1887

Chapter 27 : New Antibacterial Drugs in Development That Act on Novel Targets

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

New Antibacterial Drugs in Development That Act on Novel Targets, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap27-2.gif

Abstract:

This chapter presents a survey of some new antibacterial agents that act on novel targets. In recent years, bacterial resistance to antibacterial drugs has become a global public health threat and has been increasing due to the use, overuse, and misuse of broad-spectrum antibiotics and the ability of bacteria to exchange resistance genes. Cationic peptides exhibit a broad spectrum of activity against various targets, including gram-negative and gram-positive bacteria, fungi, enveloped viruses, and parasites. Aminoacyl-tRNA synthetases play a crucial role in protein synthesis in all organisms, and selective inhibition of the bacterial enzymes has potential for the discovery of new antibacterial agents. Uropathogenic strains of Escherichia coli are the primary causative agents of urinary tract infections in humans. Combinatorial chemistry has had a significant impact on the discovery of new antibacterial drugs. Most of the successes have come from the use of small libraries to explore a specific pharmacophore. This kind of application has been exemplified in the chapter with the discovery of actinonin, a selective peptide deformylase inhibitor. The traditional method for obtaining new antibacterial drugs has been to synthesize analogues of existing antibacterial drugs and evaluate them for improved therapeutic activity by using in vitro and in vivo methods that detect antibacterial activity against gram-positive and gram-negative organisms.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 27.1
Figure 27.1

Some of the novel targets for new antibacterial agents currently under development.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.2
Figure 27.2

Schematic representation of the active site of PDF.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.3
Figure 27.3

Classification of peptidases according to the site of amide bond cleavage.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.4
Figure 27.4

Standard nomenclature for substrate residues and their corresponding binding sites. Reprinted from I. Schechter and A. Berger, Biochem. Biophys. Res. Commun. 27:157–162, 1967, with permission from the publisher.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.5
Figure 27.5

Structure of PCLNA.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.6
Figure 27.6

Proposed mechanism of PDF-mediated deformylation based on the native (top left) and complexed (bottom right) structures. Reprinted from B. Hao, W. Gong, P. T. Ravi Rajagopalan, Y. Zhou, D. Pei, and M. K. Chan, Biochemistry 38:4712–4719, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.7
Figure 27.7

Structure of 2-thiomethyl- Nle-Arg-OCH3 (TNR) as the trifluorocetate salt.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.8
Figure 27.8

Chemical structures of compounds 1 through 5.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.9
Figure 27.9

Chemical structure of actinonin.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.10
Figure 27.10

Chemical structure of (R)-3-(phenylsulfonyl) heptanoic acid hydroxamide.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.11
Figure 27.11

Figure 27.11 General structure of (5-chloro-2-oxo-1,4- dihydro-2H-quinazolin-3-yl)acetic acid hydrazide derivatives.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.12
Figure 27.12

Structures of the compounds developed by Thorarensen and coworkers.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.13
Figure 27.13

Chemical structure of BB-3497

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.14
Figure 27.14

Chemical structure of N-CBZ-Leu-norleucinal (calpeptin).

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.15
Figure 27.15

(Left) General structure of biaryl acid analogs. (Middle and right) Chemical structures of compounds 1 and 4.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.16
Figure 27.16

A typical TCS. Reprinted from J. F. Barrett and J. A. Hoch, Antimicrob. Agents Chemother. 42:1529–1536, 1998, with permission from the American Society for Microbiology.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.17
Figure 27.17

Chemical structures of closantel, and 3,3',4',5-tetrachlorosalicylanilide.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.18
Figure 27.18

Chemical structures of bisamidino indole derivative 1, amidino benzimidazole derivative 2, and diaryltriazole 3.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.19
Figure 27.19

Peptide stack self-assembly of flat, cyclic, eight-residue D,L-α-peptides forms β-sheet-like, tubular, open-ended supramolecular structures. Reprinted from S. Fernandez-Lopez, H. S. Kim, E. C. Choi, M. Delgado, J. R. Granja, A. Khasanov, K. Kraehenbuehl, G. Long, D. A. Weinberger, K. M. Wilcoxen, and M. R. Ghadiri, Nature 412:452–455, 2001, with permission from the publisher.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.20
Figure 27.20

(a) Chemical structures of channel-forming cyclic β-peptide subunits 1 through 3 represented in a flat ring-shaped conformation. (b) Putative structure of selfassembled transmembrane channels formed from cyclic β-peptides 1 through 3. The tubular channel ensemble is represented with the expected parallel ring stacking and extensive intersubunit hydrogen bonding. (For clarity, most side chains are omitted.) Reprinted from T. D. Clark, L. K. Buehler, and M. R. Ghadiri, J. Am. Chem. Soc. 120:651–656, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.21
Figure 27.21

Fatty acid synthesis in E. coli.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.22
Figure 27.22

Chemical structures of cerulenin, thiolactomycin, diazaborine, isoniazid, triclosan, 2,9-disubstituted 1,2,3,4-tetrahydropyrido[3,4-b]indoles, 1,4-disubstituted imidazoles, and the aminopyridine derivative (compound 9).

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.23
Figure 27.23

Chemical structures of compounds 4, 29, and 30.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.24
Figure 27.24

Chemical structures of compounds 1 and 5.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.25
Figure 27.25

Chemical structures of compounds 1 (SB-219383), 2, 3, and 11.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.26
Figure 27.26

Chemical structure of phosphinate derivative 1 (compound 1).

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.27
Figure 27.27

Chemical structure of the compound SProC5.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.28
Figure 27.28

Bicyclic β-lactam compounds of the general structure 1 superimpose well with the structure of a peptide whose crystal structure complexed with PapD was determined by X-ray crystallography.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.29
Figure 27.29

A unique deacetylase catalyzes the second step of lipid A biosynthesis. The LpxA-catalyzed acylation that occurs before deacetylation is reversible and has an unfavorable equilibrium constant.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.30
Figure 27.30

Structures of the LpxC inhibitors BB-78484 and BB-78485.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 27.31
Figure 27.31

Steps in the research and development process for antibacterial agents. Reprinted from I. Chopra, Curr. Opin. Microbiol. 1:495–501, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. New Antibacterial Drugs in Development That Act on Novel Targets, p 329-354. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch27
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap27
1. Schechter, J.,, and A. Berger. 1967. On the site of the active site in proteases. I. Bapain. Biochem. Biophys. Res. Commun. 27: 157 162.
2. Baldwin, E. T.,, M. S. Harris,, A. W. Yem,, C. L. Wolfe,, A. F. Vosters,, K. A. Curry,, R. W. Murray,, J. H. Bock,, V. P. Marshall,, J. I. Cialdella,, M. H. Merchant,, G. Choi,, and M. R. Deibel. 2002. Crystal structure of type II peptide deformylase from Staphylococcus aureus. J. Biol. Chem. 277: 31163 31171.
3. Becker, A.,, I. Schlichting,, W. Kabsch,, S. Schultz,, and A. F. V. Wagner. 1998. Structure of peptide deformylase and identification of the substrate binding site. J. Biol. Chem. 273: 11413 11416.
4. Becker, A.,, I. Schlichting,, W. Kabsch,, D. Groche,, S. Schultz,, and A. F. V. Wagner. 1998. Iron center, substrate recognition and mechanism of peptide deformylase. Nat. Struct. Biol. 5: 1053 1058.
5. Chan, M. K.,, W. Gong,, P. T. Ravi Rajagopalan,, B. Hao,, C. M. Tsai,, and D. Pei. 1997. Crystal structure of the Escherichia coli peptide deformylase. Biochemistry 36: 13904 13909.
6. Dardel, F.,, S. Ragusa,, C. Lazennec,, S. Blanquet,, and T. Meinnel. 1998. Solution structure of nickel-peptide deformylase. J. Mol. Biol. 280: 501 513.
7. Giglione, C.,, M. Pierre,, and T. Meinnel. 2000. Peptide deformylase as a target for new generation, broad spectrum antimicrobial agents. Mol Microbiol. 36: 1197 1205.
8. Groche, D.,, A. Becker,, I. Schlichting,, W. Kabsch,, S. Schultz,, and A. F. V. Wagner. 1998. Isolation and crystallization of functionally competent Escherichia coli peptide deformylase forms containing either iron or nickel in the active site. Biochem. Biophys. Res. Commun. 246: 342 346.
9. Mazel, D.,, S. Pochet,, and P. Marlière. 1994. Genetic characterization of polypeptide deformylase, a distinctive enzyme of eubacterial translation. EMBO J. 13: 914 923.
10. Meinnel, T.,, S. Blanquet,, and F. Dardel. 1996. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J. Mol. Biol. 262: 375 386.
11. Ragusa, S.,, S. Blanquet,, and T. Meinnel. 1998. Control of peptide deformylase activity by metal cations. J. Mol. Biol. 280: 515 523.
12. Ravi Rajagopalan, P. T.,, A. Datta,, and D. Pei. 1997. Purification, characterization, and inhibition of peptide deformylase from Escherichia coli. Biochemistry 36: 13910 13918.
13. Ravi Rajagopalan, P. T.,, S. Grimme,, and D. Pei. 2000. Characterization of cobalt(II)-substituted peptide deformylase: function of the metal ion and the catalytic residue Glu-133. Biochemistry 39: 779 790.
14. Ravi Rajagopalan, P. T.,, and D. Pei. 1998. Oxygen-mediated inactivation of peptide deformylase. J. Biol. Chem. 273: 22305 22310.
15. Ravi Rajagopalan, P. T.,, X. C. Yu,, and D. Pei. 1997. Peptide deformylase: a new type of mononuclear iron protein. J. Am. Chem. Soc. 119: 12418 12419.
16. Hao, B.,, W. Gong,, P. T. Ravi Rajagopalan,, Y. Zhou,, D. Pei,, and M. K. Chan. 1999. Structural basis for the design of antibiotics targeting peptide deformylase. Biochemistry 38: 4712 4719.
17. Hu, Y. J.,, P. T. Ravi Rajagopalan,, and D. Pei. 1998. H-phosphonate derivatives as novel peptide deformylase inhibitors. Bioorg. Med. Chem. Lett. 8: 2479 2482.
18. Huntington, K. M.,, T. Yi,, Y. Wei,, and D. Pei. 2000. Synthesis and antibacterial activity of peptide deformylase inhibitors. Biochemistry 39: 4543 4551.
19. Meinnel, T.,, L. Patiny,, S. Ragusa,, and S. Blanquet. 1999. Design and synthesis of substrate analogue inhibitors of peptide deformylase. Biochemistry 38: 4287 4295.
20. Wei, Y.,, T. Yi,, K. M. Huntington,, C. Chaudhury,, and D. Pei. 2000. Identification of a potent peptide deformylase inhibitor from a rationally designed combinatorial library. J. Comb. Chem. 2: 650 657.
21. Apfel, C.,, D. W. Banner,, D. Bur,, M. Dietz,, T. Hirata,, C. Hubschwerlen,, H. Locher,, M. G. P. Page,, W. Pirson,, G. Rossé,, and J. L. Specklin. 2000. Hydroxamic acid derivatives as potent peptide deformylase inhibitors and antibacterial agents. J. Med. Chem. 43: 2324 2331.
22. Apfel, C.,, D. W. Banner,, D. Bur,, M. Dietz,, C. Hubschwerlen,, H. Locher,, F. Marlin,, R. Masciadri,, W. Pirson,, and H. Stalder. 2001. 2-(2-Oxo-1,4-dihydro-2 H-quinazolin-3-yl)- and 2-(2,2- dioxo-1,4-dihydro-2 H-2_6-benzo[1,2,6]thiazidin-3-yl)- Nhydroxy- acetamides as potent and selective peptide deformylase inhibitors. J. Med. Chem. 44: 1847 1852.
23. Chen, D. Z.,, D. V. Patel,, C. J. Hackbarth,, W. Wang,, G. Dreyer,, D. C. Young,, P. S. Margolis,, C. Wu,, Z. J. Ni,, J. Trias,, R. J. White,, and Z. Yuan. 2000. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39: 1256 1262.
24. Gupta, M. K.,, P. Mishra,, P. Prathipati,, and A. K. Saxena. 2002. 2D-QSAR in hydroxamic acid derivatives as peptide deformylase inhibitors and antibacterial agents. Bioorg. Med. Chem. 10: 3713 3716.
25. Thorarensen, A.,, M. R. Douglas,, D. C. Rohrer,, A. F. Vosters,, A. W. Yem,, V. D. Marshall,, J. C. Lynn,, M. J. Bohanon,, P. K. Tomich,, G. E. Zurenko,, M. T. Sweeney,, R. M. Jensen,, J. W. Nielsen,, E. P. Seest,, and L. A. Dolak. 2001. Identification of novel potent hydroxamic acid inhibitors of peptidyl deformylase and the importance of the hydroxamic acid functionality on inhibition. Bioorg. Med. Chem. Lett. 11: 1355 1358.
26. Clements, J. M.,, R. P. Beckett,, A. Brown,, G. Catlin,, M. Lobell,, S. Palan,, W. Thomas,, M. Whittaker,, S. Wood,, S. Salama,, P. J. Baker,, H. F. Rodgers,, V. Barynin,, D. W. Rice,, and M. G. Hunter. 2001. Antibiotic activity and characterization of BB- 3497, a novel peptide deformylase inhibitor. Antimicrob. Agents Chemother. 45: 563 570.
27. Smith, H. K.,, R. P. Beckett,, J. M. Clements,, S. Doel,, S. P. East,, S. B. Launchbury,, L. M. Pratt,, Z. M. Spavold,, W. Thomas,, R. S. Todd,, and M. Whittaker. 2002. Structure-activity relationships of the peptide deformylase inhibitor BB-3497: modification of the metal binding group. Bioorg. Med. Chem. Lett. 12: 3595 3599.
28. Durand, D. J.,, B. G. Green,, J. F. O’Connell,, and S. K. Grant. 1999. Peptide aldehyde inhibitors of bacterial peptide deformylase. Arch. Biochem. Biophys. 367: 297 302.
29. Green, B. G.,, J. H. Toney,, J. W. Kozarich,, and S. K. Grant. 2000. Inhibition of bacterial peptide deformylase by biaryl acid analogs. Arch. Biochem. Biophys. 375: 355 358.
30. Barrett, J. F.,, and J. A. Hoch. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother. 42: 1529 1536.
31. Hilliard, J. J.,, R. M. Goldschmidt,, L. Licata,, E. Z. Baum,, and K. Bush. 1999. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial two-component systems. Antimicrob. Agents Chemother. 43: 1693 1699.
32. Rodrigue, A.,, Y. Quentin,, A. Lazdunski,, V. Méjean,, and M. Foglino. 2000. Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol. 8: 498 504.
33. Stock, J. B.,, M. G. Surette,, M. Levit,, and P. Park,. 1995. Twocomponent signal transduction systems: structure-function relationship and mechanisms of catalysis, p. 25 51. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. ASM Press, Washington, D.C.
34. Hlasta, D. J.,, J. P. Demers,, B. D. Foleno,, S. A. Fraga-Spano,, J. Guan,, J. J. Hilliard,, M. J. Macielag,, K. A. Phemeng,, C. M. Sheppard,, Z. Sui,, G. C. Webb,, M. A. Weidner-Wells,, H. Werblood,, and J. F. Barrett. 1998. Novel inhibitors of bacterial two-component systems with gram-positive antibacterial activity: pharmacophore identification based on the screening hit closantel. Bioorg. Med. Chem. Lett. 8: 1923 1928.
35. Macielag, M. J.,, J. P. Demers,, S. A. Fraga-Spano,, D. J. Hlasta,, S. G. Johnson,, R. M. Kanojia,, R. K. Russell,, Z. Sui,, M. A. Weidner-Wells,, H. Werblood,, B. D. Foleno,, R. M. Goldschmidt,, M. J. Loeloff,, G. C. Webb,, and J. F. Barrett. 1998. Substituted salicylanilides as inhibitors of twocomponent regulatory systems in bacteria. J. Med. Chem. 41: 2939 2945.
36. Matsushita, M.,, and K. D. Janda. 2002. Histidine kinases as targets for new antimicrobial agents. Bioorg. Med. Chem. Lett. 10: 855 867.
37. Sui, Z.,, J. Guan,, D. J. Hlasta,, M. J. Macielag,, B. D. Foleno,, R. M. Goldschmidt,, M. J. Loeloff,, G. C. Webb,, and J. F. Barrett. 1998. SAR studies of diaryltriazoles against bacterial twocomponent regulatory systems and their antibacterial activities. Bioorg. Med. Chem. Lett. 8: 1929 1934.
38. Weidner-Wells, M. A.,, K. A. Ohemeng,, V. N. Nguyen,, S. Fraga-Spano,, M. J. Macielag,, H. M. Werblood,, B. D. Foleno,, G. C. Webb,, J. F. Barrett,, and D. J. Hlasta. 2001. Amidino benzimidazole inhibitors of bacterial two-component systems. Bioorg. Med. Chem. Lett. 11: 1545 1548.
39. Bong, D. T.,, T. D. Clark,, J. R. Granja,, and M. R. Ghadiri. 2001. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40: 988 1011.
40. Clark, T. D.,, L. K. Buehler,, and M. R. Ghadiri. 1998. Selfassembling cyclic β-peptide nanotubes as artificial transmembrane ion channels. J. Am. Chem. Soc. 120: 651 656.
41. Fernandez-Lopez, S.,, H. S. Kim,, E. C. Choi,, M. Delgado,, J. R. Granja,, A. Khasanov,, K. Kraehenbuehl,, G. Long,, D. A. Weinberger,, K. M. Wilcoxen,, and M. R. Ghadiri. 2001. Antibacterial agents based on the cyclic DL-α-peptide architecture. Nature 412: 452 455.
42. Ghadiri, M. R.,, J. R. Granja,, and L. K. Buehler. 1994. Artificial transmembrane ion channels from self-assembling peptide nanotubes. Nature 369: 301 304.
43. Ghadiri, M. R.,, J. R. Granja,, R. A. Milligan,, D. E. McRee,, and N. Khazanovich. 1993. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 366: 324 327.
44. Kim, H. S.,, J. D. Hartgerink,, and M. R. Ghadiri. 1998. Oriented self-assembly of cyclic peptides nanotubes in lipid membranes. J. Am. Chem. Soc. 120: 4417 4424.
45. Dutton, C. J.,, M. A. Haxell,, H. A. I. McArthur,, and R. G. Wax. 2002. Peptide Antibiotics. Discovery, Modes of Action, and Applications. Marcel Dekker, Inc., New York, N.Y.
46. Friedrich, C. L.,, D. Moyles,, T. J. Beveridge,, and R. E. W. Hancock. 2000. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrob. Agents Chemother. 44: 2086 2092.
47. Scott, M. G.,, C. M. Rosenberg,, M. R. Gold,, B. B. Finlay,, and R. E. Hancock. 2000. An α-helical cationic antimicrobial peptide selectively modulates macrophage responses to lipopolysaccharide and directly alters macrophage gene expression. J. Immunol. 164: 549 553.
48. Strøm, M. B.,, B. E. Haug,, M. L. Skar,, W. Stensen,, T. Stiberg,, and J. S. Svendsen. 2003. The pharmacophore of short cationic antibacterial peptides. J. Med. Chem. 46: 1567 1570.
49. Zhang, L.,, and R. E. W. Hancock,. 2001. Peptide antibiotics, p. 209 257. In D. Hughes, and D. L. Andersson (ed.), Antibiotic Development and Resistance. Taylor & Francis, London, United Kingdom.
50. Zhang, L.,, A. Rozek,, and R. E. W. Hancock. 2001. Interaction of cationic antimicrobial peptides with model membranes. J. Biol. Chem. 276: 35714 35722.
51. Wilson, M.,, R. McNab,, and B. Henderson. 2002. Bacterial Disease Mechanisms. An Introduction to Cellular Microbiology, p. 307 309. Cambridge University Press, Cambridge, United Kingdom.
52. Desnottes, J. F. 1996. New targets and strategies for the development of antibacterial agents. Trends Biochem. Technol. 14: 134 140.
53. Domagala, J. M.,, and J. P. Sanchez. 1997. New approaches and agents to overcome e bacterial resistance. Annu. Rep. Med. Chem. 32: 111 120.
54. Setti, E. L.,, L. Quattrochio,, and R. G. Micetich. 1997. Current approaches to overcome bacterial resistance. Drugs Future 22: 271 284.
55. Campbell, J. W.,, and J. E. Cronan. 2001. Bacterial fatty acid biosynthesis: targets for antibacterial drug discovery. Annu. Rev. Microbiol. 55: 305 332.
56. Cronan, J. E.,, and C. O. Rock,. 1996. Biosynthesis of membrane lipids, p. 612 636. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
57. Daines, R. A.,, I. Pendrak,, K. Sham,, G. S. Van Aller,, A. K. Konstantinidis,, J. T. Lonsdale,, C. A. Janson,, X. Qiu,, M. Brandt,, S. S. Khandekar,, C. Silverman,, and M. S. Head. 2002. First X-ray cocrystal structure of a bacterial FabH condensing enzyme and a small molecule inhibitor achieved using rational design and homology modeling. J. Med. Chem. 46: 5 8.
58. Magnuson, K.,, S. Jackowski,, C. O. Rock,, and J. E. Cronan. 1993. Regulation of fatty acid biosynthesis in Escherichia coli. Microbiol. Rev. 57: 522 542.
59. Rock, C. O., 2000. Lipid biosynthesis, p. 55 61. In J. Lederberg (ed.), Encyclopedia of Microbiology, 2nd ed., vol. 3. Academic Press, Inc., San Diego, Calif.
60. Seefeld, M. A.,, W. H. Miller,, K. A. Newlander,, W. J. Burgess,, P. A. Elkins,, M. S. Head,, D. R. Jakas,, C. A. Janson,, T. D. Moore,, D. J. Payne,, S. Pearson,, B. J. Polizzi,, X. Qiu,, S. F. Rittenhouse,, I. N. Uzinskas,, N. G. Wallis,, and W. F. Huffman. 2003. Indolenaphthyridinones as inhibitors of bacterial enoyl- ACP reductases FabI and FabK. J. Med. Chem. 46: 1627 1635.
61. Sivaraman, S.,, J. Zwahlen,, A. F. Bell,, L. Hedstrom,, and P. J. Tonge. 2003. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Biochemistry 42: 4406 4413.
62. Bergler, H.,, S. Fuchsbichler,, G. Högenauer,, and F. Turnowsky. 1996. The enoyl-[acyl-carrier-protein] reductase (FabI) of Escherichia coli, which catalyzes a key regulatory step in fatty acid biosynthesis, accepts NADH and NADPH as cofactors and is inhibited by palmitoyl-CoA. Eur. J. Biochem. 242: 689 694.
63. Heath, R. J.,, and C. O. Rock. 1995. Enoyl-acyl carrier protein reductase ( fabI) plays a determinant role in completing cycles of fatty acid elongation in Escherichia coli. J. Biol. Chem. 270: 26538 26542.
64. Heath, R. J.,, and C. O. Rock. 2000. A triclosan-resistant bacterial enzyme. Nature 406: 145 146.
65. Heath, R. J.,, J. R. Rubin,, D. R. Holland,, E. Zhang,, M. E. Snow,, and C. O. Rock. 1999. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J. Biol. Chem. 274: 11110 11114.
66. Heerding, D. A.,, G. Chan,, W. E. DeWolf,, A. P. Fosberry,, C. A. Janson,, D. D. Jaworski,, E. McManus,, W. H. Miller,, T. D. Moore,, D. J. Payne,, X. Qiu,, S. F. Rittenhouse,, C. Slater- Radosti,, W. Smith,, D. T. Takata,, K. S. Vaidya,, C. C. K. Yuan,, and W. F. Huffman. 2001. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg. Med. Chem. Lett. 11: 2061 2065.
67. Levy, C. W.,, A. Roujeinkova,, S. Sedelnikova,, P. J. Baker,, A. R. Stuitje,, A. R. Slabas,, D. W. Rice,, and J. B. Rafferty. 1999. Molecular basis of triclosan activity. Nature 398: 383 384.
68. Miller, W. H.,, M. A. Seefeld,, K. A. Newlander,, I. N. Uzinskas,, W. J. Burgess,, D. A. Heerding,, C. C. K. Yuan,, M. S. Head,, D. J. Payne,, S. F. Rittenhouse,, T. D. Moore,, S. C. Pearson,, V. Berry,, W. E. DeWolf,, P. M. Keller,, B. J. Polizzi,, X. Qiu,, C. A. Janson,, and W. F. Huffman. 2002. Discovery of aminopyrimidine based inhibitors of bacterial enoyl-ACP reductase (FabI). J. Med. Chem. 45: 3246 3256.
69. Seefeld, M. A.,, W. H. Miller,, K. A. Newlander,, W. J. Burgess,, D. J. Payne,, S. F. Rittenhouse,, T. D. Moore,, W. E. DeWolf,, P. M. Keller,, X. Qiu,, C. A. Janson,, K. Vaidya,, A. P. Fosberry,, M. G. Smyth,, D. D. Jaworski,, C. Slater-Radosti,, and W. F. Huffman. 2001. Inhibitors of bacterial enoyl acyl carrier protein reductase (FabI): 2,9-disubstituted 1,2,3,4-tetrahydropyrido[ 3,4-b]indoles as potential antibacterial agents. Bioorg. Med. Chem. Lett. 11: 2241 2244.
70. Brown, P.,, D. S. Eggleston,, R. C. Haltiwanger,, R. L. Jarvest,, L. Mensah,, P. J. O’Hanlon,, and A. J. Pope. 2001. Synthetic analogues of SB-219383, novel C-glycosyl peptides as inhibitors of tyrosyl tRNA synthetase. Bioorg. Med. Chem. Lett. 11: 711 714.
71. Jarvest, R. L.,, J. M. Berge,, V. Berry,, E. F. Boyd,, M. J. Brown,, J. S. Elder,, A. K. Forrest,, A. P. Fosberry,, D. R. Gentry,, M. J. Hibbs,, D. D. Jaworski,, P. J. O’Hanlon,, A. J. Pope,, S. Rittenhouse,, R. J. Sheppard,, C. Slater-Radosti,, and A. Worby. 2002. Nanomolar inhibitors of Staphylococcus aureus methionyl tRNA synthetase with potent antibacterial activity against Gram-positive pathogens. J. Med. Chem. 45: 1959 1952.
72. Jarvest, R. L.,, J. M. Berge,, P. Brown,, D. W. Hamprecht,, D. J. McNair,, L. Mensah,, P. J. O’Hanlon,, and A. J. Pope. 2001. Potent synthetic inhibitors of tyrosyl tRNA synthetase derived from C-pyranosyl analogues of SB-219383. Bioorg. Med. Chem. Lett. 11: 715 718.
73. Jarvest, R. L.,, J. M. Berge,, C. S. V. Houge-Frydrych,, L. M. Mensah,, P. J. O’Hanlon,, and A. J. Pope. 2001. Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of carbocyclic analogues of the natural product SB-219383. Bioorg. Med. Chem. Lett. 11: 2499 2502.
74. Cox, R. J.,, A. Sutherland,, and J. C. Vederas. 2000. Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg. Med. Chem. 8: 843 871.
75. Ray, S. S.,, J. B. Bonanno,, K. R. Rajashankar,, M. G. Pinho,, G. He,, H. De Lencastre,, A. Tomasz,, and S. K. Burley. 2002. Cocrystal structures of diaminopimelate decarboxylase: mechanism, evolution, and inhibition of an antibiotic resistance accessory factor. Structure 10: 1499 1508.
76. Benson, T. E.,, M. S. Harris,, G. H. Choi,, J. I. Cialdella,, J. T. Herberg,, J. P. Martin,, and E. T. Baldwin. 2001. A structural variation for MurB: X-ray crystal structure of Staphylococcus aureus UDP- N-acetyl-enoylpyruvylglucosamine reductase (MurB). Biochemistry 40: 2340 2350.
77. van Heijenoort, J. 2001. Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat. Prod. Rep. 18: 503 519.
78. Reck, F.,, S. Marmor,, S. Fisher,, and M. A. Wuonola. 2001. Inhibitors of the bacterial cell wall biosynthesis enzyme MurC. Bioorg. Med. Chem. Lett. 11: 1451 1454.
79. Chiosis, G.,, and I. G. Boneca. 2001. Selective cleavage of DAla- D-Lac by small molecules: re-sensitizing resistant bacteria to vancomycin. Science 293: 1484 1487.
80. Entenäs, H.,, D. Soto,, S. J. Hultgren,, G. R. Marshall,, and F. Almqvist. 2000. Stereoselective synthesis of optically active β- lactams, potential inhibitors of pilus assembly in pathogenic bacteria. Org. Lett. 2: 2065 2067.
81. Larsson, A.,, J. Ohlsson,, K. W. Dodson,, S. J. Hultgren,, U. Nilsson,, and J. Kihlberg. 2003. Quantitative studies of the binding of the class II PapG adhesin from uropathogenic Escherichia coli to oligosaccharides. Bioorg. Med. Chem. 10: 2255 2261.
82. Mitchell, E.,, C. Houles,, D. Sudakevitz,, M. Wimmerova,, C. Gautier,, S. Pérez,, A. M. Wu,, N. Gilboa-Garber,, and A. Imberty. 2002. Structural basis for oligosaccharide-mediated adhesion of Pseudomonas aeruginosa in the lungs of cystic fibrosis patients. Nat. Struct. Biol. 9: 918 921.
83. Chen, M. H.,, M. G. Steiner,, S. E. de Laszlo,, A. A. Patchett,, M. S. Anderson,, S. A. Hyland,, H. R. Onishi,, L. L. Silver,, and C. R. Raetz. 1999. Carbohydroxamido-oxazolidines: antibacterial agents that target lipid A biosynthesis. Bioorg. Med. Chem. Lett. 9: 313 318.
84. Clements, M.,, F. Coignard,, I. Johnson,, S. Chandler,, S. Palan,, A. Waller,, J. Wijkmans,, and M. G. Hunter. 2002. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob. Agents Chemother. 46: 1793 1799.
85. Jackman, J. E.,, C. A. Fierke,, L. N. Tumey,, M. Pirrung,, T. Uchiyama,, S. H. Tahir,, O. Hindsgaul,, and C. R. H. Raetz. 2000. Antibacterial agents that target lipid A biosynthesis in gram-negative bacteria. Inhibition of diverse UDP-3- O-( R-3- hydroxymyristoyl)- N-acetylglucosamine deacetylases by substrate analogs containing zinc binding motifs. J. Biol. Chem. 275: 11001 11009.
86. Jackman, J. E.,, C. R. H. Raetz,, and C. A. Fierke. 1999. UDP-3- O-( R-3-hydroxymyristoyl)- N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38: 1902 1911.
87. Jackman, J. E.,, C. R. H. Raetz,, and C. A. Fierke. 2001. Sitedirected mutagenesis of the bacterial metalloamidase UDP-(3- O-acyl)- N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site. Biochemistry 40: 514 523.
88. Onishi, H. R.,, B. A. Pelak,, L. S. Gerckens,, L. L. Silver,, F. M. Kahan,, M. H. Chen,, A. A. Patchett,, S. M. Galloway,, S. A. Hyland,, M. S. Anderson,, and C. R. H. Raetz. 1996. Antibacterial agents that inhibit lipid A biosynthesis. Science 274: 980 982.
89. Brown, T. A. 1999. Genomes. John Wiley & Sons, Inc., New York, N.Y.
90. Atlas, R. M.,, D. Drell,, and C. Fraser. Bacterial genomes. Accepted for publication in Encyclopedia of Life Sciences, Nature Publishing Group, London, United Kingdom. [Online.] http://www.els.net.
91. Buysse, J. M. 2001. The role of genomics in antibacterial target discovery. Curr. Pharm. Des. 8: 1713 1726.
92. Mills, S. D. 2003. The role of genomics in antimicrobial discovery. J. Antimicrob. Chemother. 51: 749 752.
93. Rosamond, J.,, and A. Allsop. 2000. Harnessing the power of the genome in the search for new antibiotics. Science 287: 1973 1976.
94. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeño-Tearraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrel,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A4(2). Nature 417: 141 147.
95. Fleischmann, R. D.,, M. D. Adams,, O. White,, R. A. Clayton,, E. F. Kirkness,, A. R. Kerlavage,, C. J. Bult,, J. F. Tomb,, B. A. Dougherty,, J. M. Merrick,, K. McKenney,, G. Sutton,, W. FitzHugh,, C. Fields,, J. D. Gocayne,, J. Scott,, R. Shirley,, L. Liu,, A. Glodek,, J. M. Kelley,, J. F. Weidman,, C. A. Phillips,, T. Spriggs,, E. Hedblom,, M. D. Cotton,, T. R. Utterback,, M. C. Hanna,, D. T. Nguyen,, D. M. Saudek,, R. C. Brandon,, L. D. Fine,, J. L. Fritchman,, J. L. Fuhrmann,, N. S. M. Geoghagen,, C. L. Gnehm,, L. A. McDonald,, K. V. Small,, C. M. Fraser,, H. O. Smith,, and J. C. Venter. 1995. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269: 496 512.
96. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225 1240.
97. McClelland, M.,, K. E. Sanderson,, J. Spieth,, S. W. Clifton,, P. Latreille,, L. Courtney,, S. Porwollik,, J. Ali,, M. Dante,, F. Du,, S. Hou,, D. Layman,, S. Leonard,, C. Nguyen,, K. Scott,, A. Holmes,, N. Grewal,, E. Mulvaney,, E. Ryan,, H. Sun,, L. Florea,, W. Miller,, T. Stoneking,, M. Nhan,, R. Waterston,, and R. K. Wilson. 2001. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413: 852 856.
98. Parkhill, J.,, G. Dougan,, K. D. James,, N. R. Thomson,, D. Pickard,, J. Wain,, C. Churcher,, K. L. Mungall,, S. D. Bentley,, M. T. G. Holden,, M. Sebalhla,, S. Baker,, D. Basham,, K. Brooks,, T. Chillingworth,, P. Connerton,, A. Cronin,, P. Davis,, R. M. Davis,, L. Dowd,, N. White,, J. Farrar,, T. Feltwell,, N. Hamlin,, A. Haque,, T. T. Hien,, S. Holroyd,, K. Jagels,, A. Krogh,, T. S. Larsen,, S. Leather,, S. Moule,, P. O’Gaora,, C. Parry,, M. Quail,, K. Rutherford,, M. Simmonds,, J. Skelton,, K. Stevens,, S. Whitehead,, and B. G. Barrel. 2001. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413: 848 852.
99. Stover, C. K.,, X. Q. Pham,, A. L. Erwin,, S. D. Mizoguchi,, P. Warrener,, M. J. Hickey,, F. S. L. Brinkman,, W. O. Hufnagle,, D. J. Kowalik,, M. Lagrou,, R. L. Garber,, L. Goltry,, E. Tolentino,, S. Westbrock-Wadman,, Y. Yuan,, L. L. Brody,, S. N. Coulter,, K. R. Folger,, A. Kas,, K. Larbig,, R. Lim,, K. Smith,, D. Spencer,, G. K. S. Wong,, Z. Wu,, I. T. Paulsen,, J. Reizer,, M. H. Saier,, R. E. W. Hancock,, S. Lory,, and M. V. Olson. 2000. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406: 959 964.
100. Tettelin, H.,, K. E. Nelson,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, S. Peterson,, J. Heidelberg,, R. T. DeBoy,, D. H. Haft,, R. J. Dodson,, A. S. Durkin,, M. Gwinn,, J. F. Kolonay,, W. C. Nelson,, J. D. Peterson,, L. A. Umayam,, O. White,, S. L. Salzberg,, M. R. Lewis,, D. Radune,, E. Holtzapple,, H. Khouri,, A. M. Wolf,, T. R. Utterback,, C. L. Hansen,, L. A. McDonald,, T. V. Feldblyum,, S. Anginoli,, T. Dickinson,, E. K. Hickey,, I. E. Holt,, B. J. Loftus,, F. Yang,, H. O. Smith,, J. C. Venter,, B. A. Dougherty,, D. A. Morrison,, S. K. Hollingshead,, and C. M. Fraser. 2001. Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science 293: 498 506.
101. Blondelle, S. E.,, and R. A. Houghten. 1996. Novel antimicrobial compounds identified using synthetic combinatorial library technology. Trends Biotechnol. 14: 60 65.
102. Trias, J. 2001. The role of combichem in antibiotic discovery. Curr. Opin. Microbiol. 4: 520 525.
103. Billstein, S. A. 1994. How the pharmaceutical industry brings an antibiotic drug to market in the United States. Antimicrob. Agents Chemother. 38: 2679 2682.
104. Chopra, I. 1998. Research and development of antibacterial agents. Curr. Opin. Microbiol. 1: 495 501.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error