1887

Chapter 2 : Bacterial Pathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Pathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap02-2.gif

Abstract:

This chapter serves as an introduction of some of the most relevant points and highlights features that are particularly essential for an understanding of bacterial invasion of eukaryotic cells, immunity to extracellular and intracellular bacteria, evasion of immune mechanisms by extracellular and intracellular bacteria, antibacterial mechanisms of action, and bacterial resistance to antibacterial agents. The chapter provides definitions of some important terms in bacterial pathogenesis such as bacterial pathogen, virulence factors, chaperone, lectins and enterotoxins. Adhesins are assembled into pili or fimbriae that extend from the bacterial surface. Alternatively, the adhesins are directly associated with the microbial cell surface. These adhesions can be performed by the afimbrial adhesins (also called nonfimbrial adhesins). The observation that culture supernatant free from bacteria fully reproduced the symptoms of diseases such as diphtheria, tetanus, cholera, and botulism led to the conclusion that in these instances, bacterial toxins were the only factors needed by bacteria to cause a disease. In the chapter, various aspects of bacterial pathogenicity have been presented from the point of view that these microorganisms exist as isolated single cells suspended in an aqueous environment (i.e., the planktonic mode); however, most in vivo populations of bacteria grow as adherent bacterial biofilms. Inhibition of virulence factors is one potential therapeutic strategy in the search for novel targets for new antivirulence drugs such as vaccines and inhibitors of bacterial adhesion and of LPS synthesis.

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 2.2
Figure 2.2

Model of P-pilus biogenesis and PapG recognition of three Gal-(α1→4)-Galcontaining receptors. Reprinted from S. J. Hultgren, S. Abraham, M. Caparon, P. Falk, J. W. St Geme, and S. Normark, Cell 73:887–901, 1993, with permission from the publisher.

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.3
Figure 2.3

Saccharides of the globoseries glycolipids.

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.1
Figure 2.1

Diagrammatic representation of the steps in bacterial invasion of a human cell.

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.4
Figure 2.4

Schematic representation of the four groups of bacterial toxins. Reprinted from P. Cossart, P. Boquet, S. Normark, and R. Rappuoli (ed.), Cellular Microbiology (ASM Press, Washington, D.C., 2000), with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap2
1. Cossart, P.,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.). 2000. Cellular Microbiology. ASM Press, Washington, D.C.
2. Kaper, J. B.,, and J. Hacker (ed.). 1999. Pathogenicity Islands and Other Mobile Virulence Elements. ASM Press, Washington, D.C.
3. Mims, C. A.,, A. Nash,, and J. Stephen. 2000. Mims' Pathogenesis of Infectious Disease. Academic Press, Inc., San Diego, Calif.
4. Oelschlaeger, T. A.,, and J. Hacker. 2000. Bacterial Invasion into Eukaryotic Cells. Kluwer Academic/Plenum Publishers, New York, N.Y.
5. Raoult, D. 1993. Antimicrobial Agents and Intracellular Pathogens. CRC Press, Inc., Boca Raton, Fla.
6. Salyers, A. A.,, and D. D. Whitt. 2002. Bacterial Pathogenesis: a Molecular Approach , 2nd ed. ASM Press, Washington, D.C.
7. Donnenberg, M. S. 2000. Pathogenic strategies of enteric bacteria. Nature 406: 768 774.
8. Falkow, S. 1991. Bacterial entry into eukaryotic cells. Cell 65: 1099 1102.
9. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276: 718 725.
10. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61: 136 169.
11. Finlay, B. B.,, and S. Falkow. 1989. Common themes in microbial pathogenicity. Microbiol. Rev. 53: 210 230.
12. Janeway, C. A.,, P. Travers,, M. Walport,, and M. Shlomchik. 2001. Immunobiology: the Immune System in Health and Disease , 5th ed. Garland Science Publishing, New York, N.Y.
13. Goldschmidt, R. M.,, M. J. Macielag,, D. J. Hlasta,, and J. F. Barrett. 1997. Inhibition of virulence factors in bacteria. Curr. Pharm. Design 3: 125 142.
14. Maurin, M.,, and D. Raoult. 1997. Intracellular organisms. Int. J. Antimicrob. Agents 9: 61.
15. McOrist, S. 2000. Obligate intracellular bacteria and antibiotic resistance. Trends Microbiol. 8: 483 486.
16. Abraham, S. N.,, A. B. Jonsson,, and S. Normark. 1998. Fimbriaemediated host pathogen cross-talk. Curr. Opin. Microbiol. 1: 75 81.
17. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. Pinkner,, S. J. Hultgren,, and S. D. Knight. 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli. Science 285: 1061 1066.
18. Forest, K. T.,, S. A. Dunham,, M. Koomey,, and J. A. Tainer. 1999. Crystallographic structure reveals phosphorylated pilin from Neisseria: phosphoserine sites modify type IV pilus surface chemistry and fibre morphology. Mol. Microbiol. 31: 743 752.
19. Hultgren, S. J.,, and S. Normark. 1991. Chaperone-assisted assembly and molecular architecture of adhesive pili. Annu. Rev. Microbiol. 45: 383 415.
20. Sauer, F. G.,, A. M. A. Mulvey,, J. D. Schilling,, J. J. Martinez,, and S. J. Hultgren. 2000. Bacterial pili: molecular mechanisms of pathogenesis. Curr. Opin. Microbiol. 3: 65 72.
21. Sauer, F. G.,, K. Fütterer,, J. S. Pinkner,, K. W. Dodson,, S. J. Hultgren,, and G. Waksman. 1999. Structural basis of chaperone function and pilus biogenesis. Science 285: 1058 1061.
22. Hamburger, Z. A.,, M. S. Brown,, R. R. Isberg,, and P. J. Bjorkman. 1999. Crystal structure of invasin: a bacterial integrinbinding protein. Science 286: 291 295.
23. Hultgren, S. J.,, S. Abraham,, M. Caparon,, P. Falk,, J. W. St Geme,, and S. Normark. 1993. Pilus and nonpilus bacterial adhesins: assembly and function in cell recognition. Cell 73: 887 901.
24. Hultgren, S. J.,, C. H. Jones,, and S. Normark., 1996. Bacterial adhesins and their assembly, p. 2730 2756. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
25. Jacques, M. 1996. Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol. 4: 408 410.
26. Luo, Y.,, E. A. Frey,, R. A. Pfuetzner,, A. L. Creagh,, D. G. Knoeche,, C. A. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405: 1073 1077.
27. Soto, G. E.,, and S. J. Hultgren. 1999. Bacterial adhesins: common themes and variations in architecture and assembly. J. Bacteriol. 181: 1059 1071.
28. Striker, R.,, U. Nilsson,, A. Stonecipher,, G. Magnusson,, and S. J. Hultgren. 1995. Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. 16: 1021 1029.
29. Lee, Y. C.,, and R. T. Lee. 1995. Carbohydrate-protein interactions: basis of glycobiology. Acc. Chem. Res. 28: 321 327.
30. Sharon, N.,, and H. Lis. Lectins. Accepted for publication in Encyclopedia of Life Sciences. Nature Publishing, London, United Kingdom.
31. Sharon, N.,, and H. Lis. 1989. Lectins as cell recognition molecules. Science 246: 227 234.
32. Entenäs, H.,, G. Soto,, S. J. Hultgren,, G. R. Marshall,, and F. Almqvist. 2000. Stereoselective synthesis of optically active β- lactams, potential inhibitors of pilus assembly in pathogenic bacteria. Organic Lett. 2: 2065 2067.
33. Kihlberg, J.,, and G. Magnusson. 1996. Use of carbohydrates and peptides in studies of adhesion of pathogenic bacteria and in efforts to generate carbohydrate-specific T cells. Pure Appl. Chem. 68: 2119 2128.
34. Alouf, J. E.,, and J. H. Freer. 1999. Bacterial Protein Toxins , 2nd ed. Academic Press, Ltd., London, United Kingdom.
35. Boquet, P.,, P. Munro,, C. Fiorentini,, and I. Just. 2000. Toxins from anaerobic bacteria: specificity and molecular mechanism of action. Curr. Opin. Microbiol. 1: 66 74.
36. Kastowsky, M.,, T. Gutberlet,, and H. Bradaczek. 1992. Molecular modeling of the three-dimensional structure and conformational flexibility of bacterial lipopolysaccharide. J. Bacteriol. 174: 4798 4806.
37. Raetz, C. R. H. 1993. Bacterial endotoxins: extraordinary lipids that activate eucaryotic signal transduction. J. Bacteriol. 175: 5745 5753.
38. Raetz, C. R. H. 1990. Biochemistry of endotoxins. Annu. Rev. Biochem. 59: 129 170.
39. Rietschel, E. T.,, and H. Brade. 1992. Bacterial endotoxins. Sci. Am. 1992(Aug.): 26 33.
40. Knight, S. A.,, J. Berglund,, and D. Choudhury. 2000. Bacterial adhesins: structural studies reveal chaperone function and pilus biogenesis. Curr. Opin. Chem. Biol. 4: 653 660.
41. Sauer, F. G.,, M. Barnhart,, D. Choudhury,, S. D. Knight,, G. Waksman,, and S. J. Hultgren. 2000. Chaperone-assisted pilus assembly and bacterial attachment. Curr. Opin. Struct. Biol. 10: 548 556.
42. Thanassi, D. G.,, E. T. Saulino,, and S. J. Hultgren. 1998. The chaperone/usher pathway: a major terminal branch of the general secretory pathway. Curr. Opin. Microbiol. 1: 223 231.
43. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36: 1015 1023.
44. Hentschel, U.,, and J. Hacker. 2001. Pathogenicity islands: the tip of the iceberg. Microbes Infect. 3: 545 548.
45. Winstanley, C.,, and C. A. Hart. 2001. Type III secretion systems and pathogenicity islands. J. Med. Microbiol. 50: 116 127.
46. Brooun, A.,, S. Liu,, and K. Lewis. 2000. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 44: 640 646.
47. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
48. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
49. Watnick, P.,, and R. Kolter. 2000. Biofilm, city of microbes. J. Bacteriol. 182: 2675 2679.

Tables

Generic image for table
Table 2.1

Selected examples of bacterial pathogenesis and their location with respect to eukaryotic cells a

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2
Generic image for table
Table 2.2

Some examples of common diseases caused by bacterial toxins a

Citation: Mascaretti O. 2003. Bacterial Pathogenesis, p 33-42. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error