1887

Chapter 6 : Eukaryotic Diversity—a Synoptic View

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Eukaryotic Diversity—a Synoptic View, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap06-2.gif

Abstract:

The diversity of eukaryotic microbes is still relatively unexplored, particularly in extreme environments and for the smallest eukaryotes. Estimates of the numbers of clades of eukaryotes vary dramatically and range up to as many as 200 lineages, of which plants, animals, and fungi represent just three clades. This review presents an overview on eukaryotic relationships, describes major innovations within eukaryotes, and illustrates these innovations through examples from major clades. It focuses on representatives of five major clades —alveolates, heterokonts, euglenozoa, opisthokonts, and mycetozoans— as well as a few groups of uncertain taxonomic position—foraminifera, diplomonads, parabasalids. The alveolates are a well-defined clade that emerges from many gene genealogies and includes three major lineages: the ciliates, apicomplexans, and dinoflagellates. The heterokonts, also called stramenopiles, are a diverse group of eukaryotes that include brown algae, diatoms, labyrinthulids, and water molds. The euglenozoa include two major lineages, the euglenids and the kinetoplastids, whose sister status is supported by both ultrastructural and molecular analyses. The opisthokonts include several microbial lineages (e.g., choanoflagellates and microsporidians) as well as two predominantly macroscopic clades (animals and fungi). The mycetozoans, or slime molds, are characterized by complex life cycles that include multicellular fruiting bodies. There are two major types of slime molds: cellular and acellular.

Citation: Katz L. 2004. Eukaryotic Diversity—a Synoptic View, p 57-65. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch6

Key Concept Ranking

Bacteria and Archaea
0.96970326
Green Algae
0.7051633
Endoplasmic Reticulum
0.5771004
Brown Algae
0.56882375
0.96970326
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Hypothesis for eukaryotic relationships derived from multigene analyses of . Question marks represent unresolved nodes. Green algae are paraphyletic. Many branches are likely to change as additional data are analyzed.

Citation: Katz L. 2004. Eukaryotic Diversity—a Synoptic View, p 57-65. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Microbial eukaryotes: (a) the ciliate sp. (L. A. Katz); (b) the ciliate , scale bar at 30 μm (G. McManus, University of Connecticut); (c) the dinoflagellate (M. Farmer, University of Georgia); (d) a pennate diatom (www.mbl.edu/microscope); (e) sp. with ectoplasmic net (D. J. Patterson, L. A. Zettler, and V. Edgcomb, www.mbl.edu/mictoscope); (f) the foraminiferan sp. (M. Farmer and D. J. Patterson, www.mbl.edu/microscope).

Citation: Katz L. 2004. Eukaryotic Diversity—a Synoptic View, p 57-65. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap6
1. Archibald, J. M.,, and P. J. Keeling. 2002. Recycled plastids: a "green movement" in eukaryotic evolution. Trends Genet. 18:577584.
2. Baldauf, S. L. 1999. A search for the origins of animals and fungi: comparing and combining molecular data. Am. Nat. 154:S178S188.
3. Baldauf, S. L.,, and W. F. Doolittle. 1997. Origin and evolution of the slime molds (Mycetozoa). Proc. Natl. Acad. Sci. USA 94:1200712012.
4. Baldauf, S. L.,, A. J. Roger,, I. Wenk-Siefert,, and W. F. Doolittle. 2000. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972977.
5. Bonner, J. T. 1998. The origins of multicellularity. Integ. Biol. 1:2736.
6. Bonner, J. T. 2000 First Signals: The Evolution of Multicellular Development. Princeton University Press, Princeton, N.J..
7. Bruns, T. D.,, R. Vilgalys,, S. M. Barns,, D. Gonzalez,, D. S. Hibbett,, D. J. Lane,, L. Simon,, S. Stickel,, T. M. Szaro,, W. G. Weisburg,, and M. L. Sogin. 1993. Evolutionary relationships within the fungi: analysis of nuclear small subunit rRNA sequences. Mol. Phylogenet. Evol. 1:231241.
8. Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386404.
9. Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int. J. Syst. Evol. Microbiol. 52:297354.
10. Corliss, J. O. 2002. Biodiversity and biocomplexity of the protists and an overview of their significant roles in maintenance of our biosphere. Acta Protozool. 41:199219.
11. Dacks, J. B.,, A. Marinets,, W. F. Doolittle,, T. Cavalier-Smith,, and J. M. Logsdon. 2002. Analyses of RNA polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. Mol. Biol. Evol. 19:830840.
12. Delwiche, C. F. 1999. Tracing the tread of plastid diversity through the tapestry of life. Am. Nat. 154:S164S177.
13. Embley, T. M. 2002. Anaerobic eukaryotes and their archaebacterial endosymbionts. Environ. Microbiol. 4:1516.
14. Embley, T. M.,, D. A. Horner,, and R. P. Hirt. 1997. Anaerobic eukaryote evolution: hydrogenosomes as biochemically modified mitochondria? Trends Ecol. Evol. 12:437441.
15. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R. W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M. W. Mather,, A. B. Vaidya,, D. M. A. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S. A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R. W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498511.
16. Gray, M. W. 1999. Evolution of organellar genomes. Curr. Opin. Genet. Dev. 9:678687.
17. Hackstein, J. H.,, A. Akhmanova,, B. Boxma,, H. R. Harhangi,, and F. G. Voncken. 1999. Hydrogenosomes: eukaryotic adaptations to anaerobic environments. Trends Microbiol. 7:441447.
18. Hirt, R. P.,, J. M. Logsdon,, B. Healy,, M. W. Dorey,, W. F. Doolittle,, and T. M. Embley. 1999. Microsporidia are related to fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc. Natl. Acad. Sci. USA 96:580585.
19. Horner, D. S.,, P. G. Foster,, and T. M. Embley. 2000. Iron hydro-genases and the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 17:16951709.
20. Horner, D. S.,, B. Heil,, T. Happe, and ?. M. Embley. 2002. Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends Biochem. Sci. 27:148153.
21. Howe, C. J. 1992. Plastid origin of an extrachromosomal DNA molecular from Plasmodium, the causative agent of malaria. J. Theor. Biol. 158:199205.
22. Katinka, M. D.,, S. Duprat,, E. Cornillot,, G. Metenier,, F. Thomarat,, G. Prensier,, V. Barbe,, E. Peyretaillade,, P. Brottier,, P. Wincker,, F. Delbac,, H. El Alaoui,, P. Peyret,, W. Saurin,, M. Gouy,, J. Weissenbach,, and C. P. Vivares. 2001. Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414:450453.
23. Katz, L. A. 1999. The tangled web: gene genealogies and the origin of eukaryotes. Am. Nat. 154:S137S145.
24. Katz, L. A. 2001. Evolution of nuclear dualism in ciliates: a re-analysis in light of recent molecular data. Int. J. Syst. Evol. Microbiol. 51:15871592.
25. Katz, L. A. 2002. Lateral gene transfers and the evolution of eukaryotes: theories and data. Int. J. Syst. Evol. Microbiol. 52:18931900.
26. Keeling, P. J.,, and J. D. Palmer. 2000. Phylogeny—parabasalian flagellates are ancient eukaryotes. Nature 405:635637.
27. Knoll, A. H. 1992. The early evolution of eukaryotes: a geological perspective. Science 256:622627.
28. Lang, B. F.,, M. W. Gray,, and G. Burger. 1999. Mitochondrial genome evolution and the origin of eukaryotes. Annu. Rev. Genet. 33:351397.
29. Leadbeater, B.,, and M. Kelly. 2001. Evolution of animals— choanoflagellates and sponges. Water Atmos. 9:911.
30. Leander, B. S.,, R. P. Witek,, and M. A. Farmer. 2001. Trends in the evolution of the euglenid pellicle. Evolution 55:22152235.
31. Lee, J. J.,, and R. A. Anderson. 1991. Biology of Foraminifera. Academic Press, San Diego, Calif..
32. Levine, N. D. 1988. The Protozoan Phylum Apicomplexa. CRC Press, Inc., Boca Raton, Fla..
33. Maier, U. G.,, S. E. Douglas,, and T. Cavalier-Smith. 2000. The nucleomorph genomes of cryptophytes and chlorarachniophytes. Protist 151:103109.
34. Marechal, E.,, and M. F. Cesbron-Delauw. 2001. The apicoplast: a new member of the plastid family. Trends Plant Set. 6:200205.
35. Margulis, L.,, M. F. Dolan,, and R. Guerrero. 2000. The chimeric eukaryote: origin of the nucleus from the karyomastigont in amitochondriate protists. Proc. Natl. Acad. Set. USA 97:69546959.
36. Maslov, D. A.,, S. A. Podtipaev,, and J. Lukes. 2001. Phylogeny of the kinetoplastida: taxonomic problems and insights into the evolution of parasitism. Mem. Inst. Oswaldo Cruz 96:397402.
37. Mathis, A. 2000. Microsporidia: emerging advances in understanding the basic biology of these unique organisms. Int. J. Parasitol. 30:795804.
38. McDonagh, P. D.,, P. J. Myler,, and K. Stuart. 2000. The unusual gene organization of Leishmania major chromosome 1 may reflect novel transcription processes. Nucleic Acids Res. 28:28002803.
39. McFadden, G. I. 2001. Primary and secondary endosymbiosis and the origin of plastids. J. Phycol. 37:951959.
40. Muehlstein, L. K.,, D. Porter,, and F. T. Short. 1991. Labyrinthula zosterae sp. nov., the causative agent of wasting disease of Eel-grass, Zostera marina. Mycologia 83:180191.
41. Müller, M. 1993. The hydrogenosome. J. Gen. Microbiol. 139: 28792889.
42. Patterson, D. J. 1999. The diversity of eukaryotes. Am. Nat. 154:S96S124.
43. Philippe, H.,, and A. Adoutte,. 1998. The molecular phylogeny of Eukaryota: solid facts and uncertainties, p. 2556. In G. H. Coombs,, K. Vickerman,, M. A. Sleigh,, and A. Warren (ed.), Evolutionary Relationships Among Protozoa. Kluwer Academic Publishers, Dordrecht, The Netherlands.
44. Ralph, S. A.,, M. C. D'Ombrain,, and G. I. McFadden. 2001. The apicoplast as an antimalarial drug target. Drug Resist Updates 4:145151.
45. Roger, A. J. 1999. Reconstructing early events in eukaryotic evolution. Am. Nat. 154:S146S163.
46. Roger, A. J.,, and J. D. Silberman. 2002. Cell evolution: mitochondria in hiding. Nature 418:827829.
47. Rosewich, U. L.,, and H. C. Kistler. 2000. Role of horizontal gene transfer in the evolution of fungi. Annu. Rev. Phytopathol. 38:325363.
48. Saldarriaga, J. F.,, F. J. R. Taylor,, P. J. Keeling,, and T. Cavalier-Smith. 2001. Dinoflagellate nuclear SSU rRNA phylogeny suggests multiple plastid losses and replacements. J. Mol. Evol. 53:204213.
49. Simpson, L.,, O. H. Thiemann,, N. J. Savill,, J. D. Alfonzo,, and D. A. Maslov. 2000. Evolution of RNA editing in trypanosome mitochondria. Proc. Natl. Acad. Sci. USA 97:69866993.
50. Snell, E. A.,, R. F. Furlong,, and P. W. H. Holland. 2001. Hsp70 sequences indicate that choanoflagellates are closely related to animals. Curr. Biol. 11:967970.
51. Sogin, M.,, and J. D. Silberman. 1998. Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int. J. Parasitol. 28:1120.
52. Stechmann, A.,, and T. Cavalier-Smith. 2002. Rooting the eukaryote tree by using a derived gene fusion. Science 297:8991.
53. Taylor, F. J. R. 1987. The Biology of Dinoflagellates. Blackwell Scientific, Boston, Mass..
54. Taylor, F. J. R. 1999. Ultrastructure as a control for protistan molecular phylogeny. Am. Nat. 154:S125S136.
55. Taylor, J. W.,, J. Spatafora,, K. O'Donnell,, F. Lutzoni,, T. James,, D. S. Hibbett,, D. Geisser,, T. D. Bruns,, and M. Blackwell,. 2002. The fungi. In J. Cracraft, and M. Donoghue (ed.), Assembling the Tree of Life. Oxford University Press, New York, N.Y..
56. Upcroft, P.,, and J. A. Upcroft. 1999. Organization and structure of the Giardia genome. Protist 150:1723.
57. Williams, B. A. P.,, R. P. Hirt,, J. M. Lucocq,, and T. M. Embley. 2002. A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865869.
58. Yoon, H. S.,, J. D. Hackett,, and D. Bhattacharya. 2002. A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc. Natl. Acad. Sci. USA 99:117241729.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error