1887

Chapter 1 : Structure and Function of Prokaryotic and Eukaryotic Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Structure and Function of Prokaryotic and Eukaryotic Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap01-2.gif

Abstract:

This chapter provides an overview of the basic concepts of eukaryotic and prokaryotic cell structure and function. The practical importance of each topic is described in the context of understanding the invasion of eukaryotic hosts by pathogenic bacterial cells. Eukaryotic cells are generally 10 to 100 µm in diameter and thus have 103 to 106 times the volume of typical prokaryotic cells. Organelles commonly found in animal cells include the nucleus, the endoplasmic reticulum, the Golgi apparatus, lysosomes, the mitochondria, peroxisomes, and ribosomes. The outer membrane of gram-negative bacteria provides structures and receptors that affect adhesion to host cells, resistance to phagocytosis, and susceptibility to bacteriophages. Bacteria occur as single cells or as cell associations. The bacterial cell wall is a unique structure which surrounds the cytoplasmic membrane. Bacterial cell walls are constructed from a variety of macromolecules and polymers. Structurally, the wall is necessary for maintaining the cell’s characteristic shape and countering the effect of osmotic pressure. Peptidoglycan (or murein) is a cross-linked biopolymer. The nucleoid is the site of DNA and RNA synthesis. The chromosome is the main genomic element of bacteria as a single larger circular DNA molecule. It contains the genes for all "essential" functions and structures of the bacterial cell.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.1
Figure 1.1

Structure of a representative animal cell. Reprinted from G. M. Cooper, The Cell: a Molecular Approach (ASM Press, Washington, D.C., and Sinauer Associates, Inc.,Sunderland, Mass., 2000), with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.2
Figure 1.2

Fluid mosaic model of the cytoplasmic membrane structure. Reprinted from G. M. Cooper, The Cell: a Molecular Approach (ASM Press, Washington, D.C., and Sinauer Associates, Inc., Sunderland, Mass., 2000), with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.3
Figure 1.3

Schematic three-dimensional model and comparison of eukaryotic and prokaryotic ribosomes.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.4
Figure 1.4

Structure of microtubules. Dimers of α- and β-tubulin polymerize to form microtubules, which are composed of 13 protofilaments assembled around a hollow core. Reprinted from G. M. Cooper, The Cell: a Molecular Approach (ASM Press, Washington, D.C., and Sinauer Associates, Inc., Sunderland, Mass., 2000), with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.5
Figure 1.5

Morphologies of some commonly encountered bacteria. Reprinted from T. S. Walker, Microbiology (The W. B. Saunders Co., Philadelphia, Pa., 1998), with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.6
Figure 1.6

Diagrammatic representation of a gram-negative bacterial cell.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.7
Figure 1.7

Schematic representation of the major surface structures of the cell wall of gram-positive bacteria. Abbreviations: TA, teichoic acid; LTA, lipoteichoic acid. Reprinted from V. A. Fischetti, R. P. Novick, J. F. Ferretti, D. A. Portnoy, and J. L. Rood (ed.), Gram- Positive Pathogens (ASM Press, Washington, D.C., 2000), with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.8
Figure 1.8

Schematic representation of the major surface structures of the cell wall of gram-negative bacteria. Reprinted from L. E. Bryan (ed.), Antimicrobial Drug Resistance (Academic Press, Inc., San Diego, Calif., 1984), with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.9
Figure 1.9

Structure of one of the repeating units of the peptidoglycan cell wall structure, the glycan tetrapeptide. Each monosaccharide derivative (G) is attached to other monosaccharide derivatives (M) by β1→4 glycosidic bonds. The structure illustrated is that found in E. coli and most other gram-negative bacteria. In some bacteria, other amino acids are found.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.10
Figure 1.10

Peptidoglycan cross-links. (a) E. coli peptidoglycan; (b) S. aureus peptidoglycan. The abbreviations and structures of amino acid in the figure are given in appendix A.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.11
Figure 1.11

Diagrammatic representation of peptidoglycan structures with adjacent glycan strains cross-linked directly from the carboxyl-terminal <sc>D</sc>-alanine to the Ɛ-amino group of an adjacent tetrapeptide or through a peptide interbridge.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.12
Figure 1.12

Reactions involved in the biosynthesis of UDP-MurNAc acid in S. aureus. Pi, inorganic phosphate.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.13
Figure 1.13

Later stage of the reactions shown in Fig. 1.12. The reactions involved in the biosynthesis of UDP-MurNAc pentapeptide (first stage) in S. aureus are shown.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.14
Figure 1.14

Later stage of the reaction shown in Fig. 1.13. The reactions involved in the biosynthesis of linear chain of peptidoglycan units in S. aureus are shown.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.15
Figure 1.15

Final stage of the biosynthesis of peptidoglycan in S. aureus.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.16
Figure 1.16

General structures of some tei- (b) choic acids. (a) Ribitol teichoic acid. R =ββ-glucosyl residues in B. subtilis and α- or β-linked N-acetylglucosamine in various strains of S. aureus. (b) Glycerol teichoic acid. R = α-glucosyl residues in B. subtilis.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.17
Figure 1.17

Generalized structure of the teichuronic acid present in the wall of B. licheniformis.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.18
Figure 1.18

Molecular representation of the envelope of a gram-negative bacterium. Ovals and rectangles represent sugar residues, whereas circles depict polar head groups of the glycerophospholipids (phosphatidylethanolamine and phosphatidylglycerol). KDO and MDO represent membrane-derived oligosaccharides. The core region shown is that of E. coli K-12, a strain that does not normally contain an O-antigen repeat unless transformed with an appropiate plasmid. Reprinted from C. R. H. Raetz, J. Bacteriol. 175:5745–5753, 1993, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.19
Figure 1.19

Diagram showing the molecular structure of LPS in Salmonella species. LPS is composed of three major regions: the type-specific O antigen, which extends into the external environment from the bacterial surface; the core, which consists of inner and outer cores and which anchors the O antigen to the membrane; and lipid A, which is a phospholipid-like molecule that is embedded in the outer leaflet of the outer membrane.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.20
Figure 1.20

Structure of S. enteric serovar Typhimurium LPS. The moleculeis made up of the side chain (Abe, abequose; Man, d-mannose; Rha, l-rhamnose; OAc, O-acetyl) linked to the core oligosaccharide (Gal, d-galactose; GlcNAc, N-acetylglucosamine; Glc, d-glucose; Hep, l-glycero-Dmannoheptose; EtN, ethanolamine) and lipid A (GlcN, d-glucosamine; AraN, 4-aminoarabinose). The fatty acid substituents are present in both amide and ester linkages.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.21
Figure 1.21

Ribbon diagram of the OmpF porin from E. coli. (a) View from within the plane of the membrane onto the face of the barrel closest to the threefold axis. (b) View of the trimer looking along the threefold axis (triangle) from outside the cell. Reprinted from S. W. Cowan, Curr. Opin. Struct. Biol. 3:501–507, 1993, with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.22
Figure 1.22

Chemical structures of cholesterol (a steroid) and diploptene (a hopanoid).

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.23
Figure 1.23

(Left) Fundamental structure of a phospholipid bilayer. (Right) Structures of a polar membrane phospholipid, phosphatidylethanolamine, which forms the hydrophilic region, and fatty acids (long chains), which are esterified to glycerol in the hydrophobic region.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.24
Figure 1.24

Morphology of a gram-positive bacterium showing the mesosome, as well as other structures.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.25
Figure 1.25

Ultrastructure of bacterial flagella. Flagellar basal bodies, hook, and filament in gram-negative (a) and gram-positive (b) bacteria are shown. Reprinted from L. M. Prescott, J. P. Harley, and D. A. Klein, Microbiology, 4th ed. (McGraw-Hill, Boston, Mass., 1999), with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.26
Figure 1.26

Photomicrograph of two E. coli cells shows a bacterial mating (conjugation) process. The cell at the left has several common pili and a sex pilus connected to the right cell. The cell at the right lacks common pili. Reprinted from T. S. Walker, Microbiology (The W. B. Saunders Co., Philadelphia, Pa., 1998), with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.27
Figure 1.27

The bacterial chromosome and supercoiling. (a) The DNA double helix in the shape of a closed circle. (b) Supercoiled form of circular DNA.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.28
Figure 1.28

Diagrammatic representation of the strucure of the B form of DNA. The model shows the complementarity of the bases A-T and C-G and the antiparallel orientation of the two strands of polynucleotides.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.29
Figure 1.29

Diagrammatic representation of semiconservative DNA replication. The replication fork of DNA and the synthesis of two progeny strands are shown. Each copy contains one new and one old strand.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 1.30
Figure 1.30

Cloverleaf secondary structure of tRNA. Watson-Crick base pairing is indicated by dashed lines between nucleotide residues. The molecule is divided into an acceptor stem and four arms. Reprinted from L. M. Prescott, J. P. Harley, and D. A. Klein, Microbiology, 4th ed. (McGraw-Hill, Boston, Mass., 1999), with permission from the publisher.

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap1
1. Brooks, G. F.,, J. S. Butel,, and S. A. Morse. 1998. Jawetz, Melnick, & Adelberg's Medical Microbiology, 21st ed. Appleton & Lange, Stamford, Conn.
2. Cooper, G. M. 2000. The Cell: A Molecular Approach, 2nd ed. ASM Press, Washington, D.C., and Sinauer Associates, Inc., Sunderland, Mass.
3. Fischetti, V. A.,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.). 2000. Gram-Positive Pathogens. ASM Press, Washington, D.C.
4. Lengeler, J. W.,, G. Drews,, and H. G. Schlegel. 1999. Biology of the Prokaryotes. Georg Thieme Verlag, Stuttgart, Germany.
5. Madigan, M. T.,, J. M. Martinko,, and J. Parker. 2000. Brock Biology of Microorganisms , 9th ed. Prentice-Hall, Upper Saddle River, N.J.
6. Nelson, D. L.,, and M. M. Cox. 2000. Lehninger Principles of Biochemistry, 3rd ed. Worth Publishers, New York, N.Y.
7. Prescott, L. M.,, J. P. Harley,, and D. A. Klein. 1999. Microbiology , 4th ed. McGraw-Hill, Boston, Mass.
8. Salyers, A. A.,, and D. D. Whitt. 2001. Microbiology. Fitzgerald Science Press, Bethesda, Md.
9. Walker, T. S. 1998. Microbiology. The W. B. Saunders Co., Philadelphia, Pa.
10. White, D. 2000. The Physiology and Biochemistry of Prokaryotes. Oxford University Press, New York, N.Y.
11. Beveridge, T. J. Bacterial cell wall. Accepted for publication in Encyclopedia of Life Sciences. Nature Publishing, London, United Kingdom.
12. Ghuysen, J. M.,, and R. Hakenbeck. 1994. Bacterial Cell Wall . Elsevier, Amsterdam, The Netherlands.
13. Volker-Höltje, J., 2000. Cell walls, bacterial, p. 759 771. In J. Lederberg (ed.), Encyclopedia of Microbiology , 2nd ed., vol. 1. Academic Press, Inc., San Diego, Calif.
14. Ward, J. B., 1990. Cell wall structure and function, p. 553 607. In C. Hansch,, P. G. Sammes,, and J. B. Taylor (ed.), Comprehensive Medicinal Chemistry , vol. 2. Pergamon Press, Oxford, United Kingdom.
15. Benson, T. E.,, D. B. Prince,, V. T. Mutchler,, K. A. Curry,, A. M. Ho,, R. W. Sarver,, J. C. Hagadorn,, G. H. Choi,, and R. L. Garlick. 2002. X-ray crystal structure of Staphylococcus aureus FemA. Structure 10: 1107 1115.
16. van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18: 503 519.
17. Li, X.,, and H. L. T. Mobley. Bacterial pili and fimbriae. Accepted for publication in Encyclopedia of Life Sciences. Nature Publishing, London, United Kingdom.
18. Mulvey, M. A.,, K. W. Dodson,, G. E. Soto,, and S. J. Hultgren., 2000. Fimbriae, pili, p. 361 379. In J. Lederberg (ed.), Encyclopedia of Microbiology , 2nd ed., vol. 2. Academic Press, Inc., San Diego, Calif.
19. Aizawa, S. I., 2000. Flagella, p. 380 389. In J. Lederberg (ed.), Encyclopedia of Microbiology , 2nd ed., vol. 2, Academic Press, Inc., San Diego, Calif.
20. Manson, M. D.,, J. P. Armitage,, J. A. Hoch,, and R. M. Macnab. 1998. Bacterial locomotion and signal transduction. J. Bacteriol. 180: 1009 1022.
21. Morgan, D. G.,, and S. Khan. Bacterial flagella. Accepted for publication in Encyclopedia of Life Sciences. Nature Publishing, London, United Kingdom.
22. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. FitzHugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L.-I. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae. Science 269: 496 512.
23. Guild, B. C. 1999. Genomics, target selection, validation, and assay considerations in the development of antibacterial screens. Annu. Rep. Med. Chem. 34: 227 239.
24. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayan,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter,, and C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477 483.
25. Jenks, P. J. 1998. Sequencing microbial genomes—what will it do for microbiology? J. Med. Microbiol. 47: 375 382.
26. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baha,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Acki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225 1240.
27. Moir, D. T.,, K. J. Shaw,, R. S. Hare,, and G. F. Vovis. 1999. Genomics and antimicrobial drug discovery. Antimicrob. Agents Chemother. 43: 439 446.
28. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey,, F. S. L. Brinkman,, W. O. Hufnagle,, D. J. Kowalik,, M. Lagrou,, R. L. Garber,, L. Goltry,, E. Tolentino,, S. Westbrock-Wadman,, Y. Yuan,, L. L. Brody,, S. N. Coulter,, K. R. Folger,, A. Kas,, K. Larbig,, R. Lim,, K. Smith,, D. Spencer,, G. K. S. Wong,, Z. Wu,, I. T. Paulsen,, J. Reizer,, M. H. Saier,, R. E. W. Hancock,, S. Lory,, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959 964.
29. Strauss, E. J.,, and S. Falkow. 1997. Microbial pathogenesis: genomics and beyond. Science 276: 707 712.
30. Robinow, C.,, and E. Kellenberger. 1994. The bacterial nucleoid revisited. Microbiol. Rev. 58: 211 232.
31. Braun, V. 1975. Covalent lipoprotein from the outer membrane of Escherichia coli. Biochim. Biophys. Acta 415: 335 377.
32. Caroff, M.,, D. Karibian,, J. M. Cavaillon,, and N. Haefner-Cavaillon. 2002. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect. 4: 915 926.
33. Hancock, R. E. W. 1991. Bacterial outer membranes: evolving concepts. ASM News 57: 175 182.
34. Koebnik, K. R.,, K. P. Locher,, and P. Van Gelden. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37: 239 253.
35. Nikaido, H. 1989. Outer membrane barrier as a mechanism of antimicrobial resistance. Antimicrob. Agents Chemother. 33: 1831 1836.
36. Nikaido, H.,, and M. Vaara. 1985. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 49: 1 32.
37. Noland, B. W.,, J. M. Newman,, J. Hendle,, J. Badger,, J. A. Christopher,, J. Tresser,, M. D. Buchanan,, T. A. Wright,, H. J. Müller-Dieckmann,, K. S. Gajiwala,, and S. G. Buchanan. 2002. Structural studies of Salmonella typhimurium ArnB (PmrH) aminotransferase: a 4-amino-4-deoxy-L-arabinose lipopolysaccharide- modifying enzyme. Structure 10: 1569 1580.
38. Calamita, G. 2000. The Escherichia coli aquaporin-Z water channel. Mol. Microbiol. 37: 254 262.
39. Cowan, S. W. 1993. Bacterial porins: lessons from three highresolution structures. Curr. Opin. Struc. Biol. 3: 501 507.
40. Cowan, S. W.,, T. Schirmer,, G. Rummel,, M. Steiert,, R. Ghosh,, R. A. Pauptit,, J. N. Jansonius,, and J. P. Rosenbusch. 1992. Crystal structures explain functional properties of two E. coli porins. Nature 358: 727 733.
41. Doménech-Sánchez, A.,, S. Hernández-Allés,, L. Martínez- Martínez,, V. J. Benedí,, and S. Alberti. 1999. Identification and characterization of a new porin gene of Klebsiella pneumoniae: its role in β-lactam antibiotic resistance. J. Bacteriol. 181: 2726 2732.
42. Hancock, R. E. W. 1987. Role of porins in outer membrane permeability. J. Bacteriol. 169: 929 933.
43. Misuno, T.,, M. Y. Chou,, and M. Inouye. 1983. A comparative study on the genes for three porins of the Escherichia coli outer membrane. J. Biol. Chem. 258: 6932 6940.
44. Nikaido, H. 1992. Porins and specific channels of bacterial outer membranes. Mol. Microbiol. 6: 435 442.
45. Schirmer, T.,, T. A. Keller,, Y.-F. Wang,, and J. P. Rosenbusch. 1995. Structural basis for sugar translocation through maltoporin channels at 3.1 Å resolution. Science 267: 512 514.
46. Schirmer, T.,, and J. P. Rosenbusch. 1991. Proterozoic and eukaryotic porins. Curr. Biol. 1: 539 545.
47. Schulz, G. E., 1994. Structure-function relationships in porins as derived from a 1.8 Å resolution crystal structure, p. 343 352. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
48. Schulz, G. E. 1993. Bacterial porins: structure and function. Curr. Biol. 3: 701 707.
49. Weis, M. S.,, and G. E. Schulz. 1992. Structure of porin refined at 1.8 Å resolution. J. Mol. Biol . 227: 493 509.
50. Ban, B.,, P. Nissen,, J. Hansen,, P. B. Moore,, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution. Science 289: 905 920.
51. Cate, J. H.,, M. M. Yusupov,, G. Z. Yusupova,, T. N. Earnest,, and H. F. Noller. 1999. X-ray crystal structures of 70S ribosome functional complexes. Science 285: 2095 2104.
52. Clemons, W. M.,, J. L. C. May,, B. T. Wimberly,, J. P. McCutcheon,, M. S. Capel,, and V. Ramakrishnan. 1999. Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution. Nature 400: 833 847.
53. Garrett, R. 1999. Mechanics of the ribosome. Nature 400: 811 812.
54. Garrett, R. A.,, S. R. Douthwaite,, A. Liljas,, A. T. Matheson,, P. B. Moore,, and H. F. Nolle (ed.). 2000. The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. ASM Press, Washington, D.C.
55. Squires, C. L., 2000. Ribosome synthesis and regulation, p. 127 139. In J. Lederberg (ed.), Encyclopedia of Microbiology , 2nd ed., vol. 4. Academic Press, Inc., San Diego, Calif.
56. Tocilj, A.,, F. Schlunzen,, D. Janell,, M. Gluhmann,, H. A. S. Hansen,, J. Harms,, A. Bashan,, H. Bartels,, I. Agmon,, F. Franceschi,, and A. Yonath. 1999. The small ribosomal subunit from Thermus thermophilus at 4.5 Å resolution: Patter fittings and identification of a functional site. Proc. Natl. Acad. Sci. USA 96: 14252 14257.
57. Westhof, E.,, and N. Leontis. 2000. Atomic glimpses on a billion-year old molecular machine. Angew. Chem. Int. Ed. English 39: 1587 1591.
58. Yusupov, M. M.,, G. Z. Yusupova,, A. Baucom,, K. Lieberman,, T. N. Earnest,, J. H. D. Cate,, and H. F. Noller. 2001. Crystal structure of the ribosome at 5.5 Å resolution. Science 292: 883 902.
59. Soll, D.,, and U. L. RajBhandary (ed.). 1995. tRNA: Structure, Biosynthesis, and Function. ASM Press, Washington, D.C.
60. DeHaseth, P. L.,, M. L. Zupancic,, and M. T. Record. 1998. RNA polymerase-promoter interactions: the coming and goings of RNA polymerase. J. Bacteriol. 180: 3019 3025.

Tables

Generic image for table
Table 1.1

Comparison of prokaryotic and eukaryotic cell organization a

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Generic image for table
Table 1.2

Functions of animal eukaryotic organelles a

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1
Generic image for table
Table 1.3

Functions of prokaryotic structures a

Citation: Mascaretti O. 2003. Structure and Function of Prokaryotic and Eukaryotic Cells, p 1-32. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error