1887

Chapter 14 : Inhibitors of Peptidoglycan Biosynthesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Inhibitors of Peptidoglycan Biosynthesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap14-2.gif

Abstract:

The action of vancomycin and teicoplanin depends on their ability to bind specifically to the terminal D-alanyl-D-alanine group on the peptide side chain of the membrane-bound intermediates in peptidoglycan synthesis. Bacitracin was isolated in 1943 from a strain of a Bacillus sp., which was originally classified as Bacillus subtilis but now is known as Bacillus licheniformis. Binding of bacitracin prevents the enzymatic dephosphorylation of the lipid carrier molecule to its monophosphate form, a reaction which occurs during the second stage of peptidoglycan biosynthesis. Bacitracin is highly active against most gram-positive bacteria, particularly Staphylococcus aureus and Streptococcus pyogenes. Vancomycin binds reversibly to the D-Ala–D-Ala dipeptide segment of the muramyl pentapeptide present in peptidoglycan monomers which are exposed at the external cell surface of the cytoplasmic membrane. The dimeric structure of vancomycin is held together by four hydrogen bonds between the two amide backbones. Dimerization results in an enhanced antibacterial activity of vancomycin and other glycopeptides through cooperative binding effects. Vancomycin is the antibiotic of choice for serious infections caused by methicillinresistant S. aureus (MRSA) and coagulase-negative staphylococci, including methicillinresistant S. epidermidis. The development of glycopeptide antibiotics with activity against vancomycin- and teicoplanin-resistant organisms is of utmost importance because of the recent emergence of low-level vancomycin resistance in S. aureus and the prevelance of vancomycin-resistant enterococci (VRE) in immunocompromised patients.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 14.1
Figure 14.1

Schematic representation of the reactions at the cytoplasmic membrane during peptidoglycan synthesis in S. aureus. The sites of inhibition by bacitracin and the glycopeptides (vancomycin and teicoplanin) are indicated by large hollow arrows.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.3
Figure 14.3

Chemical structures of vancomycin and of five teicoplanins.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.2
Figure 14.2

Chemical structure of bacitracin A.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.4
Figure 14.4

Chemical representation of the 1:1 complex between vancomycin and the dipeptide D-Ala–D-Ala from the muramyl pentapeptide pyrophosphoryl undecaprenol (lipid II).

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.5
Figure 14.5

Reaction catalyzed by the transglycosylases at the outer surface of the cytoplasmic membrane. Reprinted from R. C. Goldman and D. Gange, Curr. Med. Chem. 7:801–820, 2000, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.6
Figure 14.6

The hydrogen-bonding network in the vancomycin dimer. The peptide backbones of two molecules of vancomycin dimerize, forming four hydrogen bonds. In the structure shown in the figure, two units of the D-Ala–D-Ala ligand dock in the two binding pockets of the dimer through five hydrogen bonds each. Reprinted from D. A. Beauregard, A. J. Maguire, D. H. Williams, and P. E. Reynolds, Antimicrob. Agents Chemother. 41:2418–2423, 1997, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.7
Figure 14.7

Schematic representation of the genes required for a high level of resistance to vancomycin in the VanA phenotype found within transposon Tn1546. The vanR, vanS, vanH, vanA, and vanX genes are essential for high-level resistance; the vanY and vanZ genes are nonessential. ORF1 and ORF2 encode proteins required for transposition. Reprinted from M. Arthur and P. Courvalin, Antimicrob. Agents Chemother. 37:1563–1571, 1993, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.9
Figure 14.9

Illustration of vancomycin interacting with the peptidoglycan termini of vancomycin-sensitive bacteria (a) and vancomycin-resistant bacteria of the VanA phenotype (b). Adapted from V. L. Healy, E. S. Park, and C. T. Walsh, Chem. Biol. 5:197–207, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.8
Figure 14.8

Pathway for the assembly of cytoplasmic peptidoglycan precursors. (a) Synthesis of UDP-muramyl pentapeptide in enterococci susceptible to glycopeptides. (b) Incorporation of D-lactate at the C-terminal position of peptidoglycan precursors of enterococci resistant to glycopeptides. There is an amide functional group in panel a and an ester functionality in the equivalent position in panel b.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.10
Figure 14.10

Illustration of vancomycin interacting with the peptidoglycan termini of vancomycin-sensitive bacteria (a) and mildly vancomycin-resistant bacteria of the VanC type (b). Adapted from V. L. Healy, E. S. Park, and C. T. Walsh, Chem. Biol. 5:197–207, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.11
Figure 14.11

Figure 14.11 Chemical structures of vancomycin, LY264826, and its semisynthetic derivative LY333328. Reprinted from T. I. Nicas et al., Antimicrob. Agents Chemother. 39:2585–2597, 1995, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14.12
Figure 14.12

Chemical structures of teicoplanin and the related semisynthetic compounds MDL62,476 and MDL63,246. Commercial teicoplanin is a complex of five structurally related natural products that differ in the fatty acid acylating the glucosamine sugar. The most abundant component is shown. Reprinted from T. I. Nicas, M. L. Zeckel, and D. K. Braun, Trends Microbiol. 5:240–250, 1997, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap14
1. Kucers, A.,, S. M. Crowe,, M. L. Grayson,, and J. F. Hoy. 1997. The Use of Antibiotics, 5th ed., p. 542543. Butterworth- Heinemann, Oxford, United Kingdom.
2. Cooper, M. A.,, M. T. Fiorini,, C. Abell,, and D. H. Williams. 2000. Binding of vancomycin group antibiotics to D-alanine and D-lactate presenting self-assembled monolayers. Bioorg. Med. Chem. 8:26092616.
3. Kaplan, J.,, B. D. Korty,, P. H. Axelsen,, and P. J. Loll. 2001. The role of sugar residues in molecular recognition by vancomycin. J. Med. Chem. 44:18371840.
4. Nicolau, K. C.,, C. N. C. Body,, S. Bräse,, and N. Winssinger. 1999. Chemistry, biology, and medicine of the glycopeptides antibiotics. Angew. Chem. Int. Ed. 38:20962152.
5. Williams, D.,, and B. Bardsley. 1999. The vancomycin group of antibiotics and the fight against resistant bacteria. Angew. Chem. Int. Ed. 38:11721193.
6. Hunt, A. H.,, R. M. Molloy,, J. L. Occolowitz,, G. G. Marconi,, and M. Debono. 1984. Structure of the major glycopeptide of the teicoplanin complex. J. Am. Chem. Soc. 106:48914895.
7. Nagarajan, R. 1991. Antibacterial activities and modes of action of vancomycin and related glycopeptides. Antimicrob. Agents Chemother. 35:605609.
8. Beauregard, D. A.,, A. J. Maguire,, D. H. Williams,, and P. E. Reynolds. 1997. Semiquantitation of cooperativity in binding of vancomycin-group antibiotics to vancomycin-susceptible and -resistant organisms. Antimicrob. Agents Chemother. 41:24182423.
9. Groves, P.,, M. S. Searle,, J. P. Waltho,, and D. H. Williams. 1995. Asymmetry in the structure of glycopeptide antibiotic dimers: NMR studies of the ristocetin A complex with a bacterial cell wall analogue. J. Am. Chem. Soc. 117:79587964.
10. Loll, P. J.,, A. E. Bevivino,, B. D. Korty,, and P. H. Axelsen. 1997. Simultaneous recognition of a carboxylate-containing ligand and an intramolecular surrogate ligand in the crystal structure of an asymmetric vancomycin dimmer. J. Am. Chem. Soc. 119:15161522.
11. Loll, P. J.,, R. Miller,, C. M. Weeks,, and P. H. Axelsen. 1998. A ligand-mediated dimerization mode for vancomycin. Chem. Biol. 5:293298.
12. Schäfer, M.,, T. R. Schneider,, and G. M. Sheldrick. 1996. Crystal structure of vancomycin. Structure 4:15091515.
13. Waltho, J. P.,, and D. H. Williams. 1989. Aspects of molecular recognition: solvent exclusion and dimerization of the antibiotic ristocetin when bound to a model bacterial cell-wall precursor. J. Am. Chem. Soc. 111:24752480.
14. Aráoz, R.,, E. Anhalt,, L. René,, M.-A. Badet-Denisot,, P. Courvalin,, and B. Badet. 2000. Mechanism-based inactivation of VanX, a D-alanyl-D-alanine dipeptidase necessary for vancomycin resistance. Biochemistry 39:1597115979.
15. Arias, C. A.,, P. Courvalin,, and P. E. Reynolds. 2000. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 44:16601666.
16. Arthur, M.,, and P. Courvalin. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37:15631571.
17. Arthur, M.,, F. Depardieu,, L. Cabanié,, P. Reynolds,, and P. Courvalin. 1998. Requirement of the VanY and VanX D,Dpeptidases for glycopeptide resistance in Enterococci. Mol. Microbiol. 30:819830.
18. Arthur, M.,, C. Molinas,, T. D. H. Bugg,, G. D. Wright,, C. T. Walsh,, and P. Courvalin. 1992. Evidence for in vivo incorporation of D-lactate into peptidoglycan precursors of vancomycin resistant enterococci. Antimicrob. Agents Chemother. 36: 867869.
19. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
20. Arthur, M.,, and R. Quintiliani, Jr. 2001. Regulation of VanAand VanB-type glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 45:375381.
21. Arthur, M.,, P. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4:401407.
22. Baptista, M.,, F. Depardieu,, P. Reynolds,, P. Courvalin,, and M. Arthur. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol. Microbiol. 25: 93105.
23. Baptista, M.,, P. Rodrigues,, F. Depardieu,, P. Courvalin,, and M. Arthur. 1999. Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol. Microbiol. 32:1738.
24. Boyce, J. M.,, S. M. Opal,, J. W. Chow,, M. J. Zervos,, G. Potter- Bynoe,, C. E. Sherman,, R. L. C. Romulo,, S. Fortna,, and A. A. Medeiros. 1994. Outbreak of multidrug-resistant Enterococcus faecium with transferable vanB class vancomycin resistance. J. Clin. Microbiol. 32:11481153.
25. Bugg, T. D. H.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin,, and C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:1040810415.
26. Casadewall, B.,, and P. Courvalin. 1999. Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 181:36443648.
27. Cetinkaya, Y.,, P. Falk,, and C. G. Mayhall. 2000. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13:686707.
28. Cooper, M. A.,, and D. H. Williams. 1999. Binding of glycopeptides antibiotics to a model of a vancomycin-resistant bacterium. Chem. Biol. 6:891899.
29. de Jonge, B. L. M.,, S. Handwerger,, and D. Gage. 1996. Altered peptidoglycan composition in vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 40:863869.
30. Evers, S.,, and P. Courvalin. 1996. Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V585. J. Bacteriol . 178:13021309.
31. Fan, C.,, P. C. Moews,, C. T. Walsh,, and J. R. Knox. 1994. Vancomycin resistance: structure of D-alanine-D-alanine ligase at 2.3 Å resolution. Science 266:439443.
32. Fines, M.,, B. Perichon,, P. Reynolds,, D. F. Sahm,, and P. Courvalin. 1999. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob. Agents Chemother. 43:21612164.
33. French, G. L. 1998. Enterococci and vancomycin resistance. Clin. Infect. Dis. 27(Suppl. 1):S75S83.
34. Geisel, R.,, F. J. Schmitz,, L. Thomas,, G. Berns,, O. Zetsche,, B. Ulrich,, A. C. Fluit,, H. Labischinsky,, and W. Witte. 1999. Emergence of heterogeneous intermediate vancomycin resistance in Staphylococcus aureus isolates in the Düsseldorf area. J. Antimicrob. Chemother. 43:846848.
35. Hakenbeck, R., 1994. Resistance to glycopeptide antibiotics, p. 535545. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
36. Healy, V. L.,, L. S. Mullins,, X. Li,, S. E. Hall,, F. M. Raushel,, and C. T. Walsh. 2000. D-Ala-D-X ligases: evaluation of D-alanyl phosphate intermediate by MIX, PIX and rapid quench studies. Chem. Biol. 7:505514.
37. Healy, V. L.,, I. S. Park,, and C. T. Walsh. 1998. Active-site mutants of the VanC2 D-alanyl-D-serine ligase, characteristic of one vancomycin-resistant bacterial phenotype, reverts towards wild-type D-alanyl-D-alanine ligase. Chem. Biol. 5:197207.
38. Lessard, I. A. D.,, and C. T. Walsh. 1999. Mutational analysis of active-site residues of the enterococcal D-Ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-Ala-D-Ala ligase and D-Ala-D-Ala carboxypeptidase VanY. Chem. Biol. 6:177187.
39. Palepou, M. F. I.,, A. M. Adebiyi,, C. H. Tremlett,, L. B. Jensen,, and N. Woodford. 1998. Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci. J. Antimicrob. Chemother. 42:605612.
40. Park, I. S.,, C. H. Lin,, and C. T. Walsh. 1996. Gain of D-alanyl- D-lactate or D-lactyl-D-alanine synthetase activities in three active-site mutants of the Escherichia coli D-alanyl-D-alanine ligase B. Biochemistry 34:1046410471.
41. Sahm, D. F.,, L. Free,, and S. Handwerger. 1995. Inducible and constitutive expression of vanC1-encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob. Agents Chemother. 39:14801484.
42. Shlaes, D. M.,, and L. B. Rice. 1994. Bacterial resistance to the cyclic glycopeptides. Trends Microbiol. 2:383388.
43. Walsh, C. T.,, S. L. Fisher,, I. S. Park,, M. Prahalad,, and Z. Wu. 1996. Bacterial resistance to vancomycin: five genes and one missing hydrogen bond tell the story. Chem. Biol. 3:2128.
44. Woodford, N.,, A. P. Johnson,, D. Morrison,, and D. C. E. Speller. 1995. Current perspectives on glycopeptide resistance. Clin. Microbiol. Rev. 8:585615.
45. Wright, G. D.,, and C. T. Walsh. 1992. D-Alanyl-D-alanine ligases and the molecular mechanism of vancomycin resistance. Acc. Chem. Res. 25:468473.
46. Kucers, A.,, S. M. Crowe,, M. L. Grayson,, and J. F. Hoy. 1997. The Use of Antibiotics , 5th ed., p. 762801. Butterworth- Heinemann, Oxford, United Kingdom.
47. Arthur, M.,, F. Depardieu,, P. Reynolds,, and P. Courvalin. 1999. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in enterococci. Antimicrob. Agents Chemother. 43:18751880.
48. Goldstein, B. P.,, G. Candiani,, T. M. Arain,, G. Romano,, I. Ciciliato,, M. Berti,, M. Abbondi,, R. Scotti,, M. Mainini,, F. Ripamonti,, A. Resconi,, and M. Denaro. 1995. Antimicrobial activity of MDL 63,246, a new semisynthetic glycopeptides antibiotic. Antimicrob. Agents Chemother. 39: 15801588.
49. Nicas, T. I.,, M. L. Zeckel,, and D. K. Braun. 1997. Beyond vancomycin: new therapies to meet the challenge of glycopeptides resistance. Trends Microbiol. 5:240250.
50. Schwalbe, R. S.,, A. C. McIntosh,, S. Qaiyumi,, J. A. Johnson,, R. J. Johnson,, K. M. Furness,, W. J. Holloway,, and L. Steele- Moore. 1996. In vitro activity of LY333328, an investigational glycopeptide antibiotic, against enterococci and staphylococci. Antimicrob. Agents Chemother. 40: 24162419.

Tables

Generic image for table
Table 14.1

Generic and common trade names of bacitracin, the preparations available, and manufacturers in the United States

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14
Generic image for table
Table 14.2

Phenotypic characteristics of glycopeptide-resistant enterococci a

Citation: Mascaretti O. 2003. Inhibitors of Peptidoglycan Biosynthesis, p 203-216. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error