1887

Chapter 12 : Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap12-2.gif

Abstract:

The expanding problem of resistance to β-lactam antibiotics and β-lactam inhibitors of β-lactamases illustrates the genetic adaptability of bacterial populations. The evolution of bacterial resistance to the action of these drugs occurred over a relatively short period. Bacteria become resistant to antibiotics and β-lactam compounds acting as β-lactamase inhibitors either through mutations or by acquisition of specific resistance genes from other bacteria. Global antibacterial resistance is an increasing public health problem. The pharmaceutical industries are reacting to the problem by discovering novel antibacterial agents to overcome the emergence of bacterial resistance to antibiotics and β-lactamase inhibitors. A section of the chapter summarizes the status of the development of structural modifications of existing groups and subgroups of antibacterial agents to make them less susceptible to degradation by β-lactamases, to increase penetrability through the outer membrane of gram-negative bacteria, or to have an increased affinity for mutated penicillin-binding proteins (PBPs). The search for new anti-methicillin-resistant Staphylococcus aureus (MRSA)-lactam antibiotics appears to be focused on developing agents that inhibit PBP2a, which gives rise to methicillin resistance in staphylococci and penicillin-resistant pneumococci. The increase in β-lactam antibiotic resistance due to the production and rapid spread of resistance encoded by plasmids or transposons in pathogenic bacteria has made the enzymes an attractive target for drug development.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 12.1
Figure 12.1

Molecular organization of the approximately 50-kb mec region and its chromosomal location relative to fem factors and pur-nov-his. IS indicates IS431 elements flanking the tobramycin resistance plasmid pUB110. Tn554 is a transposon containing ermA, encoding inducible erythromycin resistance. Reprinted from H. F. Chambers, Clin. Microbiol. Rev. 10:781–791, with permission from the American Society for Microbiology

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.2
Figure 12.2

Sites of peptidoglycan precursor synthesis at which blocks occur in fem mutants. UDP-Mur, uridine diphosphomuramyl peptide precursors; NAG-NAM, N-acetylglucosamine-Nacetylmuramic acid disaccharide (not shown in figure).

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.3
Figure 12.3

Induction of β-lactamase synthesis in the C. freundii 382 010 mutant by β-Lactam antibiotics. Reprinted from P. Stapleton, K. Shannon, and I. Phillips, J. Antimicrob. Chemother. 36:483–496, 1995, with permission from the publisher.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.4
Figure 12.4

Hypothetical model for β-lactamase induction in gram-negative bacteria. BL, β-Lactam; PG, peptidoglycan; G, AmpG; R, repressor form of AmpR; A, activator form of AmpR; D, AmpD; E, AmpE. For details, see the text. Reprinted from P. M. Bennett and I. Chopra, Antimicrob. Agents Chemother. 37:153–159, 1993, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.5
Figure 12.5

Chemical structure of the cephalosporin BMS-247243.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.6
Figure 12.6

Chemical structure of the β-methylcarbapenem L-786,392 (synthesized at Merck) and illustration of the releasable-hapten hypothesis. Nuc, nucleophile that could be the hydroxyl group of the serine PBPs.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.7
Figure 12.7

Chemical structure of SM-17466.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.8
Figure 12.8

Structure 1a is the general chemical structure of trinems. Structure 1b is the chemical structure of sanfetrinem and the ester sanfetrinem cilexetil.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.9
Figure 12.9

Chemical structures of novel trinems synthesized at Sankyo Laboratories.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.10
Figure 12.10

Chemical structure of LB-10517.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.11
Figure 12.11

Chemical structure of BMS-180680.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.12
Figure 12.12

Chemical structure of a rhodanine synthesized at Johnson Pharmaceutical.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.13
Figure 12.13

Chemical structures of 3-substituted 7-(alkylidene) cephalosporin sulfones and 6-alkylidene-2′β-substituted penam sulfones.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.14
Figure 12.14

Chemical structure of compound 1 synthesized by Bitha et al. at Wyeth-Ayerst.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.15
Figure 12.15

Chemical structures of the 3S and 3R enantiomers of four α-amido trifluoromethylketones and racemic trifluoromethyl alcohols.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.16
Figure 12.16

Chemical structures of amino acid-derived hydroxamates synthesized by Walter et al. (1999).

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.17
Figure 12.17

Chemical structures of four derivatives of mercaptoacetic acid thiol ester.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.18
Figure 12.18

Chemical structures of some of the thioesters and thiols developed by the Merck group.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.19
Figure 12.19

General structure of thiols developed by M. Page and coworkers (1998). The chemical structures of two thiols synthesized at SmithKline Beecham are shown.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.20
Figure 12.20

Chemical structures of L-158,817, L-159,061, and L-159,906.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.21
Figure 12.21

Coordination environment of the zinc sites in the B. fragilis metallo-β-lactamase, showing the bridging water (Wat1) and the water coordinated to Zn2 (Wat2). Reprinted from S. D. B. Scrofani, J. Chung, J. J. A. Huntley, S. J. Benkovic, P. E. Wright, and H. J. Dyson, Biochemistry 38:14507–14514, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12.22
Figure 12.22

X-ray crystal structure of L-159,061 bound in the active site of the B. fragilis metallo-β-lactamase. A view of the active site is shown. Reprinted from J. H. Toney, P. M. Fitzgerald, N. Grover-Sharma, et al., Chem. Biol. 5:185–196, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap12
1. Bermudes, H.,, F. Jude,, E. B. Chaibi,, C. Arpin,, C. Bebear,, R. Labia,, and C. Quentin. 1999. Molecular characterization of TEM-59 (IRT-17), a novel inhibitor-resistant TEM-derived β- lactamase in a clinical isolate of Klebsiella oxytoca. Antimicrob. Agents Chemother. 43:16571661.
2. Kurokawa, H.,, T. Yagi,, N. Shibata,, K. Shibayama,, K. Kamachi,, and Y. Arakawa. 2000. A new SHV-derived extended-spectrum β-lactamase (SHV-24) that hydrolyzes ceftazidime through a single-amino-acid substitution (D179G) in the ω-loop. Antimicrob. Agents Chemother. 44:17251727.
3. Bradford, P. A. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933951.
4. Du Bois, S. K.,, M. S. Marriot,, and S. G. B. Aymes. 1995. TEM and SHV extended-spectrum β-lactamases: relationship between selection, structure and function. J. Antimicrob. Chemother. 35:722.
5. Jacoby, G. A. 1994. Genetics of extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13(Suppl. 1):211.
6. Jacoby, G. A. 1998. Epidemiology of extended-spectrum β-lactamases. Clin. Infect. Dis. 27:8183.
7. Jacoby, G. A.,, and A. A. Medeiros. 1991. More extended spectrum β-lactamases. Antimcrob. Agents Chemother. 35:16971704.
8. Knox, J. R. 1995. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. 39:25932601.
9. Matagne, A.,, and J. M. Frère. 1995. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A β-lactamases. Biochim. Biophys. Acta 1246:109127.
10. Matagne, A.,, J. Lamotte-Brasseur,, and J. M. Frère. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581598.
11. Patzkill, T. 1998. β-Lactamases are changing their activity spectrums. ASM News 64:9095.
12. Philippon, A.,, G. Arlet,, and P. H. Lagrange. 1994. Origin and impact of plasmid-mediated extended-spectrum beta-lactamases. Eur. J. Clin. Microbiol. Infect. Dis. 13(Suppl. 1):1729.
13. Philippon, A.,, R. Labia,, and G. Jacoby. 1989. Extended-spectrum β-lactamases. Antimicrob. Agents Chemother. 33:11311136.
14. Brown, R. P. A.,, R. T. Aplin,, and C. J. Schofield. 1996. Inhibition of TEM-2 β-lactamase from Escherichia coli by clavulanic acid: observation of intermediates by electrospray ionization mass spectrometry. Biochemistry 35:1242112432.
15. Bush, K.,, and G. Jacoby. 1997. Nomenclature of TEM β-lactamases. J. Antimicrob. Chemother. 39:13.
16. Goussard, S.,, and P. Courvalin. 1999. Updated sequence information for TEM β-lactamase genes. Antimicrob. Agents Chemother. 43:367370.
17. Maveyraud, L.,, I. Massova,, C. Birck,, K. Miyashita,, J. P. Samama,, and S. Mobashery. 1996. Crystal structuire of 6α-(hydroxymethyl)penicillanate complexed to the TEM-1 β- lactamase from Escherichia coli: evidence on the mechanism of action of a novel inhibitor designed by a computer-aided process. J. Am. Chem. Soc. 118:74357440.
18. Ness, S.,, R. Martin,, A. M. Kindler,, M. Paetzel,, M. Gold,, S. E. Jensen,, J. B. Jones,, and N. C. J. Strynadka. 2000. Structure-based design guides the improved efficacy of deacylation transition state analogue inhibitors of TEM-1 β-lactamase. Biochemistry 39:53125321.
19. Strynadka, N. C. J.,, H. Adachi,, S. E. Jensen,, K. Johns,, A. Sielecki,, C. Betzel,, K. Sutoh,, and M. N. G. James. 1992. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359:700705.
20. Strynadka, N. C. J.,, R. Martin,, S. E. Jensen,, M. Gold,, and J. B. Jones. 1996. Structure-based design of a potent transition state analogue for TEM-1 β-lactamase. Nat. Struct. Biol. 3:688695.
21. Blazquez, J.,, M. R. Baquero,, R. Canton,, I. Alos,, and F. Baquero. 1993. Characterization of a new TEM-type β-lactamase resistant to clavulanate, sulbactam, and tazobactam in a clinical isolate of Escherichia coli. Antimicrob. Agents Chemother. 37:20592063.
22. Chaibi, E. B.,, D. Sirot,, G. Paul,, and R. Labia. 1999. Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother. 43:447458.
23. Nicolas-Chanoine, M. H. 1997. Inhibitor-resistant β-lactamases. J. Antimicrob. Chemother. 40:13.
24. Du Bois, S. K.,, M. S. Marriot,, and S. G. B. Amyes. 1995. TEM- and SHV-derived extended-spectrum β-lactamases: relationship between selection, structure and function. J. Antimicrob. Chemother. 35:722.
25. Heritage, J.,, F. H. M’Zali,, D. Gascoyne-Binzi,, and P. M. Hawkey. 1999. Evolution and spread of SHV extended-spectrum β-lactamases in gram-negative bacteria. J. Antimicrob. Chemother. 44:309318.
26. Kuzin, A. P.,, M. Nukaga,, Y. Nukaga,, A. M. Hujer,, R. A. Bonomo,, and J. R. Knox. 1999. Structure of SHV-1 β-lactamase. Biochemistry 38:57205727.
27. Randegger, C. C.,, A. Keller,, M. Irla,, A. Wada,, and H. Hächler. 2000. Contribution of natural amino acid substitutions in SHV extended-spectrum β-lactamases to resistance against various β-lactams. Antimicrob. Agents Chemother. 44:27592763.
28. Tzouvelekis, L. S.,, and R. A. Bonomo. 1999. SHV-type β-lactamases. Curr. Pharm. Des. 5:847864.
29. Golemi, D.,, L. Maveyraud,, S. Vakulenko,, S. Tranier,, A. Ishiwata,, L. P. Kotra,, J. P. Samama,, and S. Mobashery. 2000. The first structural and mechanistic insights for class D β-lactamases: evidence for a catalytic process for turnover of β-lactam antibiotics. J. Am. Chem. Soc. 122:61326133.
30. Maveyraud, L.,, D. Golemi,, L. P. Kotra,, S. Tranier,, S. Vakulenko,, S. Mobashery,, and J. P. Samama. 2000. Insights into class D β-lactamases are revealed by the crystal structure of the OXA 10 enzyme from Pseudomonas aeruginosa. Structure 8:12891298.
31. Naas, T.,, and P. Nordmann. 1999. OXA-type _-lactamases. Curr. Pharm. Des. 5:865879.
32. Paetzel, M.,, F. Danel,, L. de Castro,, S. C. Mosimann,, M. G. P. Page,, and N. C. J. Strynadka. 2000. Crystal structure of the class D β-lactamase OXA-10. Nat. Struct. Biol. 7:918925.
33. Georgopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob. Agents Chemother. 37:20452053.
34. Spratt, B. G. 1994. Resistance to antibiotics mediated by target alterations. Science 264:388393.
35. Archer, G. L.,, and D. M. Niemeyer. 1994. Origin and evolution of DNA associated with resistance to methicillin in staphylococci. Trends Microbiol. 2:343346.
36. Berger-Bächi, B. 1994. Expression of resistance to methicillin. Trends Microbiol. 2:389393.
37. Berger-Bächi, B., 1997. Resistance not mediated by β-lactamases (methicillin resistance), p. 158174. In K. B. Crossley, and G. L. Archer (ed.), The Staphylococci in Human Disease. Churchill Livingstone, Inc., New York, N.Y.
38. Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10:781791.
39. de Lencastre, H.,, L. M. Boudewijn de Jonge,, P. R. Matthews,, and A. Tomasz. 1994. Molecular aspects of methicillin resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 33:724.
40. Drew, R. H.,, J. R. Perfect,, L. Srinath,, E. Kurkimilis,, M. Dowzicky,, and G. H. Talbot. 2000. Treatment of methicillin-resistant Staphylococcus aureus infections with quinupristindalfopristin in patients intolerant of or failing prior therapy. J. Antimicrob. Chemother. 46:775784.
41. Ehlert, K. 1999. Methicillin-resistance in Staphylococcus aureus—molecular basis, novel targets and antibiotic therapy. Curr. Pharm. Des. 5:4555.
42. Grubb, W. B. 1998. Genetics of MRSA. Rev. Med. Microbiol. 9:153162.
43. Hackbarth, C. J.,, and H. F. Chambers. 1989. Methicillin-resistant staphylococci: genetics and mechanisms of resistance. Antimicrob. Agents Chemother. 33:991994.
44. Komatsuzawa, H.,, K. Ohta,, H. Labischinski,, M. Sugal,, and H. Suginaka. 1999. Characterization of fmtA, a gene that modulates the expression of methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 43:21212125.
45. Labischinski, H.,, K. Ehlert,, and B. Berger-Bächi. 1998. The targeting of factors necessary for expression of methicillin resistance in staphylococci. J. Antimicrob. Chemother. 41:581584.
46. Lu, W. P.,, Y. Sun,, M. D. Bauer,, S. Paule,, P. M. Koenings,, and W. G. Kraft. 1999. Penicillin-binding protein 2a from methicillin- resistant Staphylococcus aureus: kinetic characterization of its interactions with β-lactams using electrospray mass spectrometry. Biochemistry 38:65376546.
47. Ubukata, K.,, R. Nonoguchi,, R. Matsuhashi,, and M. Konno. 1989. Expression and inducibility in Staphylococcus aureus of the mecA gene, which encodes a methicillin-resistant S. aureus specific penicillin-binding protein. J. Bacteriol. 171:28822885.
48. Bennett, P. M.,, and I. Chopra. 1993. Molecular basis of β-lactamase induction in bacteria. Antimicrob. Agents Chemother. 37:153158.
49. Dietz, H.,, D. Pfeifle,, and B. Wiedemann. 1996. Location of Nacetylmuramyl- L-alanyl-D-glutamyl-mesodiaminopimelic acid, presumed signal molecule for β-lactamase induction in the bacterial cell. Antimicrob. Agents Chemother. 40:21732177.
50. Hanson, N. D.,, and C. C. Sanders. 1999. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Des. 5:881894.
51. Jacobs, C.,, J. M. Frère,, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible β-lactam resistance in Gram-negative bacteria. Cell 88:823832.
52. Normark, S.,, E. Bartowsky,, J. Erickson,, C. Jacobs,, F. Lindberg,, S. Lindquist,, K. Weston-Hafer,, and M. Wikström,. 1994. Mechamism of chromosomal β-lactamase induction in Gram-negative bacteria, p. 485503. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
53. Philippon, A.,, G. Arlet,, and G. A. Jacoby. 2002, Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46:111.
54. Powers, R. A.,, and B. K. Shoichet. 2002. Structure-based approach for binding site identification on AmpC β-lactamase. J. Med. Chem. 45:32223234.
55. Sanders, C. C. 1987. Chromosomal cephalosporinases responsible for multiple resistance to newer β-lactam antibiotics. Annu. Rev. Microbiol. 41:573593.
56. Sanders, C. C.,, P. A. Bradford,, A. T. Ehrhardt,, K. Bush,, K. D. Young,, T. A. Henderson,, and W. E. Sanders. 1997. Penicillin-binding proteins and induction of AmpC β-lactamase. Antimicrob. Agents Chemother. 41:20132015.
57. Stapleton, P.,, K. Shannon,, and I. Phillips. 1995. The ability of β-lactam antibiotics to select mutants with derepressed β-lactamase synthesis from Citrobacter freundii. J. Antimicrob. Chemother. 36:483496.
58. Weber, D. A.,, and C. C. Sanders. 1990. Diverse potential of β- lactamase inhibitors to induce class I enzymes. Antimicrob. Agents Chemother. 34:156158.
59. Wiedemann, B.,, H. Dietz,, and D. Pfeifle. 1998. Induction of β- lactamase in Enterobacter cloacae. Clin. Infect. Dis. 27(Suppl. 1):S42S47.
60. D’Andrea, S. V. D.,, D. Bonner,, J. J. Bronson,, J. Clark,, K. Denbleyker,, J. Fung-Tomc,, S. E. Hoeft,, T. W. Hudyma,, J. D. Matiskella,, R. F. Miller,, P. F. Misco,, M. Pucci,, R. Sterzycki,, Y. Tsai,, Y. Ueda,, J. A. Wichtowski,, J. Singh,, T. P. Kissick,, J. T. North,, A. Pullockaran,, M. Humora,, B. Boyhan,, T. Vu,, A. Fritz,, J. Heikes,, R. Fox,, J. D. Godfrey,, R. Perrone,, M. Kaplan,, D. Kronenthal,, and R. H. Mueller. 2000. Synthesis and anti- MRSA activity of novel cephalosporin derivatives. Tetrahedron 56:56875698.
61. Humphrey, G. R.,, R. A. Miller,, P. J. Pye,, K. Rossen,, R. A. Reamer,, A. Maliakal,, S. S. Ceglia,, E. J. J. Grabowski,, R. P. Volante,, and P. J. Reider. 1999. Efficient and practical synthesis of a potent anti MRSA β-methylcarbapenem containing a releasable side chain. J. Am. Chem. Soc. 121:1126111266.
62. Jensen, M. S.,, C. Yang,, Y. Hsiao,, N. Rivera,, K. M. Welles,, J. Y. L. Chung,, N. Yasuda,, D. L. Hughes,, and P. J. Reider. 2000. Synthesis of an anti-methicillin resistant Staphylococcus aureus (MRSA) carbapenem via stannatrane-mediated Stille coupling. Org. Lett. 2:10811084.
63. Rosen, H.,, R. Hadju,, L. Silver,, H. Kropp,, K. Dorso,, J. Kohler,, J. G. Sundelof,, J. Huber,, G. G. Hammond,, J. J. Jackson,, C. J. Gill,, R. Thompson,, B. A. Pelak,, J. H. Epstein-Toney,, G. Lankas,, R. R. Wilkening,, K. J. Wildonger,, T. A. Blizzard,, F. P. DiNinno,, R. W. Ratcliffe,, J. V. Heck,, J. W. Kozarich,, and M. L. Hammond. 1999. Reduced immunotoxicity and preservation of antibacterial activity in a releasable side-chain carbapenem antibiotic. Science 283:703706.
64. Singh, J.,, O. K. Kim,, T. P. Kissick,, K. J. Natalie,, B. Zhang,, G. A. Crispin,, D. M. Springer,, J. A. Wichtowski,, Y. Zhang,, J. Goodrich,, Y. Ueda,, B. Y. Luh,, B. D. Burke,, M. Brown,, A. P. Dutka,, B. Zheng,, D. M. Hsieh,, M. J. Humora,, J. T. North,, A. J. Pullockaran,, J. Livshits,, S. Swaminathan,, Z. Gao,, P. Schierling,, P. Ermann,, R. K. Perrone,, M. C. Lai,, J. Z. Gougoutas,, J. D. DiMarco,, J. J. Bronson,, J. E. Heikes,, J. A. Grosso,, D. R. Kronenthal,, T. W. Denzel,, and R. H. Mueller. 2000. A practical synthesis of an anti-methicillin-resistant Staphylococcus aureus cephalosporin BMS-247243. Organic Process Res. Dev. 4:488497.
65. Babini, G. S.,, M. Yuan,, and D. M. Livermore. 1998. Interactions of β-lactamases with sanfetrinem (GV 104326) compared to those with imipenem and with oral β-lactams. Antimicrob. Agents Chemother. 42:11681175.
66. Biondi, S.,, G. Gaviraghi,, and T. Rossi. 1996. Synthesis and biological activity of novel tricyclic _-lactams. Bioorg. Med. Chem. Lett. 6:525528.
67. Biondi, S.,, A. Pecunioso,, F. Busi,, S. A. Contini,, D. Donati,, M. Maffeis,, D. A. Pizzi,, L. Rossi,, T. Rossi,, and F. M. Sabbatini. 2000. Highly diastereoselective synthesis of 4-N-methylformamidino trinem (GV 129606), a potent antibacterial agent. Tetrahedron 56:56495655.
68. Hanessian, S.,, and B. Reddy. 1999. Total synthesis of tricyclic β-lactams. Tetrahedron 55:34273443.
69. Iso, Y.,, and Y. Nishitani. 1998. Stereocontrolled synthesis of 1β-aminoalkylcarbapenems and tricyclic carbapenems (trinems). Heterocycles 48:22872308.
70. Kanno, O.,, and I. Kawamoto. 2000. Stereoselective synthesis of novel anti-MRSA tricyclic carbapenems (trinems). Tetrahedron 56:56395648.
71. Kline, T.,, M. Fromhold,, T. E. McKennon,, S. Cai,, J. Treiberg,, N. Ilhe,, D. Sherman,, W. Schan,, M. J. Hickey,, P. Warrener,, P. R. Witte,, L. L. Brody,, L. Goltry,, L. M. Barker,, S. U. Anderson,, S. K. Tanaka,, R. M. Shawar,, L. Y. Nguyen,, M. Langhorne,, A. Bigelow,, L. Embuscado,, and E. Naeemi. 2000. Antimicrobial effects of novel siderophores linked to β-lactam antibiotics. Bioorg. Med. Chem. 8:7393.
72. Roosenberg, J. M.,, Y. M. Lin,, Y. Lu,, and M. J. Miller. 2000. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem. 7:159197.
73. Fung-Tomc, J.,, K. Bush,, B. Minassian,, B. Kolek,, R. Flamm,, E. Gradelski,, and D. Bonner. 1997. Antibacterial activity of BMS- 180680, a new catechol-containing monobactam. Antimicrob. Agents Chemother. 41:10101016.
74. Song, H. K.,, J. I. Oh,, M. Y. Kim,, Y. Z. Kim,, I. C. Kim,, and J. H. Kwak. 1996. In-vitro and in-vivo antibacterial activity of LB10517, a novel catechol-substituted cephalosporin with a broad antibacterial spectrum. J. Antimicrob. Chemother. 39:711726.
75. Ghosh, A.,, M. Ghosh,, C. Niu,, F. Malouin,, U. Moellmann,, and M. J. Miller. 1996. Iron transport-mediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chem. Biol. 3:10111019.
76. White, D. 2000. The Physiology and Biochemistry of Prokaryotes, 2nd ed., p. 22. Oxford University Press, New York, N.Y. An explanation of uptake of iron siderophores.
77. Beauve, C.,, M. Bouchet,, R. Touillaux,, J. Fastrez,, and J. Marchand-Brynaert. 1999. Synthesis, reactivity and biochemical evaluation of 1,3-substituted azetidin-2-ones as enzyme inhibitors. Tetrahedron 55:1330113320.
78. Bitha, P.,, Z. Li,, G. D. Francisco,, B. A. Rasmussen,, and Y. I. Lin. 1999. 6-(1-Hydroxyalkylpenam sulfone derivatives as inhibitors of class A and class C β-lactamases. I. Bioorg. Med. Chem. Lett. 9:991996.
79. Bitha, P.,, Z. Li,, G. D. Francisco,, Y. Yang,, P. J. Petersen,, E. Lenoy,, and Y. I. Lin. 1999. 6-(1-Hydroxyalkyl)penam sulfone derivatives as inhibitors of class A and class C β-lactamases. I. Bioorg. Med. Chem. Lett. 9:9971002.
80. Buynak, J. D.,, V. R. Doppalapudi,, A. S. Rao,, S. D. Nidamarthy,, and G. Adam. 2000. The synthesis and evaluation of 2-substituted-7-(alkylidene)cephalosporin sulfones as β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 10:847851.
81. Buynak, J. D.,, V. R. Doppalapudi,, M. Frotan,, R. Kumar,, and A. Chambers. 2000. Catalytic approaches to the synthesis of β- lactamase inhibitors. Tetrahedron 56:57095718.
82. Buynak, J. D.,, V. R. Doppalapudi,, and G. Adam. 2000. The synthesis and evaluation of 3-substituted-7- (alkylidene)cephalosporin sulfones as β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 10:853857.
83. Buynak, J. D.,, A. S. Rao,, V. R. Doppalapudi,, G. Adam,, P. J. Petersen,, and S. D. Nidamarthy. 1999. The synthesis and evaluation of 6-alkylidene-2"β-substituted penam sulfones as β- lactamase inhbiitors. Bioorg. Med. Chem. Lett. 9:19972002.
84. Grant, E. B.,, D. Guiadeen,, E. Z. Baum,, B. D. Foleno,, H. Jin,, D. A. Montenegro,, E. A. Nelson,, K. Bush,, and D. J. Hlasta. 2000. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 10:21792182.
85. Heinze-Krauss, I.,, P. Angehrn,, R. L. Charnas,, K. Gubernator,, E. M. Gutknecht,, C. Hubschwerlen,, M. Kania,, C. Oefner,, M. G. P. Page,, S. Sogabe,, J. L. Specklin,, and F. Winkler. 1998. Structure-based design of β-lactamase inhibitors. 1. Synthesis and evaluation of bridged monobactams. J. Med. Chem. 41:39613971.
86. Hubschwerlen, C.,, P. Angehrn,, K. Gubernator,, M. G. P. Page,, and J. L. Specklin. 1998. Structure-based design of β-lactamase inhibitors. 2. Synthesis and evaluation of bridged sulfactams and oxamaxins. J. Med. Chem. 41:39723975.
87. Mascaretti, O. A.,, G. O. Danelon,, E. L. Setti,, M. Laborde,, and E. G. Mata. 1999. Recent advances in the chemistry of β-lactam compounds as selected active-site serine β-lactamase inhibitors. Curr. Pharm. Des. 5:939953.
88. Walter, M. W.,, A. Felici,, M. Galleni,, R. P. Soto,, R. M. Adlington,, J. E. Baldwin,, J. M. Frère,, M. Gololobov,, and C. J. Schofield. 1996. Trifluoromethyl alcohol and ketone inhibitors of metallo-β-lactamases. Bioorganic Med. Chem. Lett. 6: 24552458.
89. Walter, M. W.,, M. Hernandez Valladares,, R. M. Adlington,, G. Amicosante,, J. E. Baldwin,, J. M. Frère,, M. Galleni,, G. M. Rossolini,, and C. J. Schofield. 1999. Hydroxamate inhibitors of Aeromonas hydrophila AE036 metallo-β-lactamase. Bioorg. Chem. 27:3541.
90. Concha, N. O.,, C. A. Janson,, P. Rowling,, C. A. Cheever,, B. P. Clarke,, C. Lewis,, M. Galeni,, J. M. Frère,, D. J. Payne,, J. H. Bateson,, and S. S. Abdel-Meguid. 2000. Crystal structue of the IMP-1 metallo-β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent broad-spectrum inhibitor. Biochemistry 39:42884298.
91. Goto, M.,, T. Takahashi,, F. Yamashita,, A. Koreeda,, H. Mori,, M. Ohta,, and Y. Arakawa. 1997. Inhibition of the metallo-β-lactamase produced from Serratia marcescens by thiol compounds. Biol. Pharm. Bull. 20:11361140.
92. Greenlee, M. L.,, J. B. Laub,, J. M. Balkovec,, M. L. Hammond,, G. G. Hammond,, D. L. Pompliano,, and J. H. Epstein-Toney. 1999. Synthesis and SAR of thioester and thiol inhibitors of IMP-1 metallo-β-lactamase. Biorg. Med. Chem. Lett. 9: 25492554.
93. Huntley, J. J. A.,, S. D. B. Scrofani,, M. J. Osborne,, P. E. Wright,, and H. J. Dyson. 2000. Dynamics of the metallo-β-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor. Biochemistry 39:1335613364.
94. Page, M. I.,, and A. P. Laws. 1998. The mechanism of catalysis and the inhibition of β-lactamases. J. Chem. Soc. Chem. Commun. 1998:16091617.
95. Payne, D. J.,, J. H. Bateson,, B. C. Gasson,, D. Proctor,, T. Khushi,, T. H. Farmer,, D. A. Tolson,, D. Bell,, P. W. Skett,, A. C. Marshall,, R. Reid,, L. Ghosez,, Y. Combret,, and J. Marchand- Brynaert. 1997. Inhibition of metallo-β-lactamases by a series of mercaptoacetic acid thiol ester derivatives. Antimicrob. Agents Chemother. 41:135140.
96. Payne, D. J.,, J. H. Bateson,, B.C. Gasson,, T. Khushi,, D. Proctor,, S. C. Pearson,, and R. Reid. 1997. Inhibition of metallo-β- lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. FEMS Microbiol. Lett. 157: 171175.
97. Scrofani, S. D. B.,, J. Chung,, J. J. A. Huntley,, S. J. Benkovic,, P. E. Wright,, and H. J. Dyson. 1999. NMR characterization of the metallo-β-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop. Biochemistry 38:1450714514.
98. Toney, J. H.,, P. M. Fitzgerald,, N. Grover-Sharma,, S. H. Olson,, W. J. May,, J. G. Sundelof,, D. E. Vanderwall,, K. A. Cleary,, S. K. Grant,, J. K. Wu,, J. W. Kozarich,, D. L. Pompliano,, and G. G. Hammond. 1998. Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-β- lactamase. Chem. Biol. 5:185196.
99. Toney, J. H.,, K. A. Cleary,, G. G. Hammond,, X. Yuan,, W. J. May,, S. M. Hutchins,, W. T. Ashton,, and D. E. Vanderwall. 1999. Structure-activity relationships of biphenyl tetrazoles as metallo-β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 9:27412746.

Tables

Generic image for table
Table 12.1

Dates when β-lactam antibiotics and the combinations of a β-lactam antibiotic with a β-lactamase inhibitor were approved for use in the United States

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Generic image for table
Table 12.2

Amino acid substitutions in the TEM ESBLs and inhibitor-resistant β-lactamases a

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Generic image for table
Table 12.3

Amino acid substitutions in the SHV ESBLs and IRT β-lactamases a

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Generic image for table
Table 12.4

Amino acid substitution in the OXA extended-spectrum β-lactamases a

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Generic image for table
Table 12.5

Antibacterial activity of trinem derivatives and vancomycin a

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12
Generic image for table
Table 12.6

Inhibition of representative serine β-lactamases by compounds 1a to 1d and 2 relative to tazobactam a

Citation: Mascaretti O. 2003. Bacterial Resistance to β-Lactam Antibiotics and β-Lactam Inhibitors of β-Lactamases, p 171-198. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error