1887

Chapter 4 : Parasitic Zoonoses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Parasitic Zoonoses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817787/9781555812362_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817787/9781555812362_Chap04-2.gif

Abstract:

Parasitic zoonoses belong to the most important human diseases worldwide. They are caused by protozoa, helminths (nematodes [roundworms], trematodes [flukes], and cestodes [tapeworms]), pentastomids, and arthropods. A number of parasitic zoonoses have gained importance in recent years as agents of opportunistic infections. Amebiasis (amebic dysentery or invasive amebiasis) is an infectious disease caused by the intestinal protozoan parasite Entamoeba histolytica. Clinical manifestations of babesiosis were observed mainly in patients with immunosuppression, such as that following splenectomy. The protozoa of the genus Cryptosporidium are classified as eukaryotes in the phylum Apicomplexa as a special form of the “singlehost” coccidian parasites. The major vectors of Leishmaniasis aethiopica are Phlebotomus longipes and Phlebotomus pedifer. The major hosts of Dicrocoelium dendriticum and D. pacificum are seagulls and sea lions, respectively. The major species infecting humans are Thelazia callipaeda and T. californiensis. The phylum Arthropoda consists of more than a million described species. Their role as vectors of pathogenic agents is described. The major species, their geographical distribution, and animal reservoirs are listed. The majority of ixodid ticks develops as three-host ticks, whereby each developmental stage leaves its host after finishing the blood meal, molts on the ground to the next stage, and invades a new host.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 4.1
Figure 4.1

E. histolytica trophozoites (T) with phagocytized erythrocytes (arrowheads) in feces of a patient with invasive amebiasis. (Source: M. Seitz, Bonn, Germany.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.2
Figure 4.2

Developmental cycle of E. histolytica. (1) Cyst with four nuclei is ingested orally; (2) trophozoite with four nuclei leaves cyst within small intestine; (3) both cytoplasm and nuclei divide to form eight small amebae; (4) mature trophozoites (i.e., minuta forms) reproduce by constant binary fission in intestinal lumen; (5) uninucleate cyst (precyst) with marginal chromatoid bodies; (6) cyst with two nuclei and chromatoid bodies; (7) mature cyst with four nuclei (metacyst); (8) infectious cysts are set free with feces; (9) during acute amebic dysentery, minuta forms enlarge to large vegetative forms, i.e., magna or tissue forms; (10) magna forms enter submucosa of intestinal wall; (11) hematogenous spread to brain, lung, liver, skin, and other organs, with invasive, extraintestinal amebiasis with abscess formation.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.3
Figure 4.3

Developmental cycle of Babesia spp. (1) Sporozoites in saliva of feeding tick and invasion of erythrocytes of the vertebrate host; (2 and 3) asexual reproduction in erythrocytes by binary fission (formation of merozoites); (4) intraerythrocytic ovoid gamont develops (sexually differentiated stage); (5) after ingestion by ticks, gamonts form radiate protrusions in intestinal cells; (6) gamete (“ray body” as fertile stage); (7) fusion of two gametes; (8) formation of zygotes; (9) formation of sporokinetes (motile invasive forms); (10) sporokinetes leave intestinal cells and enter cells of various organs, e.g., epidermis, muscle, hemolymph, and ovaries and eggs; (11) invasion of salivary glands and formation of sporozoites; (12) transovarial transmission (transmission of sporozoites to next tick generation by infested eggs, heavy multiplication in gut epithelia of tick larvae and nymphs, and settlement in tick salivary glands).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.4
Figure 4.4

Developmental cycle of B. coli. (1) Cysts (40 to 60 mm) are excreted with feces; (2) cysts are ingested with food; (3) vegetative forms reproduce by repeated transverse binary fission and genetic information is exchanged by conjugation; (4) cyst formation is initiated by dehydration within feces in the rectum.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.5
Figure 4.5

Developmental cycle of T. cruzi. (1) Metacyclic (infectious) trypanosomes are transmitted by contaminated feces of triatomine bugs to humans. They enter the body through feeding lesions or via intact mucosa. (2) They spend a short time in the peripheral blood (no reproduction). (3) Parasites enter myocardial and endothelial cells of internal organs, e.g., spleen, RES, and liver. (4) Parasites reproduce in the amastigote (unflagellated) stage and form cysts. (5) Parasitized cells burst; organisms are transformed into trypomastigote (flagellated) forms, with a temporary appearance in the peripheral blood. Host cells are infected further. (6) Triatomine bugs ingest parasitized blood. (7) Parasites transform into epimastigote forms and rapidly reproduce in intestine of bugs. (8) Organisms are transformed into metacyclic trypanosomes and colonize the rectal ampoule.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.6
Figure 4.6

Infection of humans with T. cruzi. An infected triatomine bug pierces the skin (a) and sucks blood and increases in size while feeding (b). After feeding, the bug sheds a fecal droplet containing infectious trypanosomes (c), which spreads on the skin (d). Through feeding lesions, abrasions, or mucous membranes (conjunctiva, etc.), trypanosomes reach blood vessels. (From product information for Lampit [nifurtimox; Bayer].)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.7
Figure 4.7

Edema of the eyelids in a child with acute Chagas' disease as an early symptom of infection with T. cruzi (Romaña sign), a reaction to local multiplication of parasites.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.8
Figure 4.8

Cryptosporidia (unstained bodies) and yeasts in calf feces. Carbol-fuchsin stain was used. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.9
Figure 4.9

Developmental cycle of Cryptosporidium spp. (modified from Eckert, 1984). (1) Sporozoite set free in stomach and duodenum approaching intestinal epithelium; (2) sporozoite with basal adhesive zone between microvilli of an intestinal cell; (3) young schizont within vacuole; (4) dividing schizont; (5) mature schizont with eight merozoites (type I meront); (6) free merozoite becomes attached to epithelial cell; (7) mature schizont with four merozoites (type II meront) (repeat of schizogonic process); (8) free merozoites; (9a) macrogamete; (9b) microgamont with nonflagellated microgametes; (10) thick-walled oocyst (permanent stage in environment); (11) thin-walled oocyst leading to endogenous autoinfection (ca. 20% of formed cysts); (12) sporulated oocyst containing four sporozoites, shed with feces (thick walled; oral infection).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.10
Figure 4.10

Trophozoite of G. intestinalis.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.11
Figure 4.11

Developmental cycle of L. donovani. (1) Transmission of flagellated leishmaniae by bite of bloodsucking Phlebotomus spp. (sand flies); (2) entrance of so-called promastigote forms into monocytes; (3) intracellular reproduction of now amastigote form leishmaniae (free of flagellae) by binary fission; (4) bursting of host cell and repeated infection of monocytes, predominantly in spleen and liver; (5) uptake of an infected host cell, containing amastigote leishmaniae, by sand flies; (6) transformation to ciliated promastigote stage and rapid multiplication by binary fission; (7) migration to proboscis of sand fly and formation of infectious metacyclic stage.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.12
Figure 4.12

Child with kala-azar (Brazil). Abdominal enlargement and considerable swelling of the inguinal lymph nodes are visible.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.13
Figure 4.13

Excessive growth of eyelashes in a child with kala-azar (Brazil).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.14
Figure 4.14

Excessive growth of claws in a dog with leishmaniasis.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.15
Figure 4.15

Cutaneous leishmaniasis (Brazil).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.16
Figure 4.16

Developmental cycle of microsporidia. (1) Infectious spore; (2 and 3) extrusion of the tubular polar filament, penetration of the wall of an intestinal cell, and injection of the sporoplasm; (4 to 12) growth and asexual division via quadrinucleate stages (merogony) and finally encystment and formation of spores (sporogony); (13) rupture of host cell and liberation of infectious spores into the intestinal lumen.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.17
Figure 4.17

Developmental cycle of Sarcocystis spp. with Homo sapiens as the definitive host. (1) Sporocyst with four infectious sporozoites, found in feces; (2) oral ingestion of sporocysts by intermediate hosts and liberation of sporozoites; (3) development of two generations of schizonts with 50 to 90 merozoites each by endopolygeny (multiple divisions) in endothelial cells of blood vessels (intestine, liver, kidney, lung, and other organs); (3a) free motile merozoite (second generation) entering a striated muscle cell; (3b) mature cyst (approximately 3 months p.i.) with cystozoites in skeletal muscle cells after a further schizogony (resting stages with thousands of cyst merozoites); (4) free cystozoite, after ingestion of a muscle cyst by the final host, entering cell of lamina propria; (5a) microgamont (male); (5b) macrogamont (female) in lamina propria (21 h p.i.); (5c) flagellated male microgamete; (6) macrogamete; (7) zygote (in intestinal epithelial cell); (8) sporogony within intestinal epithelial cell (formation of sporocysts); (9) sporulated oocyst (7 days p.i.) with two sporocysts, each containing four sporozoites, inside host cell.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.18
Figure 4.18

T. brucei rhodesiense in blood smear (Giemsa stain).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.19
Figure 4.19

Developmental cycle of salivary trypanosomes. (1) Trypanosomes (trypomastigote form) in peripheral blood after bite by tsetse fly (Glossina spp.). (2) Trypanosomes in stage of reproduction (peripheral blood); infection of CNS. (3) Development in the tsetse fly: (a) in stomach and crop; (b) epimastigote form in intestine in constant reproduction (binary fission); (c) metacyclic (trypomastigote) infectious form in salivary gland.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.20
Figure 4.20

Developmental cycle and transmission of T. gondii. (1) Sporulated oocyst or tissue cyst (5) is ingested orally by final host (cat) or unspecific (intermediate) host (mammals, birds, or humans). (2) Sporozoites and/or merozoites are set free in the gut and invade all types of nucleated cells. (3) Parasites multiply inside the cells by quick fissions (asexual reproduction: schizogony by endodyogeny); “pseudocysts” which contain numerous merozoites (tachyzoites) are formed. (4) Schizogony is repeated several times until the immune response of the host increases. (A) Diaplacental transmission is possible during this phase, leading to congenital toxoplasmosis. (5) Tissue cysts are formed under immune pressure with slowly multiplying merozoites (bradyzoites). (6) In cats, part of the merozoites reinvades epithelial cells of the gut and undergoes sexual differentiation. After fertilization (7), oocysts are formed (8). (9) Oocysts sporulate in the environment.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.21
Figure 4.21

Bathing dermatitis after repeated exposure to cercariae. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.22
Figure 4.22

Developmental cycle of C. sinensis. (1) Adult fluke (8 to 15 mm) in bile duct; (2) C. sinensis egg with miracidium (0.017 to 0.030 mm) excreted with feces (D, diagnostic phase); (3) miracidium (0.03 mm) hatched from egg within intestine of first intermediate host (freshwater snail, e.g., Parafossarulus manchuricus); (4) sporocyst (1.2 to 1.8 mm); (5) redia (>0.75 mm) in first intermediate host; (6) cercaria (about 0.5 mm) swimming actively in water; (7) metacercaria ("0.285 mm; I, infectious stage) in second intermediate host (freshwater fish, e.g., a species of the Cyprinidae).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.23
Figure 4.23

Large liver fluke (F. hepatica). Original size, 2.0 cm. Carmine staining was used. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.24
Figure 4.24

Encysted metacercariae of F. hepatica, attached to a blade of grass. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.25
Figure 4.25

Developmental cycle of F. hepatica. (1) Adult liver fluke (15 to 20 mm) in bile duct; (2) egg of liver fluke (0.09 to 0.15 mm) with zygote and nutrition cells (D, diagnostic stage); (3) miracidium (about 0.15 mm), hatched from egg and swimming in water; (4) sporocyst (0.3 to 0.5 mm) within snail (intermediate host, e.g., Lymnaea truncatula); (5) redia (1.5 to 2.5 mm) in a snail; (6) cercaria (0.67 to 1.45 mm), swimming in water; (7) metacercaria (encysted cercaria) (about 0.25 mm), adhering to a plant (I, infectious stage); (8) liver fluke (5 to 6 mm) in liver tissue, about 20 days old.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.26
Figure 4.26

Furcocercous cercariae of S. mansoni, demonstrated by an immunofluorescence technique.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.27
Figure 4.27

Adult Schistosoma flukes (female and male in copulation), isolated from a mesenterial vein.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.28
Figure 4.28

Developmental cycle of S. mansoni. (1) Adult S. mansoni fluke (male, 6 to 10 mm; female, 7 to 15 mm) in intestinal and mesenterial veins or in the portal vein system (female fluke within the canalis gynaecophorus of the male); (2) S. mansoni egg (0.05 to 0.15 mm) shed with feces, with miracidium ready to hatch (D, diagnostic stage); (3) miracidium (ca. 0.13 mm), swimming in water; (4 and 5) mother sporocyst (4) and daughter sporocyst (5) in snail (intermediate host, e.g., Biomphalaria glabrata); (6) furcocercous cercaria (“furcocercaria”) (about 0.375 to 0.590 mm), swimming in water (I, infectious stage).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.29
Figure 4.29

Developmental cycle of D. latum. (1) Mature tapeworm (5 to >10 m in length) in the small intestine of humans and fish-eating mammals; (2) D. latum egg (0.045 by 0.070 mm) excreted with feces, with zygote and yolk cells (D, diagnostic stage); (3) egg with coracidium in water; (4) hatched motile coracidium (0.04 to 0.05 mm) swimming in water; (5) procercoid (0.5 to 0.6 mm; second larval stage) developed in a cyclopid copepod after ingestion of the coracidium; (6) plerocercoid (up to 50 mm; third larval stage developed in freshwater fish [second intermediate host] after ingestion of an infected copepod [I, infective stage]).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.30
Figure 4.30

Egg capsules of D. caninum in feces. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.31
Figure 4.31

Approximate geographic distribution of E. multilocularis as of 1999. Shaded areas indicate that the organism is highly endemic (black) or endemic (gray). (Source: J. Eckert, F. Grimm, and H. Bucklar [Institute of Parasitology, University of Zürich, Zürich, Switzerland]. Reprinted from Eckert et al., 2000.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.32
Figure 4.32

Approximate geographic distribution of E. granulosus as of 1999. F, free; PF, provisionally free. (Source: J. Eckert, F. Grimm, and H. Bucklar [Institute of Parasitology, University of Zürich]. Reprinted from Eckert et al., 2000.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.33
Figure 4.33

Developmental cycle of E. granulosus. (1) Mature tapeworm (3 to 6 mm) in the small intestine of a dog; (2) E. granulosus egg (0.032 by 0.036 mm) containing the oncosphere, passed in the feces either free or still included in the proglottid (D, diagnostic stage in the dog; I, infective stage for intermediate hosts, including humans); (3) free oncosphere (0.022 to 0.028 mm) in intermediate host; (4) hydatid cyst (echinococcus cysticus) (walnut to orange sized, sometimes even bigger) in liver, lung, or other organs of the intermediate host (I, infectious stage for the dog); (5) protoscolex (0.12 to 0.20 mm) liberated from the cyst in the intestine of the dog; (6) evaginated, maturing young tapeworm in the intestine of the dog.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.34
Figure 4.34

Multiple hydatid cysts in the liver. (Source: I. Mann, Nairobi, Kenya.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.35
Figure 4.35

Clinical picture of cystic echinococcosis. (Source: I. Mann, Nairobi, Kenya.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.36
Figure 4.36

Developmental cycle of H. nana (direct cycle). (1) Adult tapeworm (10 to 90 mm) in the small intestine of rodents and humans; (2) H. nana egg (0.040 to 0.050 mm) with oncosphere passed with feces (D, diagnostic stage; I, infective stage); (3) cysticercoid (0.050 to 0.135 mm) in an intestinal villus.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.37
Figure 4.37

Developmental cycle of T. saginata. (1) Adult tapeworm (4 to 12 m) in the small intestine of a human; (2) mature proglottid (ca. 16 to 20 mm) passed with feces or actively emigrated, and egg (0.03 to 0.04 mm) of T. saginata with an oncosphere, in the feces (D, diagnostic stage); (3) free oncosphere (ca. 0.02 mm) in intestine and blood vessels of the intermediate host (cattle); (4) formation of the cysticercus (Cysticercus bovis) in striated muscle of the intermediate host; (5) mature C. bovis (5 to 8 mm) in striated muscle of cattle (I, infectious stage); (6) evaginated C. bovis in the human small intestine.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.38
Figure 4.38

Developmental cycle of marine anisakids. (1) Adult anisakids in the gastrointestinal tract of marine mammals produce eggs; (2) eggs excreted with feces; (3 and 4) development of first- and second-stage larvae (L1 and L2) in floating eggs, which are ingested by copepods (intermediate hosts); (5) development of third-stage larva (L3) in copepods; (6) ingestion of infected copepods by saltwater fishes (numerous species) and encapsulation of third-stage larvae in various organs (fishes serve as paratenic hosts, i.e., larvae do not develop further); (7) ingestion of infected fishes by predatory fishes may lead to accumulation of infective larvae in these fishes; (8 and 9) final hosts (8) and humans (9) are infected by ingestion of infected fishes.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.39
Figure 4.39

Larva migrans cutanea (creeping eruption). Inflamed tracks of the dog hookworm A. braziliense under the skin are shown. (Source: P. Jansen-Rosseck, Medizinisches Institut für Umwelthygiene, Universität Düsseldorf, Düsseldorf, Germany.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.40
Figure 4.40

Developmental cycle of S. stercoralis. (1) Adult parthenogenetic female S. stercoralis (2.2 to 2.5 mm) in the mucosa of the small intestine; (2) rhabditiform first-stage larva (0.20 to 0.25 mm) passed with feces (D, diagnostic stage); (2a) free-living male (0.7 to 0.9 mm) and female (ca. 1 mm) S. stercoralis; (2b) egg (0.07 mm) deposited by the free-living female; (2c) first-stage larva hatched from the egg; (3) filariform, infective third-stage larva (0.55 to 0.60 mm; I, infective stage) developed either via a free-living sexual worm generation or from a first-stage larva shed with the feces (2) invades percutaneously. The figure does not take into consideration endogenous autoinfections and possible repeated development of free-living generations

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.41
Figure 4.41

Larva of T. spiralis in muscle (squeeze preparation). (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.42
Figure 4.42

Developmental cycle of T. spiralis. (1) Adult male (1.0 to 1.6 mm) and female T. spiralis (3.0 to 4.0 mm) in the mucosa of the small intestine (e.g., of pigs, carnivores, or humans); (2) encapsulated T. spiralis larva (capsule, 0.4 to 0.5 mm) in striated muscle (D, diagnostic stage; I, infective stage); (3) free larva of T. spiralis (0.8 to 1.0 mm) in the small intestine.

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.43
Figure 4.43

Myiasis. Shown is a maggot (second-instar larva) of Dermatobia hominis removed from the subcutis. Note the opening of the migration channel. (Source: P. Janssen-Rosseck, Medizinisches Institut für Umwelthygiene, Universität Düsseldorf.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.44
Figure 4.44

C. felis (cat flea). (Source: H. Mehlhorn, Düsseldorf, Germany.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.45
Figure 4.45

Tungiasis. Multiple lesions on the heel caused by T. penetrans infestation are shown. (Source: H. Feldmeier, Hamburg, Germany.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.46
Figure 4.46

Developmental cycle of a three-host tick (e.g., I. ricinus).

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.47
Figure 4.47

Mouthparts of an ixodid tick (I. ricinus, dorsal aspect). C, chelicerae; H, hypostome; P, pedipalps. (Source: Archive of the Institute for Parasitology, University of Giessen.)

Citation: Krauss H, Weber A, Appel M, Enders B, Isenberg H, Schiefer H, Slenczka W, von Graevenitz A, Zahner H. 2003. Parasitic Zoonoses, p 261-403. In Zoonoses. ASM Press, Washington, DC. doi: 10.1128/9781555817787.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817787.chap4
1. Anderson, T. J. C. 1995. Ascaris infections in humans from North America: molecular evidence for crossinfection. Parasitology 110:215219.
2. Anderson, T. J. C.,, and J. Jaenike. 1997. Host specificity, evolutionary relationships and macrogeographic differentiation among Ascaris populations from humans and pigs. Parasitology 115:325342.
3. Belanger, F.,, F. Derouin,, L. Grangeot-Keros,, L. Meyer, , et al 1999. Incidence and risk factors of toxoplasmosis in a cohort of human immunodeficiency virus-infected patients: 1988-1995. Clin. Infect. Dis. 28:575581.
4. Crompton, D. W. 2001. Ascaris and ascariasis. Adv. Parasitol. 48:285375.
5. Didier, E. S. 1998. Microsporidiosis. Clin. Infect. Dis. 27:17.
6. Gerber, D. A.,, M. Green,, R. Jaffe,, D. Greenberg,, G. Mazariegos,, and J. Reyes. 2000. Cryptosporidial infections after solid organ transplantation in children. Pediatr. Transplant. 4:5055.
7. Kenney, M.,, and V. Yermakov. 1980. Infection of man with Trichuris vulpis, the whipworm of dogs. Am. J. Trop. Med. Hyg. 29:12051208.
8. Luft, B. J.,, and A. Chua. 2000. Central nervous system toxoplasmosis in HIV. Pathogenesis, diagnosis, and therapy. Curr. Infect. Dis. Rep. 2:358362.
9. Pozio, E.,, G. Rezza,, A. Boschini,, P. Pezzotti,, A. Tamburrini,, P. Rossi,, M. Di Fine,, C. Smacchia,, A. Schiesari,, E. Gattei,, R. Zucconi,, and P. Ballarini. 1997. Clinical cryptosporidiosis and human immunodeficiency virus (HIV)-induced immunosuppression: findings from a longitudinal study of HIV-positive and HIV-negative former injection drug users. J. Infect. Dis. 176:969975.
10. Schwartz, D. A.,, and R. T. Bryan,. 1999. The microsporidial infections: progress in epidemiology and prevention, p. 7398. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 3. ASM Press, Washington, D.C.
11. Singh, S.,, J. C. Samantaray,, H. Singh,, G. B. Das,, and I. C. Verma. 1993. Trichuris vulpis in an Indian tribal population. J. Parasitol. 79:457458.
12. Anderson, R. C. 2000. Nematode parasites of vertebrates. Their development and transmission. CAB International, Wallingford, United Kingdom.
13. Ash, L. R.,, and T. C. Orihel. 1990. Atlas of Human Parasitology, 3rd ed. ASCP Press, Chicago, Ill.
14. Ash, L. R.,, and T. C. Orihel. 1987. Parasites. A Guide to Laboratory Procedures and Identification. ASCP Press, Chicago, Ill.
15. Burgess, N. R. H.,, and G. O. Cowan. 1993. A Colour Atlas of Medical Entomology. Chapman & Hall, London, United Kingdom.
16. Garcia, L. S. 2001. Diagnostic Medical Parasitology, 4th ed. ASM Press, Washington, D.C.
17. Isenberg, H. D. (ed.). 1998. Essential Procedures for Clinical Microbiology. ASM Press, Washington, D.C.
18. Kettle, P. S. 1990. Medical and Veterinary Entomology. CAB International, Wallingford, United Kingdom.
19. Lane, R. P.,, and R. W. Crossey (ed.). 1995. Medical Insects and Arachnids. Chapman & Hall, London, United Kingdom.
20. Mehlhorn, H. (ed.). 2001. Encyclopedic Reference of Parasitology, 2nd ed. Springer, Berlin, Germany.
21. Meyers, W. M. (ed.). 2000. Pathology of Infectious Diseases, vol. I. Helminthiases. Armed Forces Institute of Pathology, Washington, D.C.
22. Ministry of Agriculture, Fisheries and Food. 1986. Manual of Veterinary Parasitological Laboratory Techniques. Reference Book 418. Her Majesty's Stationery Office, London, United Kingdom.
23. Orihel, T. C.,, and L. R. Ash. 1995. Parasites in Human Tissues. ASCP Press, Chicago, Ill.
24. Pfaller, M. A.,, and L. S. Garcia (ed,.). 2003. Parasitology, p. 18952078. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed., vol. 2. ASM Press, Washington, D.C.
25. Price, D. L. 1978. Intestinal Protozoa in MIF. A Reference Set of Photomicrographs of Protozoa Stained by the Modified MIF Method. Marion Scientific Corp., Kansas City, Mo.
26. Rommel, M.,, J. Eckert,, E. Kutzer, et al. 2000. Veterinärmedizinische Parasitologie, 5th ed. Parey Buchverlag, Berlin, Germany.
27. Schmidt, G. D. 1986. Handbook of Tapeworm Identification. CRC Press, Inc., Boca Raton, Fla.
28. Warren, K. S.,, and A. A. F. Mahmoud (ed.). 1990. Tropical and Geographical Medicine, 2nd ed. McGraw-Hill, New York, N.Y.
29. World Health Organization. 1991. Basic Laboratory Methods in Medical Parasitology. World Health Organization, Geneva, Switzerland.
30. Yorke, W.,, and P. A. Maplestone. 1962. The Nematode Parasites of Vertebrates. Hafner Publishing Company, New York, N.Y.
31. Aucott, J. N.,, and J. I. Ravdin. 1993. Amebiasis and “nonpathogenic” intestinal protozoa. Infect. Dis. Clin. N. Am. 7:467485.
32. Bruckner, D. A. 1992. Amebiasis. Clin. Microbiol. Rev. 5:356369.
33. Clark, C. G.,, and L. S. Diamond. 1991. Ribosomal RNA genes of “pathogenic” and “non-pathogenic” Entamoeba histolytica are distinct. Mol. Biochem. Parasitol. 49:297302.
34. Clark, C. G.,, and L. S. Diamond. 1992. Differentiation of pathogenic Entamoeba histolytica from other intestinal protozoa by riboprinting. Arch. Med. Res. 23:1516.
35. Denney, C. F.,, V. J. Iragui,, L. D. Uber-Zak,, N. C. Karpinski,, E. J. Ziegler,, G. S. Visvesvara,, and S. L. Reed. 1997. Amebic meningoencephalitis caused by Balamuthia mandrillaris: case report and review. Clin. Infect. Dis. 25:13541358.
36. Espinosa-Cantellano, M.,, and A. Martínez-Palomo. 2000. Pathogenesis of intestinal amebiasis: from molecules to disease. Clin. Microbiol. Rev. 13:318331.
37. Ferrante, A. 1991. Free-living amoebae: pathogenicity and immunity. Parasite Immunol. 13:3147.
38. Haque, R.,, I. K. M. Ali,, S. Akther,, and W. A. Petri, Jr. 1998. Comparison of PCR, isoenzyme analysis, and antigen detection for diagnosis of Entamoeba histolytica infection. J. Clin. Microbiol. 36:449452.
39. Lotter, H.,, E. Mannweiler,, M. Schreiber,, and E. Tannich. 1992. Sensitive and specific serodiagnosis of invasive amebiasis by using a recombinant surface protein of pathogenic Entamoeba histolytica. J. Clin. Microbiol. 30:31633167.
40. Mergeryan, H. 1991. The prevalence of Acanthamoeba in the human environment. Rev. Infect. Dis. 13(Suppl. 5):S390S391.
41. Myung, K.,, D. Burch,, T. F. H. G. Jackson,, and S. L. Stanley, Jr. 1992. Serodiagnosis of invasive amebiasis using a recombinant Entamoeba histolytica antigenbased ELISA. Arch. Med. Res. 23:285288.
42. Ong, S. J.,, M. Y. Cheng,, K. H. Liu,, and C. B. Horng. 1996. Use of the ProSpecT microplate enzyme immunoassay for the detection of pathogenic and non-pathogenic Entamoeba histolytica in faecal specimens. Trans. R. Soc. Trop. Med. Hyg. 90:248249.
43. Petri, W. A.,, and U. Singh. 1999. Diagnosis and management of amebiasis. Clin. Infect. Dis. 29:11171125.
44. Ravdin, J. I. 1995. Amebiasis. Clin. Infect. Dis. 20:14531464.
45. Sargeaunt, P. G.,, J. E. Williams,, and J. D. Grene. 1978. The differentiation of invasive and non-invasive Entamoeba histolytica by isoenzyme electrophoresis. Trans. R. Soc. Trop. Med. Hyg. 72:519521.
46. Boustani, M. R.,, and J. E. Gelfand. 1996. Babesiosis. Clin. Infect. Dis. 22:611615.
47. Dorman, S. E.,, M. E. Cannon,, S. R. Telford III,, K. M. Frank,, and W. H. Churchill. 2000. Fulminant babesiosis treated with clindamycin, quinine, and wholeblood exchange transfusion. Transfusion 40:375380.
48. Eskow, E. S.,, P. J. Krause,, A. Spielman,, K. Freeman,, and J. Aslanzadeh. 1999. Southern extension of the range of human babesiosis in the eastern United States. J. Clin. Microbiol. 37:20512052.
49. Gorenflot, A.,, K. Moubri,, E. Precigout,, B. Carcy,, and T. P. Schetters. 1998. Human babesiosis. Ann. Trop. Med. Parasitol. 92:489501.
50. Hatcher, J. C.,, P. D. Greenberg,, J. Antique,, and V. E. Jimenez-Lucho. 2001. Severe babesiosis on Long Island: review of 34 cases and their complications. Clin. Infect. Dis. 32:11171125.
51. Hilton, E.,, J. De Voti,, J. L. Benach,, M. L. Halluska,, D. J. White,, H. Paxton,, and J. S. Dumler. 1999. Seroprevalence and seroconversion for tick-borne diseases in a high-risk population in the northeast United States. Am. J. Med. 106:404409.
52. Kjemtrup, A. M.,, J. Thomford,, T. Robinson,, and P. A. Conrad. 2000. Phylogenetic relationships of human and wildlife piroplasm isolates in the western United States inferred from the 18 S nuclear small subunit RNA gene. Parasitology 120:487493.
53. Kjemtrup, A. M.,, and P. A. Conrad. 2000. Human babesiosis. An emerging tick-borne disease. Int. J. Parasitol. 30:13231337.
54. Krause, P. J.,, K. McKay,, J. Gadbaw,, D. Christianson,, L. Closter,, T. Lepore,, S. R. Telford III,, V. Sikand,, R. Ryan,, D. Persing,, J. D. Radolf,, A. Spielman, and The Tick-Borne Infection Study Group. 2003. Increasing health burden of human babesiosis in endemic sites. Am. J. Trop. Med. Hyg. 68:431436.
55. Zahler, M.,, H. Rinder,, E. Schein,, and R. Gothe. 2000. Detection of a new pathogenic Babesia microti-like species in dogs. Vet. Parasitol. 89:241248.
56. Esteban, J. G.,, C. Aguirre,, R. Angles,, L. R. Ash,, and S. Mas-Coma. 1998. Balantidiasis in Aymara children from the northern Bolivian Altiplano. Am. J. Trop. Med. Hyg. 59:922927.
57. Hernandez, F.,, A. P. Argüello,, P. Rivera,, and E. Jimenez. 1993. Balantidium coli (Vestibuliferida: Balantidiidae): the persistence of an old problem. Rev. Biol. Trop. 41:149151.
58. Ladas, S. D.,, S. Savva,, A. Frydas,, A. Kaloviduris,, J. Hatzioannou,, and S. Raptis. 1989. Invasive balantidiasis presented as chronic colitis and lung involvement. Dig. Dis. Sci. 34:16211623.
59. Nakauchi, K. 1999. The prevalence of Balantidium coli infection in fifty-six mammalian species. J. Vet. Med. Sci. 61:6365.
60. Almeida, A. I. C.,, D. T. Covas,, L. M. Soussumi,, and L. R. Travassos. 1997. A highly sensitive and specific chemiluminescent enzyme-linked immunosorbent assay for diagnosis of active Trypanosoma cruzi infection. Transfusion 37:850857.
61. Bradley, K. K.,, D. K. Bergman,, J. P. Woods,, J. M. Crutcher,, and L. V. Kirchhoff. 2000. Prevalence of American trypanosomiasis (Chagas’ disease) among dogs in Oklahoma. J. Am. Vet. Med. Assoc. 217:18531857.
62. Britto, C.,, M. A. Cardoso,, C. M. Vanni,, A. Hasslocher- Moreno,, S. S. Xavier,, W. Oelemann,, A. Santoro,, C. Pirmez,, C. M. Morel,, and P. Wincker. 1995. Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evaluation. Parasitology 110:241247.
63. Centers for Disease Control and Prevention. 2002. Chagas’ disease after organ transplantation—United States, 2001. Morb. Mortal. Wkly. Rep. 51:210212.
64. Crovato, F.,, and A. Rebora. 1997. Chagas’ disease: a potential problem for Europe? Dermatology 195: 184185.
65. Freilij, H.,, and J. Altcheh. 1995. Congenital Chagas’ disease: diagnostic and clinical aspects. Clin. Infect. Dis. 21:551555.
66. Grisard, E. C.,, C. J. Carvalho-Pinto,, A. F. Scholz,, H. K. Toma,, B. R. Schlemper, Jr., and M. Steindel. 2000. Trypanosoma cruzi infection in Didelphis marsupialis in Santa Catarina and Arvoredo Islands, southern Brazil. Mem. Inst. Oswaldo Cruz 95:795800.
67. Herwaldt, B. L.,, M. J. Grijalva,, A. L. Newsome,, C. R. McGhee,, M. R. Powell,, D. G. Nemec,, F. J. Steurer,, and M. L. Eberhard. 2000. Use of polymerase chain reaction to diagnose the fifth reported US case of autochthonous transmission of Trypanosoma cruzi, in Tennessee, 1998. J. Infect. Dis. 181:395399.
68. Kirchhoff, L. V. 1993. American trypanosomiasis (Chagas’ disease)—a tropical disease now in the United States. N. Engl. J. Med. 329:639644.
69. Kirchhoff, L. V., 1999. Chagas' disease (American trypanosomiasis): a tropical disease now emerging in the United States, p. 111134. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 3. ASM Press, Washington, D.C.
70. Riarte, A.,, C. Luna,, R. Sabatiello,, A. Sinagra,, R. Schiavelli,, A. De Rissio,, E. Maiolo,, M. M. Garcia,, N. Jacob,, M. Pattin,, M. Lauricella,, E. L. Segura,, and M. Vazquez. 1999. Chagas’ disease in patients with kidney transplants: 7 years of experience, 1989–1996. Clin. Infect. Dis. 29:561567.
71. Saez-Alquézar, A.,, E. C. Sabino,, N. Salles,, D. F. Chamone,, F. Hulstaert,, H. Pottel,, E. Stoops,, and M. Zrein. 2000. Serological confirmation of Chagas’ disease by a recombinant and peptide antigen line mmunoassay: INNO-LIA Chagas. J. Clin. Microbiol. 38:851854.
72. Schenone, H. 1999. Xenodiagnosis. Mem. Inst. Oswaldo Cruz 94(Suppl. 1):289294.
73. Solari, A.,, S. Ortiz,, A. Soto,, C. Arancibia,, R. Campillay,, M. Contreras,, P. Salinas,, A. Rojas,, and H. Schenone. 2001. Treatment of Trypanosoma cruziinfected children with nifurtimox: a 3 year follow-up by PCR. J. Antimicrob. Chemother. 48:515519.
74. Tanowitz, H. B.,, L. V. Kirchhoff,, D. Simon,, S. A. Morris,, L. M. Weiss,, and M. Wittner. 1992. Chagas’ disease. Clin. Microbiol. Rev. 5:400419.
75. Anderson, B. C. 1998. Cryptosporidiosis in bovine and human health. J. Dairy Sci. 81:30363041.
76. Cacciò, S.,, E. Pinter,, R. Fantini,, I. Mezzaroma,, and E. Pozio. 2002. Human infection with Cryptosporidium felis: case report and literature review. Emerg. Infect. Dis. 8:8586.
77. Casemore, D. P.,, S. E. Wright,, and R. L. Coop,. 1997. Cryptosporidiosis—human and animal epidemiology, p. 6592. In R. Fayer (ed.), Cryptosporidium and Cryptosporidiosis. CRC Press, Boca Raton, Fla.
78. Chen, X. M.,, J. S. Keithly,, C. V. Paya,, and N. F. LaRusso. 2002. Cryptosporidiosis. N. Engl. J. Med. 346:17231731.
79. Clark, D. P. 1999. New insights into human cryptosporidiosis. Clin. Microbiol. Rev. 12:554563.
80. Fayer, R.,, U. Morgan,, and S. J. Upton. 2000. Epidemiology of Cryptosporidium: transmission, detection and identification. Int. J. Parasitol. 30:13051322.
81. Franzen, C.,, and A. Muller. 1999. Cryptosporidia and microsporidia—waterborne diseases in the immunocompromised host. Diagn. Microbiol. Infect. Dis. 34:245262.
82. Hunter, P. R.,, and G. Nichols. 2002. Epidemiology and clinical features of Cryptosporidium infection in immunocompromised patients. Clin. Microbiol. Rev. 15:145154.
83. Inungu, J. N.,, A. A. Morse,, and C. Gordon. 2000. Risk factors, seasonality, and trends of cryptosporidiosis among patients infected with human immunodeficiency virus. Am. J. Trop. Med. Hyg. 62:384387.
84. Pieniazek, N. J.,, F. J. Bornay-Llinares,, S. B. Slemenda,, A. J. da Silva,, I. N. Moura,, M. J. Arrowood,, O. Ditrich,, and D. G. Addiss. 1999. New Cryptosporidium genotypes in HIV-infected persons. Emerg. Infect. Dis. 5:444449.
85. Cifuentes, E.,, M. Gomez,, U. Blumenthal,, M. M. Tellez- Rojo,, I. Romieu,, G. Ruiz-Palacios,, and S. Ruiz- Velazco. 2000. Risk factors for Giardia intestinalis infection in agricultural villages practicing wastewater irrigation in Mexico. Am. J. Trop. Med. Hyg. 62:388392.
86. Garcia, L. S.,, and R. Y. Shimizu. 1997. Evaluation of nine immunoassay kits (enzyme immunoassay and direct fluorescence) for detection of Giardia lamblia and Cryptosporidium parvum in human fecal specimens. J. Clin. Microbiol. 35:15261529.
87. Ortega, Y. R.,, and R. D. Adam. 1997. Giardia: overview and update. Clin. Infect. Dis. 25:545549.
88. Thompson, R. C. A. 2000. Giardiasis as a re-emerging infectious disease and its zoonotic potential. Int. J. Parasitol. 30:12591267.
89. Thompson, R. C. A.,, R. M. Hopkins,, and W. L. Homan. 2000. Nomenclature and genetic groupings of giardia infecting mammals. Parasitol. Today 16:210213.
90. Alvar, J.,, C. Cañavate,, B. Gutiérrez-Solar,, M. Jiménez,, F. Laguna,, R. López-Vélez,, R. Molina,, and J. Moreno. 1997. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin. Microbiol. Rev. 10:298319.
91. Ashford, R. W. 2000. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 30:12691281.
92. Berman, J. D. 1997. Human leishmaniasis: clinical, diagnostic, and chemotherapeutic developments in the last 10 years. Clin. Infect. Dis. 24:684703.
93. Handman, E. 2001. Leishmaniasis: current status of vaccine development. Clin. Microbiol. Rev. 14:229243.
94. Jha, T. K.,, S. Sundar,, C. P. Thakur,, P. Bachmann,, J. Karbwang,, C. Fischer,, A. Voss,, and J. Berman. 1999. Miltefosine, an oral agent, for the treatment of Indian visceral leishmaniasis. N. Engl. J. Med. 341:17951800.
95. Katakura, K.,, S.-I. Kawazu,, T. Naya,, K. Nagakura,, M. Ito,, M. Aikawa,, J.-Q. Qu,, L.-R. Guan,, X.-P. Zuo,, J.-J. Chai,, K.-P. Chang,, and Y. Matsumoto. 1998. Diagnosis of kala-azar by nested PCR based on amplification of the Leishmania mini-exon gene. J. Clin. Microbiol. 36:21732177.
96. Maguire, J. H., 1999. Leishmania: a parasite on the move, p. 99110. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 3. ASM Press, Washington, D.C.
97. McHugh, C. P.,, P. C. Melby,, and S. G. Lafon. 1996. Leishmaniasis in Texas: epidemiology and clinical aspects of human cases. Am. J. Trop. Med. Hyg. 55:547555.
98. Murray, H. W. 2001. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob. Agents Chemother. 45:21852197.
99. Pearson, R. D.,, and A. De Queiroz Sousa. 1996. Clinical spectrum of leishmaniasis. Clin. Infect. Dis. 22:111.
100. Aronson, N. E.,, G. W. Wortmann,, S. C. Johnson,, J. E. Jackson,, R. A. Gasser, Jr.,, A. J. Magill,, T. P. Endy,, P. E. Coyne,, M. Grogl,, P. M. Benson,, J. S. Beard,, J. D. Tally,, J. M. Gambel,, R. D. Kreutzer,, and C. N. Oster. 1998. Safety and efficacy of intravenous sodium stibogluconate in the treatment of leishmaniasis: recent U.S. military experience. Clin. Infect. Dis. 27:14571464.
101. Ashford, R. W. 2000. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 30:12691281.
102. Belazzoug, S. 1992. Leishmaniasis in Mediterranean countries. Vet. Parasitol. 44:1519.
103. Blum, J.,, C. Hatz,, and T. Junghanss. 1994. Therapie kutaner und mukokutaner Leishmaniosen. Dtsch. Med. Wochenschr. 119:11691172.
104. Carrada Bravo, T. 1993. Cellular immunity and vaccination against cutaneous leishmaniasis. Recent progress and prospects. Rev. Alerg. 40:98105. (In Spanish.)
105. Faris, R. M.,, J. S. Jarallah,, T. A. Khoja,, and M. J. al- Yamani. 1993. Intralesional treatment of cutaneous leishmaniasis with sodium stibogluconate antimony. Int. J. Dermatol. 32:610612.
106. Kerr, S. F.,, C. P. McHugh,, and N. O. Dronen. 1995. Leishmaniasis in Texas: prevalence and seasonal transmission of Leishmania mexicana in Neotoma micropus. Am. J. Trop. Med. Hyg. 53:7377.
107. Pearson, R. D.,, and A. De Queiroz Sousa. 1996. Clinical spectrum of leishmaniasis. Clin. Infect. Dis. 22:111.
108. Arevalo, I.,, B. Ward,, R. Miller,, T. C. Meng,, E. Najar,, E. Alvarez,, G. Matlashewski,, and A. Llanos-Cuentas. 2001. Successful treatment of drug-resistant cutaneous leishmaniasis in humans by use of imiquimod, an immunomodulator. Clin. Infect. Dis. 33:18471851.
109. Ashford, R. W. 2000. The leishmaniases as emerging and reemerging zoonoses. Int. J. Parasitol. 30:12691281.
110. Blum, J.,, C. Hatz,, and T. Junghanss. 1994. Therapie kutaner und mukokutaner Leishmaniosen. Dtsch. Med. Wochenschr. 119:11691172.
111. Convit, J.,, M. Ulrich,, C. T. Fernandez,, F. J. Tapia,, G. Caceres-Dittmar,, M. Castes,, and A. J. Rondon. 1993. The clinical and immunological spectrum of American cutaneous leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 87:444448.
112. Evans, T. G. 1993. Leishmaniasis. Infect. Dis. Clin. N. Am. 7:527546.
113. Grimaldi, G.,, and R. B. Tesh. 1993. Leishmaniases of the New World: current concepts and implications for future research. Clin. Microbiol. Rev. 6:230250.
114. Kerr, S. F.,, C. P. McHugh,, and N. O. Dronen. 1995. Leishmaniasis in Texas: prevalence and seasonal transmission of Leishmania mexicana in Neotoma micropus. Am. J. Trop. Med. Hyg. 53:7377.
115. Maguire, J. H., 1999. Leishmania: a parasite on the move, p. 99110. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 3. ASM Press, Washington, D.C.
116. Soto, J.,, J. Toledo,, P. Gutierrez,, R. S. Nicholls,, J. Padilla,, J. Engel,, C. Fischer,, A. Voss,, and J. Berman. 2001. Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clin. Infect. Dis. 33:E57E61.
117. World Health Organization. Division of Control of Tropical Diseases Disease Sheet: Leishmaniasis 1998. World Health Organization, Geneva, Switzerland.
118. Curry, A.,, and H. V. Smith. 1998. Emerging pathogens: Isospora, Cyclospora and Microsporidia. Parasitology 117(Suppl.):S143S159.
119. Dengjel, B.,, M. Zahler,, W. Hermanns,, K. Heinritzi,, T. Spillmann,, A. Thomschke,, T. Löscher,, R. Gothe,, and H. Rinder. 2001. Zoonotic potential of Enterocytozoon bieneusi. J. Clin. Microbiol. 39:44954499.
120. Deplazes, P.,, A. Mathis,, R. Baumgartner,, I. Tanner,, and R. Weber. 1996. Immunologic and molecular characteristics of Encephalitozoon-like microsporidia isolated from humans and rabbits indicate that Encephalitozoon cuniculi is a zoonotic parasite. Clin. Infect. Dis. 22:557559.
121. Deplazes, P.,, A. Mathis,, C. Müller,, and R. Weber. 1996. Molecular epidemiology of Encephalitozoon cuniculi and first detection of Enterocytozoon bieneusi in faecal samples of pigs. J. Eukaryot. Microbiol. 43:935.
122. Didier, E. S. 1998. Microsporidiosis. Clin. Infect. Dis. 27:17.
123. Dowd, S. E.,, C. P. Gerba,, and I. L. Pepper. 1998. Confirmation of the human-pathogenic microsporidia Enterocytozoon bieneusi, Encephalitozoon intestinalis, and Vittaforma corneae in water. Appl. Environ. Microbiol. 64:33323335.
124. Garcia, L. S. 2002. Laboratory identification of microsporidia. J. Clin. Microbiol. 40:18921901.
125. Molina, J. M.,, M. Tourneur,, C. Sarfati,, S. Chevret,, A. de Gouvello,, J. G. Gobert,, S. Balkan,, F. Derouin, and the Agence Nationale de Recherches sur le SIDA 090 Study Group. 2002. Fumagillin treatment of intestinal microsporidiosis. N. Engl. J. Med. 346:19631969.
126. Müller, A.,, R. Bialek,, A. Kämper,, G. Fätkenheuer,, B. Salzberger,, and C. Franzen. 2001. Detection of microsporidia in travelers with diarrhea. J. Clin. Microbiol. 39:16301632.
127. Petri, F. (ed.). 2000. Cryptosporidiosis and microsporidiosis. Karger Verlag, Basel, Switzerland.
128. Schwartz, D. A.,, and R. T. Bryan,. 1999. The microsporidial infections: progress in epidemiology and prevention, p. 7398. In W. M. Scheld,, W. A. Craig,, and J. M. Hughes (ed.), Emerging Infections 3. ASM Press, Washington, D.C.
129. Sprague, V.,, J. J. Becnel,, and E. I. Hazard. 1992. Taxonomy of phylum Microspora. Crit. Rev. Microbiol. 18:285395.
130. Wasson, K.,, and R. L. Peper. 2000. Mammalian microsporidiosis. Vet. Pathol. 37:113128.
131. Weber, R.,, R. T. Bryan,, R. L. Owen,, C. M. Wilcox,, L. Gorelkin,, and G. S. Visvesvara. 1992. Improved lightmicroscopical detection of Microsporidia spores in stool and duodenal aspirates. N. Engl. J. Med. 326:161166.
132. Weber, R.,, D. A. Schwartz,, and P. Deplazes,. 1999. Laboratory diagnosis of microsporidiosis, p. 315362. In M. Wittner, and L. M. Weiss (ed.), The Microsporidia and Microsporidiosis. ASM Press, Washington, D.C.
133. Weber, R.,, R. T. Bryan,, D. A. Schwartz,, and R. L. Owen. 1994. Human microsporidial infections. Clin. Microbiol. Rev. 7:426461.
134. Acha, P. N.,, and B. Szyfres. 1987. Zoonoses and Communicable Diseases Common to Man and Animals, 2nd ed., p. 616619. Pan American Health Organization, Washington, D.C.
135. Bruce-Chwatt, L. J. 1968. Malaria zoonosis in relation to malaria eradication. Trop. Geogr. Med. 20:5087.
136. Coatney, G. R. 1968. Simian malarias in man. Facts, implications and predictions. Am. J. Trop. Med. Hyg. 17:147155.
137. Coatney, G. R. 1981. The simian malarias: zoonoses, anthroponoses, or both? Am. J. Trop. Med. Hyg. 20:795803.
138. Collins, W. E., 1988. Major animal models in malaria research: simian, p. 14731501. In W. H. Wernsdorfer, and I. McGregor (ed.), Malaria. Principles and Practice of Malariology, vol. 2. Churchill Livingstone, Edinburgh, United Kingdom.
139. Deane, L. M.,, M. P. Deane,, J. A. Ferreira Neto, et al. 1966. Studies on transmission of simian malaria and on natural infection of man with Plasmodium simium in Brazil. Bull. W. H. O. 35:805808.
140. Garnham, P. C. C. 1966. Malaria Parasites and Other Haemosporidia. Blackwell Scientific Publications, Oxford, United Kingdom.
141. Garnham, P. C. C., 1988. Species of simian malaria parasites occurring in man, p. 8495. In W. H. Wernsdorfer, and I. McGregor (ed.), Malaria. Principles and Practice of Malariology, vol. 1. Churchill Livingstone, Edinburgh, United Kingdom.
142. Gysin, J., 1998. Animal models: primates, p. 419441. In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.
143. Herwaldt, B. L. 2001. Laboratory-acquired parasitic infections from accidental exposures. Clin. Microbiol. Rev. 14:659688.
144. Volney, B.,, J.-F. Pouliquen,, B. De Thoisy,, and T. Fandeur. 2002. A sero-epidemiological study of malaria in human and monkey populations in French Guiana. Acta Trop. 82:1123.
145. Warren, M. W. 1970. Simian and anthropoid malarias. Their role in human disease. Lab. Anim. Care 20:368376.
146. Wolfe, N. D.,, A. A. Escalante,, W. B. Karesh,, A. Kilbourn,, A. Spielman,, and A. A. Lal. 1998. Wild primate populations in emerging infectious disease research: the missing link? Emerg. Infect. Dis. 4:149158.
147. World Health Organization. 1979. Parasitic Zoonoses. Report of a WHO Expert Committee with the Participation of FAO. World Health Organization Technical Report Series no. 637. World Health Organization, Geneva, Switzerland.
148. Agostoni, F.,, C. Atzori,, E. Angeli,, A. Mainini,, V. Micheli,, and A. Cargnel. 2000. Pneumocystis carinii diagnosis: an update. Int. J. Antimicrob. Agents 16:549557.
149. Centers for Disease Control and Prevention. 1999. 1999 USPHS/IDSA guidelines for the prevention of opportunistic infections in persons infected with human immunodeficiency virus. Morb. Mortal. Wkly. Rep. 48(RR-10).
150. Durand-Joly, I.,, E. M. Aliouat,, C. Recourt,, K. Guyot,, N. François,, M. Wauquier,, D. Camus,, and E. Dei-Cas. 2002. Pneumocystis carinii f. sp. hominis is not infectious for SCID mice. J. Clin. Microbiol. 40:18621865.
151. Edman, J. C.,, J. A. Kovacs,, H. Masur,, D. V. Santi,, H. J. Elwood,, and M. L. Sogin. 1988. Ribosomal RNA sequence shows Pneumocystis carinii to be a member of the fungi. Nature 334:519522.
152. Evans, R.,, and D. O. Ho-Yen. 2000. Nested PCR is useful to the clinician in the diagnosis of Pneumocystis carinii pneumonia. J. Infect. 40:207208.
153. Schliep, T. C.,, and R. L. Yarrish. 1999. Pneumocystis carinii pneumonia. Semin. Respir. Infect. 14:333343.
154. Arness, M. K.,, J. D. Brown,, J. P. Dubey,, R. C. Neafie,, and D. E. Granstrom. 1999. An outbreak of acute eosinophilic myositis attributed to human Sarcocystis parasitism. Am. J. Trop. Med. Hyg. 61:548553.
155. Chen, X.,, Y. Zuo,, and W. Zuo. 1999. Observation on the clinical symptoms and sporocyst excretion in human volunteers experimentally infected with Sarcocystis hominis. Clin. J. Parasitol. Parasit. Dis. 17:2527.
156. Euzeby, J. 1997. Zoonotic sarcocystosis: from sarcocystic coccidiosis to sarcocystic eosinophilic myositis. Bull. Soc. Pathol. Exot. 90:200204.
157. Gottstein, B. 1995. Cyst-forming coccidia: toxoplasma, neospora, sarcocystis. Schweiz. Med. Wochenschr. 125:890898.
158. Arbyn, M.,, H. Bruneel,, S. Moliko, et al. 1995. Human trypanosomiasis in Zaïre: a return to the situation at the beginning of the century? Arch. Public Health 53:365371.
159. Baker, J. R. 1995. The subspecific taxonomy of Trypanosoma brucei. Parasite 2:312.
160. Barrett, M. P. 1999. The fall and rise of sleeping sickness. Lancet 353:11131114.
161. Moore, D. A. J.,, M. Edwards,, R. Escombe,, D. Agranoff,, J. W. Bailey,, S. B. Squire,, and P. L. Chiodini. 2002. African trypanosomiasis in travelers returning to the United Kingdom. Emerg. Infect. Dis. 8:7476.
162. Seed, J. R. 2000. Current status of African trypanosomiasis. ASM News 66:395402.
163. Smith, D. H.,, J. Pepin,, and A. H. R. Stich. 1998. Human African trypanosomiasis: an emerging public health crisis. Br. Med. Bull. 54:311355.
164. World Health Organization. 1979. The African Trypanosomiasis. Report of a Joint WHO Expert Committee and FAO Expert Consultation. Technical Report Series no. 635. World Health Organization, Geneva, Switzerland.
165. World Health Organization. 1986. Epidemiology and Control of African Trypanosomiasis. Technical Report Series no. 739. World Health Organization, Geneva, Switzerland.
166. Aspöck, H.,, and A. Pollak. 1992. Prevention of prenatal toxoplasmosis by serological screening of pregnant women in Austria. Scand. J. Infect. Dis. Suppl. 84:3237.
167. Bowie, W. R.,, A. S. King,, D. H. Werker,, J. L. Isaac- Renton,, A. Bell,, S. B. Eng,, and S. A. Marion. 1997. Outbreak of toxoplasmosis associated with municipal drinking water. Lancet 350:173177.
168. Centers for Disease Control and Prevention. 2000. Preventing congenital toxoplasmosis. Morb. Mortal. Wkly. Rep. 49(RR-2):5968.
169. Choi, W.-Y.,, H.-W. Nam,, N.-H. Kwak,, W. Huh,, Y. R. Kim,, M. W. Kang,, S. Y. Cho,, and J. P. Dubey. 1997. Foodborne outbreaks of human toxoplasmosis. J. Infect. Dis. 175:12801282.
170. Derouin, F.,, E. Jacqz-Aigrain,, P. Thulliez,, J. Couvreur,, and C. Leport. 2000. Cotrimoxazole for prenatal treatment of congenital toxoplasmosis? Parasitol. Today 16:254256.
171. Hohlfeld, P.,, F. Daffos,, J.-M. Costa,, P. Thulliez,, F. Forestier,, and M. Vidaud. 1994. Prenatal diagnosis of congenital toxoplasmosis with a polymerase-chainreaction test on amniotic fluid. N. Engl. J. Med. 331:695699.