1887

Chapter 18 : Inhibitors of the 50S Ribosomal Subunit

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Inhibitors of the 50S Ribosomal Subunit, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap18-2.gif

Abstract:

The macrolides are classified according to the number of atoms comprising the lactone ring in 12-, 14-, 15-, or 16-member macrolides, each of which has both chemical and biological differentiating characteristics. Target site modification has resulted in cross-resistance to the macrolides, lincosamides, and streptogramin B, the so-called MLSB phenotype. The natural macrolide antibiotics are isolated primarily from the genus Streptomyces. They are characterized by having antibacterial activity mostly against gram-positive bacteria. The macrolide antibiotics currently used in the United States are erythromycin and the semisynthetic derivatives of erythromycin A, i.e., clarithromycin, azithromycin, and dirithromycin. Constitutive resistance occurs when the methylating enzyme is produced constitutively, and inducible resistance occurs when the enzyme induction is effected by exposure of the organism to both 14-member ring and 15-member ring but not 16-member ring macrolides. The investigators conclude that the differences between the binding modes of macrolides, azalides, and ketolides reveal the contributions of the specific chemical modifications of the macrolides, and they explain the enhanced binding properties of the advanced compounds on this basis. The mode of action of the group B streptogramins is thought to be similar to that of 14-member ring macrolides, which sterically hinder the growth of the nascent peptide during early rounds of translation. Resistance to class B streptogramins takes place (i) by rRNA methylation catalyzed by a 23S rRNA methylase encoded in the erm genes, which also confers resistance to macrolides and lincosamides, or (ii) by an elimination of the hexadepsipeptide ring by specific lyases.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 18.1
Figure 18.1

Macrolide antibiotics subgrouped according to the size of the aglycon macrocyclic lactone ring. The 15-membered ring macrolides are named azalide. Taken from A. C. Bryskier and A. Denis, in W. Schönfeld and H. A. Kirst (ed.), Macrolide Antibiotics (Birkhaüser Verlag, Basel, Switzerland, 2002).

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.2
Figure 18.2

Chemical structure of erythromycin A.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.3
Figure 18.3

Decomposition of erythromycin A under acidic conditions generates erythromycin 8,9-anhydro- 6,9-hemiketal and erythromycin 6,9,9,12-spiroketal.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.4
Figure 18.4

Chemical structures of erythromycin A stearate and the ethylsuccinate ester of erythromycin A.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.5
Figure 18.5

Chemical structure of roxithromycin.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.6
Figure 18.6

Chemical synthesis of dirithromycin.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.7
Figure 18.7

Chemical structure of azithromycin.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.8
Figure 18.8

Chemical structure of clarithromycin.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.9
Figure 18.9

Chemical structures of the 16- member macrolides josamycin, rokitamycin (semisynthetic), and spiramycin I (natural product).

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.10
Figure 18.10

Chemical structures of the macrolides midecamycin (natural) and miokamycin (semisynthetic).

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.11
Figure 18.11

Interaction of macrolides with the peptidyltransferase cavity. A chemical structure diagram of the macrolides (erythromycin, clarithromycin, and roxithromycin) is presented, showing the interactions of the reactive groups of the macrolides with the nucleotides of the peptidyltransferase cavity. Adapted from F. Schlünzen, R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R. Albrecht, A. Yonath, and F. Franceschi, Nature 413:814–821, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.12
Figure 18.12

All Erm methyltransferases methylate the same adenine residue, resulting in an MLSB phenotype.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.13
Figure 18.13

(A) Secondary structure of E. coli 23S rRNA. (B and C) Enlargements of the hairpin 35 (B) and the central loop of domain V (C). The positions whose accessibility to modification by dimethyl sulfate is affected by macrolide antibiotics are circled (the position corresponding to ψ746 is protected by HMR3647 in the Thermus aquaticus ribosome). The nucleotides in domain V, whose mutations cause resistance to macrolides, are shown by black dots. The newly isolated macrolide resistance mutation in hairpin 35 is shown by an arrow. Posttranscriptional modifications are shown only for hairpin 35. Reprinted from L. Xiong, S. Shah, P. Mauvais, and A. S. Mankin, Mol. Microbiol. 31:633–639, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.14
Figure 18.14

Cleavage of the lactone ring of erythronolide A, catalyzed by esterases.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.15
Figure 18.15

Chemical structures of telithromycin, ABT-773, and TEA-0777. For comparison, the chemical structures of erythromycin A and clarithromycin are also shown. Note that in these structures the CH3 (methyl, Me) and CH2CH3 (ethyl) groups are represented by a line above or below the plane of the molecule.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.16
Figure 18.16

Chemical structures of clindamycin and lincomycin.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.17
Figure 18.17

Interactions of clindamycin with the peptidyltransferase cavity. (a) Chemical structure diagram of clindamycin showing the interactions (arrows) of its reactive groups with the nucleotides of the peptidyltransferase cavity. Arrows between two chemical moieties indicate that the two groups are less than 4.4 Å apart. (b) Secondary structure of the peptidyltransferase ring of D. radiodurans, showing the nucleotides involved in the interaction with clindamycin. Reprinted from F. Schlünzen, R. Zarivach, J. Harms, A. Bashan, A. Tocilj, R. Albrecht, A. Yonath, and F. Franceschi, Nature 413:814–821, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.18
Figure 18.18

Mechanism whereby clindamycin and lincomycin are converted to lincomycin and clindamycin 3-(5'-adenylate) by LinB in the presence of ATP and MgCl2.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.19
Figure 18.19

Chemical structures of natural pristinamycin IA and IIA. The components of pristinamycin are indicated (see the text for an explanation). Note that the Cahn- Ingold-Prelog system is used to denote the configuration of the chiral centers, and an ethyl group is represented by a line in the aminobutyric acid moiety. The two rings that are part of the macrolactone of pristinamycin IIA (on the right) are also indicated.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.20
Figure 18.20

Chemical structures of quinupristin and dalfopristin. An acetyltransferase inactivates dalfopristin (see the text for details). The position of the modified hydroxyl group in dalfopristin is indicated by the asterisk.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 18.21
Figure 18.21

Secondary structure of the peptidyltransferase loop in domain V of 23S rRNA. The mutated position in S. pneumoniae BM4455 is indicated by a square. The positions of the other binding sites of streptogramins (A2058, A2503, and U2504) are indicated by circles. Nucleotide sequence and numbering are those of E. coli 23S rRNA, and the corresponding S. pneumoniae numbering is given in parentheses. Reprinted from F. Depardieu and P. Courvalin, Antimicrob. Agents Chemother. 45:319–323, 2001, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap18
1. Bryskier, A. J.,, J. P. Butzler,, H. C. Neu,, and P. M. Tulkens. 1993. Macrolides: Chemistry, Pharmacology, and Clinical Uses. Arnette Blackwell, Paris, France.
2. Bryskier, A. J.,, and J. P. Butzler,. 1997. Macrolides, p. 377 393. In F. O’Grady,, H. P. Lambert,, R. G. Finch,, and D. Greenwood (ed.), Antibiotic and Chemotherapy. Churchill Livingstone, Inc., New York, N.Y.
3. Kirst, H. A., 1993. Macrolides, p. 400 444. In M. Howe-Grant (ed.), Chemotherapeutics and Disease Control. John Wiley & Sons, Inc., New York, N.Y.
4. Ban, N.,, P. Nissen,, J. Hansen,, M. Capel,, P. B. Moore,, and T. A. Steitz. 1999. Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit. Nature 400: 841 847.
5. Hansen, L. H.,, P. Mauvais,, and S. Douthwaite. 1999. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol. Microbiol. 31: 623 631.
6. Mazzei, T.,, E. Mini,, A. Novelli,, and P. Periti. 1993. Chemistry and mode of action of macrolides. J. Antimicrob. Chemother. 31(Suppl. C): 1 9.
7. Retsema, J.,, and W. Fu. 2001. Macrolides: structures and microbial targets. Int. J. Antimicrob. Agents 18: S3 S10.
8. Schlünzen, F.,, R. Zarivach,, J. Harms,, A. Bashan,, A. Tocilj,, R. Abrecht,, A. Yonath,, and F. Franceschi. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814 821.
9. Weisblum, B. 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39: 797 905.
10. Williams, J. D.,, and A. M. Sefton. 1993. Comparison of macrolide antibiotics. J. Antimicrob. Chemother. 31(Suppl. C): 11 26.
11. Clancy, J.,, J. Petitpas,, F. Dib-Hajj,, W. Yuan,, M. Cronan,, A. V. Kamath,, J. Bergeron,, and J. A. Retsema. 1996. Molecular cloning and functional analysis of a novel macrolide-resistance determinant, mefA, from Streptococcus pyogenes. Mol. Microbiol. 22: 867 879.
12. Depardieu, F.,, and P. Courvalin. 2001. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45: 319 323.
13. Douthwaite, S.,, L. H. Hansen,, and P. Mauvais. 2000. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol. Microbiol. 36: 183 193.
14. Kataja, J.,, H. Seppälä,, M. Skurnik,, H. Sarkkinen,, and P. Huovinen. 1998. Different erythromycin resistance mechanisms in group C and group G streptococci. Antimicrob. Agents Chemother. 42: 1493 1494.
15. Leclercq, R.,, and P. Courvalin. 1991. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob. Agents Chemother. 35: 1273 1276.
16. Lina, G.,, A. Quaglia,, M. E. Reverdy,, R. Leclercq,, F. Vandenesch,, and J. Etienne. 1999. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43: 1062 1066.
17. Pechère, J. C. 2001. Macrolide resistance mechanisms in Gram-positive cocci. Int. J. Antimicrob. Agents 18: S25 S28.
18. Portillo, A.,, F. Ruiz-Larrea,, M. Zarazaga,, A. Alonso,, J. L. Martinez,, and C. Torres. 2000. Macrolide resistance genes in Enterococcus spp. Antimicrob. Agents Chemother. 44: 967 971.
19. Roberts, M. C.,, J. Sutcliffe,, P. Courvalin,, L. B. Jensen,, J. Rood,, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43: 2823 2830.
20. Sutcliffe, J.,, T. Grebe,, A. Tait-Kamradt,, and L. Wondrack. 1996. Detection of erythromycin-resistant determinants by PCR. Antimicrob. Agents Chemother. 40: 2562 2566.
21. Sutcliffe, J. A.,, J. P. Mueller,, and E. A. Utt,. 1999. Antibiotic resistance mechanisms of bacterial pathogens, p. 759 788. In A. L. Demain, and J. E. Davies (ed.), Manual of Industrial Microbiology and Biotechnology, 2nd ed. ASM Press, Washington, D.C.
22. Sutcliffe, J.,, A. Tait-Kamradt,, and L. Wondrack. 1996. Streptococcus pneumoniae and Streptococcus pyogenes resistant to macrolides but sensitive to clindamycin: a common resistance pattern mediated by an efflux system. Antimicrob. Agents Chemother. 40: 1817 1824.
23. Weisblum, B., 2000. Resistance to the macrolide-lincosamidestreptogramin antibiotics, p. 694 710. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
24. Douthwaite, S.,, and B. Vester,. 2000. Macrolide resistance conferred by alterations in the ribosome target site, p. 431 439. In R. A. Garret,, S. R. Douthwaite,, A. Liljas,, A. T. Matheson,, P. B. Moore,, and H. E. Noller (ed.), The Ribosome: Structure, Function, Antibiotics, and Cellular Interactions. ASM Press, Washington, D.C.
25. Leclercq, R.,, and P. Courvalin. 1991. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 35: 1267 1272.
26. Skinner, R.,, E. Cundliffe,, and F. J. Schmidt. 1983. Site of action of a ribosomal RNA methylase responsible for resistance to erythromycin and other antibiotics. J. Biol. Chem. 258: 12702 12705.
27. Vester, B.,, and S. Douthwaite. 2000. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45: 1 12.
28. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39: 577 585.
29. Xiong, L.,, S. Shah,, P. Mauvais,, and A. S. Mankin. 1999. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol. Microbiol. 31: 633 639.
30. Sutcliffe, J. 1999. Resistance to macrolides mediated by efflux mechanisms. Curr. Opin. Anti-Infect. Investig. Drugs 1: 403 412.
31. Zhong, P.,, and V. D. Shortridge. 2000. The role of efflux in macrolide resistance. Drug Resist. Updates 3: 325 329.
32. Noguchi, N.,, A. Emura,, H. Matsuyama,, K. O’Hara,, M. Sasatsu,, and M. Kono. 1996. Nucleotide sequence and characterization of erythromycin resistance determinant that encode macrolide 2'-phosphotransferase I in Escherichia coli. Antimicrob. Agents Chemother. 39: 2359 2362.
33. Kucers, A.,, S. M. Crowe,, M. L. Grayson,, and J. F. Hoy. 1997. The Use of Antibiotics, 5th ed., p. 607 666. Butterworth-Heinemann, Oxford, United Kingdom.
34. Agouridas, C.,, A. Denis,, J. M. Auger,, Y. Benedetti,, A. Bonnefoy,, F. Bretin,, J. F. Chantot,, A. Dussarat,, C. Fromentin,, S. G. D’Ambrières,, S. Lachaud,, P. Laurin,, O. Le Martret,, V. Loyau,, and N. Tessot. 1998. Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. J. Med. Chem. 41: 4080 4100.
35. Bonnefoy, A.,, A. M. Girard,, C. Agouridas,, and J. F. Chantot. 1997. Ketolides lack inducibility properties of MLSB resistance phenotype. J. Antimicrob. Chemother. 40: 85 90.
36. Chu, D. T. W. 1999. Recent developments in macrolides and ketolides. Curr. Opin. Microbiol. 2: 467 474.
37. Elliot, R. L.,, D. Pireh,, G. Griesgraber,, A. M. Nilius,, P. J. Ewing,, M. H. Bui,, P. M. Raney,, R. K. Flamm,, K. Kim,, R. F. Henry,, D. T. W. Chu,, J. J. Plattner. and Y. S. Or. 1998. Anhydrolide macrolides. 1. Synthesis and antibacterial activity of 2,3-anhydro-6-O-methyl 11,12-carbamate erythromycin A analogues. J. Med. Chem. 41: 1651 1659.
38. Griesgraber, G.,, M. K. Kramer,, R. L. Elliot,, A. M. Nilius,, P. J. Ewing,, P. M. Raney,, M. H. Bui,, R. K. Flamm,, D. T. W. Chu,, J. J. Plattner,, and Y. S. Or. 1998. Anhydrolide macrolides. 2. Synthesis and antibacterial activity of 2,3-anhydro-6-Omethyl- 11,12-carbazate erythromycin A analogues. J. Med. Chem. 41: 1660 1670.
39. Or, Y. S.,, R. F. Clark,, S. Wang,, D. T. W. Chu,, A. M. Nilius,, R. K. Flamm,, M. Mitten,, P. Ewing,, J. Alder,, and Z. Ma. 2000. Design, synthesis, and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. J. Med. Chem. 43: 1043 1049.
40. Ackermann, G.,, and A. C. Rodloff. 2003. Drugs of the 21 st century: telithromycin (HMR 3647)—the first ketolide. J. Antimicrob. Chemother. 51: 497 511.
41. Barman Balfour, J. A.,, and D. P. Figgitt. 2001. Telithromycin. Drugs 61: 815 829.
42. Douthwaite, S.,, and W. S. Champney. 2001. Structures of ketolides and macrolides determine their mode of interaction with the ribosomal target site. J. Antimicrob. Chemother. 48(Suppl. T1): 1 8.
43. Felmingham, D.,, G. Zhanel,, and D. Hoban. 2001. Activity of the ketolide antibacterial telithromycin against typical community-acquired respiratory pathogens. J. Antimicrob. Chemother. 48(Suppl. T1): 33 42.
44. Fines, M.,, and R. Leclercq. 1999. New antibiotics in development in the macrolide, lincosamide and streptogramin group. Curr. Opin. Anti-Infect. Investig. Drugs 1: 443 452.
45. Graul, A.,, and J. Castanier. 1998. HMR-3647. Drugs Future 23: 591 597.
46. Hammerschlag, M. R.,, P. M. Roblin,, and C. M. Bébéar. 2001. Activity of telithromycin, a new ketolide antibacterial, against atypical and intracellular respiratory tract pathogens. J. Antimicrob. Chemother. 48(Suppl. T1): 25 30.
47. Leclercq, R. 2001. Overcoming antimicrobial resistance: profile of a new ketolide antibacterial, telithromycin. J. Antimicrob. Chemother. 48(Suppl. T1): 9 23.
48. Namour, F.,, D. H. Wessels,, M. H. Pascual,, D. Reynols,, E. Sultan,, and B. Lenfant. 2001. Pharmacokinetics of the new ketolide telithromycin (HMR 3647) administered in ascending single and multiple doses. Antimicrob. Agents Chemother. 45: 170 275.
49. Roberts, M. C. 1999. Telithromycin. Curr. Opin. Anti-Infect. Investig. Drugs 1: 506 513.
50. Barry, A. L.,, P. C. Fuchs,, and S. D. Brown. 2001. In vitro activity of the ketolide ABT-773. Antimicrob. Agents Chemother. 45: 2922 2924.
51. Schlünzen, F.,, J. M. Harms,, F. Franceschi,, H. A. S. Hansen,, H. Bartels,, R. Zarivach,, and A. Yonath. 2003. Structural basis for the antibiotic activity of ketolides and azolides. Structure, 11: 329 338.
52. Tanikawa, T.,, T. Asaka,, M. Kashimura,, Y. Misawa,, K. Suzuki,, M. Sato,, K. Kameo,, S. Morimoto,, and A. Nishida. 2001. Synthesis and antibacterial activity of acylides (3-O-acylerythromycin derivatives): a novel class of macrolide antibiotics. J. Med. Chem. 44: 4027 4030.
53. Bannister, B., 1993. Lincosamides, p. 390 399. In M. Howe- Grant (ed.), Chemotherapetics and Disease Control. John Wiley & Sons, Inc., New York, N.Y.
54. Menninger, J. R.,, and R. A. Coleman. 1993. Lincosamide antibiotics stimulate dissociation of peptidyl-tRNA from ribosomes. Antimicrob. Agents Chemother. 37: 2027 2029.
55. Schlünzen, F.,, R. Zarivach,, J. Harms,, A. Bashan,, A. Tocilj,, R. Abrecht,, A. Yonath,, and F. Franceschi. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814 821.
56. American Medical Association. 1996. Drug Evaluations Annual 1995, p. 15091517. American Medical Association, Chicago, Ill.
57. Medical Economics Data Production Co. 2000. Physicians’ Desk Reference, 54th ed., p. 24212427. Medical Economics Data Production Co., Montvale, N.J.
58. Reese, R. E.,, R. F. Betts,, and B. Gumustop. 2000. Handbook of Antibiotics, 3rd ed., p. 435 440. Lippincott Williams & Wilkins, Philadelphia, Pa.
59. Scholar, E. M.,, and W. B. Pratt. 2000. The Antimicrobial Drugs, 2nd ed. Oxford University Press, Oxford, United Kingdom.
60. Bozgodan, B.,, B. Berrezouga,, M. S. Kuo,, D. A. Yurek,, K. A. Farley,, B. J. Stockman,, and R. Leclercq. 1999. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents Chemother. 43: 925 929.
61. Douthwaite, S. 1992. Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. Nucleic Acids Res. 20: 4717 4720.
62. Lina, G.,, A. Quaglia,, M. E. Reverdy,, R. Leclercq,, F. Vandenesch,, and J. Etienne. 1999. Distribution of genes encoding resistance to macrolides, lincosamides, and streptogramins among staphylococci. Antimicrob. Agents Chemother. 43: 1062 1066.
63. Barrière, J. C.,, N. Berthayd,, D. Beyer,, S. Dutka-Malen,, J. M. Paris,, and J. F. Desnottes. 1998. Recent developments in streptogramin research. Curr. Pharm. Des. 4: 155 180.
64. Barrière, J. C.,, and J. M. Paris. 1993. RP 59500 and related semisynthetic streptogramins. Drugs Future 18: 833 845.
65. Paris, J. M.,, J. C. Barrière,, C. Smith,, and P. E. Bost,. 1990. The chemistry of pristinamycins, p. 183 248. In G. Lukacs, and M. Ohno (ed.), Recent Progress in the Chemical Synthesis of Antibiotics. Springer-Verlag KG, Berlin, Germany.
66. Bouanchaud, D. H. 1997. In-vitro and in-vivo antibacterial activity of quinupristin/dalfopristin. J. Antimicrob. Chemother. 39(Suppl. A): 15 21.
67. Reese, R. E.,, R. F. Betts,, and B. Gumustop. 2000. Handbook of Antibiotics, 3rd ed., p. 515 520. Lippincott Williams & Wilkins, Philadelphia, Pa.
68. Cocito, C.,, M. Di Giambatista,, E. Nyssen,, and P. Vannuffel. 1997. Inhibition of protein synthesis by streptogramins and related antibiotics. J. Antimicrob. Chemother. 39(Suppl. A): 7 13.
69. Vannuffel, P.,, M. Di Giambattista,, and C. Cocito. 1994. Chemical probing of virginiamycin M-promoted conformational change of the peptidyltransferase domain. Nucleic Acids Res. 22: 4449 4453.
70. Vannuffel, P.,, M. Di Giambattista,, and C. Cocito. 1992. The role of rRNA bases in the interaction of peptidyltransferase inhibitors with bacterial ribosomes. J. Biol. Chem. 267: 16114 16120.
71. Baquero, F. 1997. Gram-positive resistance: challenge for the development of new antibiotics. J. Antimicrob. Chemother. 39: 1 6.
72. Depardieu, F.,, and P. Courvalin. 2001. Mutation in 23S rRNA responsible for resistance to 16-membered macrolides and streptogramins in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 45: 319 323.
73. Malbruny, B.,, A. Canu,, B. Bozdogan,, B. Fantin,, V. Zarrouk,, S. Dutka-Malen,, C. Feger,, and R. Leclercq. 2002. Resistance to quinupristin-dalfopristin due to mutation of L22 ribosomal protein in Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 2200 2207.
74. Sugantino, M.,, and S. L. Roderick. 2002. Crystal structure of Van(D): an acetyltransferase that inactivates streptogramin group A antibiotics. Biochemistry 41: 2209 2216.
75. Witte, W. 1999. Antibiotic resistance in gram-positive bacteria: epidemiological aspects. J. Antimicrob. Chemother. 44(Topic A): 1 9.
76. Allignet, J.,, S. Aubert,, A. Morvan ,, and N. El Sohl. 1996. Distribution of genes encoding resistance to streptogramin A and related compounds among staphylococci resistant to these antibiotics. Antimicrob. Agents Chemother. 40: 2523 2528.
77. Allignet, J.,, and N. El Sohl. 1995. Diversity among the gram-positive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob. Agents Chemother. 39: 2027 2036.
78. Allignet, J.,, N. Liassine,, and N. El Sohl. 1998. Characterization of staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vghB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob. Agents Chemother. 42: 1794 1798.
79. Allignet, J.,, V. Loncle,, C. Simenel,, M. Delpierre,, and N. El Sohl. 1993. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. Gene 130: 91 98.
80. Allignet, J.,, V. Loncle,, and N. El Sohl. 1992. Sequence of a staphylococcal plasmid gene, vga, encoding a putative ATP-binding protein involved in resistance to virginiamycin A- like antibiotics. Gene 117: 45 51.
81. Allignet, J.,, V. Loncle,, P. Mazodier,, and N. El Sohl. 1988. Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B component of virginiamycin-like antibiotics. Plasmid 20: 271 275.
82. Mukhtar, T. A.,, K. P. Kotera,, D. W. Hughes,, and G. D. Wright. 2001. Vgb from Staphylococcus aureus inactivates streptogromin B antibiotics by an elimination mechanism, not hydrolysis. Biochemistry 40: 8877 8886.
83. Werner, G.,, and W. Witte. 1999. Characterization of a new enterococcal gene, satG, encoding a putative acetyltransferase conferring resistance to streptogramin A compounds. Antimicrob. Agents Chemother. 43: 1813 1814.
84. Bozgodan, B.,, and R. Leclercq. 1999. Effects of genes encoding resistance to streptogramins A and B on the activity of quinupristin-dalfopristin against Enterococcus faecium. Antimicrob. Agents Chemother. 43: 2720 2725.
85. Eliopoulos, G. M.,, C. B. Wennersten,, H. S. Gold,, T. Schülin,, M. Souli,, M. G. Farris,, S. Cerwinka,, H. L. Nadler,, M. Dowzicky,, G. H. Talbot,, and R. C. Moellering. 1998. Characterization of vancomycin-resistant Enterococcum faecium isolates from the United States and their susceptibility in vitro to dalfopristin-quinupristin. Antimicrob. Agents Chemother. 42: 1088 1092.
86. Jensen, L. B.,, A. M. Hammerum,, F. K. Aarestrup,, A. E. van den Bogaard,, and E. E. Stobberingh. 1998. Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in The Netherlands. Antimicrob. Agents Chemother. 42: 3330 3331.
87. Rende-Fournier, R.,, R. Leclercq,, M. Galimand,, J. Duval,, and P. Courvalin. 1993. Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Antimicrob. Agents Chemother. 37: 2119 2125.
88. Soltani, M.,, D. Beighton,, J. Philpott-Howard,, and N. Woodford. 2001. Identification of vat(E-3), a novel gene encoding resistance to quinupristin-dalfopristin in a strain of Enterococcus faecium from a hospital patient in the United Kingdom. Antimicrob. Agents Chemother. 45(Erratum, 45:998.): 645 646.

Tables

Generic image for table
Table 18.1

Generic and common trade names of macrolides, the preparations available, and manufacturers in the United States

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18
Generic image for table
Table 18.2

Generic and common trade names of lincosamides, the preparations available, and manufacturers in the United States

Citation: Mascaretti O. 2003. Inhibitors of the 50S Ribosomal Subunit, p 247-272. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error