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177: 295302.
53. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Biotechnol. 2:323327.
54. Mary, A. S.,, V. S. R. Mary,, D. Rittschof,, and R. Nagabhushanam. 1993. Bacterial-barnacle interaction: potential using juncellins and antibiotica to alter structure of bacterial communities. J. Chem. Ecol. 19:21552167.
55. Maximilien, R.,, R. deNys,, C. Holmström,, L. Gram,, M. Givskov,, K. Crass,, S. Kjelleberg,, and P. Steinberg. 1998. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat. Microb. Ecol. 15:233246.
56. Mearns-Spragg, A.,, M. Bregu,, K. G. Boyd,, and J. G. Burgess. 1998. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates after exposure to terrestrial bacteria. Lett. Appl. Microbiol. 27:142146.
57. Murley, Y. M.,, P. A. Carroll,, K. Skorupski,, R. K. Taylor,, and S. B. Calderwood. 1999. Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Inf. Immunol. 67:51175123.
58. Muyzer, G.,, E. C. de Waal,, and A. G. Uitterlinden. 1993. Profiling of complex microbial communities by denaturing gradient gel elecrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695700.
59. Neal, A. I.,, and A. B. Yule. 1994. The interactions between Elminius modestus Darwin cyprids and biofilms of Deleya marina NCMB 1877. J. Exp. Mar. Biol. Ecol. 176:127139.
60. Nielsen, J. L.,, and P. H. Nielsen. 2001. Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrite respiring conditions in activated sludge. Water Res. 36:421428.
61. Paul, V. J.,, C. Unabia, M. G. Hadfield, and P. J. Scheuer. 1997. Chemical cues from the marine bacterium Bacillus sp. that induce settlement of the tube-building worm Hydroides elegans. In R. F. Brady (éd.), U.S.-Pacific Rim Workshop on Emerging Non-metallic Materials for the Marine Environment. Honolulu, Hawaii, section 3.163.20. U.S. Office of Naval Research, Washington, D.C.
62. Rappe, M. S.,, S. A. Connon,, K. L. Vergin,, and S. J. Giovannoni. 2002. Cultivation of the ubiquitous SARll marine bacterio-plankton clade. Nature 418:630633.
63. Riquelme, C, G. Hayashida, R. Araya, A. Uchida, M. Satomi, and Y. Ishida. 1996. Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. J. Shellfish Res. 15:369374.
64. Riquelme, C, R. Araya, N. Vergara, R. Rojas, M. Guanita, and M. Candia. 1997. Potential of probiotic strains in the culture of the Chilean scallop Agropecten purpuratus. Aquaculture 154: 1726.
65. Riquelme, C. E.,, M. A. Jorquera,, A. I. Rojas,, R. E. Avendano,, and N. Reyes. 2001. Addition of inhibitor-producing bacteria to mass cultures of Agropecten purpuratus larvae. Aquaculture 192:111119.
66. Rittschof, D. 2001. Natural products antifoulants and coatings development, p. 543566. In J. B. McClintock and B. J. Baker (éd.), Marine Chemistry and Ecology. Marine Science Series.. CRC Press, London, United Kingdom.
67. Ruiz, C. M.,, G. Roman,, and J . L. Sanchez.1996. A marine bacterial strain effective in producing antagonisms of other bacteria. Aquaculture Internat. 4:289291.
68. Skerrett, J. 2001. Algal and bacterial interactions in a Tasmanian estuary. Ph.D. thesis, University of Hobart, Tasmania, Australia.
69. Skovhus, T. L.,, S. Kjelleberg,, and N. B. Ramsing. 2001. Abstract 9th International Symposium on Microbial Ecology, 26-31 August, Amsterdam, The Netherlands.
70. Szewzyk, U., C. Holmström, M. Wrangstadh, M. O. Samuelsson, J. S. Maki, and S. Kjelleberg. 1991. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for attachment of dona intestinalis larvae. Mar. Ecol. Prog. Ser. 75:259265.
71. Tanasomwang, V.,, T. Nakai,, Y. Nishimura,, and K. Muroga. 1998. Vibrio-inhibiting marine bacteria isolated from tiger shrimp hatchery. Fish Pathol. 33:459466.
72. Uchida, M.,, K. Nakata,, and M. Maeda. 1997. Conversion of Ulva fronds to a hatchery diet for Artemia nauplii utilizing the degrading and attaching abilities of Pseudoalteromonas espejiana. J. All. Phycol. 9:541549.
73. Wagner, M.,, and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13:218227.
74. Wahl, M. 1989. Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58:175189.
75. Wahl, M.,, P. R. Jensen,, and W. Fenical. 1994. Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110:4557.
76. Wieczorek, S. K.,, and C. D. Todd. 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multispecies biofilms: effects of film age and the roles of active and passive larval attachment. Mar. Biol. 128:463473.
77. Zhou, J.,, and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13:204207.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error