1887

Chapter 7 : β-Lactams, Penicillin-Binding Proteins, and β-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap07-2.gif

Abstract:

Several properties shared by some of the β-lactam antibiotics are spectral characteristics of the β-lactam group; however, in other cases the properties are very different, and it is difficult to give a clear picture of properties of the individual members and how they differ from each other. Penicillin-binding protein (PBPs) are a group of bacterial membrane-bound enzymes whose active sites are available in the periplasmic space. The production of β-lactamases is considered to be the most common mechanism of bacterial resistance to β-lactam antibiotics. According to Ambler, β-lactamases are also grouped into four molecular classes based on their primary sequence homology. Serine β-lactamases differ from serine DD-transpeptidases in that they catalyze the deacylation step very efficiently only with β-lactams that have an aromatic (planar) substituent joined to the secondary amide side chain. The amino acid alignments reveal several conserved boxes that consist of strict identities or homologous amino acids. The significance of the homologies and differences is highlighted by the recent results of X-ray crystallography and site-directed mutagenesis experiments that have demonstrated the three-dimensional structural similarities between representatives of β-lactamases enzymes. Structural studies suggested that the conserved residue Tyr150 is the catalytic base that activates the hydrolytic water for its attack on the acyl intermediate.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 7.1
Figure 7.1

Structures of representative classical and nonclassical β-lactam antibiotics.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.2
Figure 7.2

Basic skeleton and nomenclature systems of penicillins.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.3
Figure 7.3

Conformation of the sodium salt of benzylpenicillin in the solid state. R is –NHCOCH2C6H5. The absolute configuration of chiral centers and the α and β positions below or above the plane are shown.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.4
Figure 7.4

Chemical structure of 6-β-aminopenicillanic acid in its nonionized and zwitterionic forms.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.5
FIGURE 7.5

(a to c) Basic skeleton of cephalosporins and cephamycins (a), carbapenems (b), and clavulanic acid (c). (d and e) Chemical structures of cephalosporanic acid (d) and desacetylcephalosporanic acid (e).

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.6
FIGURE 7.6

Resonance in secondary amides, unstrained monocyclic β-lactams, and strained β-lactams.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.7
FIGURE 7.7

Hydrogen atoms in penicillins and cephalosporins and coupling signals in the 1H NMR spectra.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.8
FIGURE 7.8

Penicillanic acid derivative structure showing some positions where chemical transformations are made. Chemical mapping of the different positions and orientation of the molecule is very useful for structure-activity relationships.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.9
FIGURE 7.9

Carboxypeptidase and transpeptidase reactions (pathways I and II). These reactions are catalyzed by bacterial PBPs. Pathway III shows the action of a penicillin. The penicilloyl-transpeptidase is more stable than the acyl-d-alanyl-transpeptidase, and consequently the transfer of the acyl group to an amino group does not take place (pathway III).

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.10
FIGURE 7.10

Dreiding stereomodels of penicillin and of the acyl-d-alanyl-d-alanine end of the nascent peptidoglycan. Arrows indicate the position of the OC—N bond in the β-lactam ring of the penicillin and of the OC—N peptide bond joining the two d-alanine residues. Reprinted from D. J. Tipper and J. L. Strominger, Proc. Natl. Acad. Sci. USA 54:1133, 1965, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.11
FIGURE 7.11

Opening of the β-lactam ring by catalysis with a β-lactamase enzyme.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.12
FIGURE 7.12

Inactivation of penicillin by active-site serine β-lactamases.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.13
FIGURE 7.13

The penicillin-interactive, serine-active-site PBPs and β-lactamases. Enz, enzyme; C, antibiotic; Enz-C, noncovalent Michaelis complex; Enz-C*, covalent acyl-enzyme; P, inactive degradation product(s) of the antibiotic.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.14
FIGURE 7.14

Schematic drawing of a possible catalytic mechanism for class A β-lactamases. Through an electrostatic interaction between the ammonium group of Lys234 and the C-3 carboxylate the substrate is recognized by the enzyme in both ground-state binding and transition-state binding. Reprinted from H. Adachi, T. Ohta, and H. Matsuzawa, J. Biol. Chem. 266:3186–3191, 1991, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.15
FIGURE 7.15

Simplified mechanism of β-lactam hydrolysis by group C β-lactamases. Enz, enzyme.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.16
FIGURE 7.16

Proposed catalytic mechanism of benzylpenicillin hydrolysis by the mononuclear metallo-β-lactamase from B. cereus. H, histidine; Asp, aspartate. Adapted from S. Bounaga, A. P. Laws, M. Galleni, and M. I. Page, Biochem. J. 331:703–711, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.17
FIGURE 7.17

Catalytic mechanism of nitrocefin hydrolysis by the dizinc metallo-β-lactamase from B. fragilis. H, histidine; C, cysteine; Asp, aspartate; Asn, asparaginamide. Adapted from Z. Wang, W. Fast, and S. J. Benkovic, Biochemistry 38:10013–10023, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap7
1. Flynn, E. H. 1972. Cephalosporins and Penicillins. Chemistry and Biology. Academic Press, Inc., New York, N.Y.
2. Howe-Grant, M. 1993. Chemotherapeutics and Disease Control. John Wiley & Sons, Inc., New York, N.Y.
3. Page, M. I. 1992. The Chemistry of β-Lactams. Blackie Academic & Professional, London, United Kingdom.
4. Salton, M.,, and G. D. Shockman. 1981. β-Lactam Antibiotics. Mode of Action, New Developments, and Future Prospects. Academic Press, Inc., New York, N.Y.
5. Sheehan, J. C. 1982. The Enchanted Ring. The Untold Story of Penicillin. MIT Press, Cambridge, Mass.
6. Sykes, R. B.,, C. M. Cimarusti,, D. P. Bommer,, K. Bush,, D. M. Floyd,, N. H. Georgopapadakou,, W. H. Koster,, W. C. Liu,, W. L. Parker,, P. A. Principe,, M. L. Rathmum,, W. A. Slusarchyk,, W. H. Trejo,, and J. S. Wells. 1981. Monocyclic β-lactam antibiotics produced by bacteria. Nature 291:489491.
7. Demarco, P. V.,, and R. Nagerajan,. 1972. Physical-chemical properties of cephalosporins and penicillins, p. 311369. In E. H. Flynn (ed.), Cephalosporins and Penicillins. Chemistry and Biology . Academic Press, Inc., New York, N.Y.
8. Tipper, D. J.,, and J. L. Strominger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc. Natl. Acad. Sci. USA 54:11331141.
9. Waxman, D. J.,, and J. L. Strominger,. 1982. β-Lactam antibiotics: biochemical mode of action, p. 209285. In R. B. Morin,, and M. Gorman (ed.), Chemistry and Biology of β-Lactam Antibiotics, vol. 3. Academic Press, Inc., New York, N.Y.
10. Waxman, D. J.,, and J. L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52:825869.
11. Waxman, D. J.,, R. R. Yocum,, and J. L. Strominger. 1980. Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Philos. Trans. R. Soc. Lond. Ser. B 259:257271.
12. Beadle, B. M.,, R. A. Nicholas,, and B. K. Shoichet. 2001. Interaction energies between β-lactam antibiotics and E. coli penicillin-binding protein 5 by reversible thermal denaturation. Protein Sci. 10:12541259.
13. Denome, S. A.,, P. K. Elf,, T. A. Henderson,, D. E. Nelson,, and K. D. Young. 1999. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181:39813993.
14. Di Giulini, A. M.,, A. Dessen,, O. Dideberg,, and T. Vernet. 2003. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J. Bacteriol. 185:16501658.
15. Ghuysen, J. M. 1991. Serine β-lactamases and penicillinbinding proteins. Annu. Rev. Microbiol. 45:3767.
16. Ghuysen, J. M. 1994. Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol. 2:372380.
17. Ghuysen, J. M. 1996. Penicillin-binding proteins. Wall peptidoglycan assembly and resistance to penicillins: facts, doubts and hopes. Int. J. Antimicrob. Agents 8:4560.
18. Ghuysen, J. M.,, and G. Dive,. 1994. Biochemistry of the penicilloyl serine transferase, p. 103129. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
19. Goffin, C.,, and J. M. Ghuysen. 1998. Multimodular penicillinbinding proteins: family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62:10791093.
20. Herzberg, O.,, and J. Moult. 1991. Penicillin-binding and degrading enzymes. Curr. Opin. Struct. Biol. 1:946953.
21. Lee, W.,, M. A. McDonough,, L. P. Kotra,, Z. Li,, N. R, Silvaggi,, Y. Takeda,, J. A. Kelly,, and S. Mobashery. 2001. A 1.2-Å snapshot of the final step of bacterial cell wall biosynthesis. Proc. Natl. Acad. Sci. USA 98:14271431.
22. Nanninga, N. 1998. Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:110129.
23. Nelson, D. E.,, and K. D. Young. 2000. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182:17141721.
24. Dessen, A.,, N. Mouz,, E. Gordon,, J. Hopkins,, and O. Dideberg. 2001. Crystal structure of PBP2x from a highly penicillinresistant Streptococcus pneumoniae clinical isolate. J. Biol. Chem. 276:4510645112.
25. Gordon, E.,, N. Mouz,, E. Duée,, and O. Dideberg. 2000. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J. Mol. Biol. 299:477485.
26. Kelly, J. A.,, and A. P. Kuzin. 1995. The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 Å resolution. J. Mol. Biol. 254:223236.
27. Lim, D.,, and N. C. J. Strydnaka. 2002. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9:870876.
28. Pares, S.,, N. Mouz,, Y. Pétillot,, R. Hakenbeck,, and O. Dideberg. 1996. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat. Struct. Biol. 3:284288.
29. Rhazi, N.,, P. Charlier,, D. Dehareng,, D. Engher,, M. Vermeire,, J. M. Frère,, M. Nguyen-Distèche,, and E. Fonzé. 2003. Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein by site-directed mutagenesis and structural analysis. Biochemistry 42:28952906.
30. Matagne, A.,, A. Dubus,, M. Galleni,, and J. M. Frère. 1999. The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity. Nat. Prod. Rep. 16:119.
31. Medeiros, A. A. 1997. Evolution and dissemination of betalactamases accelerated by generations of beta-lactam antibiotics. Clin. Infect. Dis. 24(Suppl. 1):S19S45.
32. Ghuysen, J.-M., 1988. Evolution of DD-peptidases and β-lactamases, p. 268284. In P. Actor,, L. Daneo-Moore,, M. L. Higgins,, M. R. J. Salton,, and G. D. Shockman (ed.), Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function. American Society for Microbiology, Washington, D.C.
33. Massova, I.,, and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:117.
34. Massova, I.,, and S. Mobashery. 1999. Structural and mechanistic aspects of evolution of β-lactamases and penicillinbinding proteins. Curr. Pharm. Design 5:929937.
35. Bush, K. 1989. Characterization of β-lactamases. Antimicrob. Agents Chemother. 33:259263.
36. Bush, K. 1989. Classification of β-lactamases: groups 1, 2a, 2b, and 2b'. Antimicrob. Agents Chemother. 33:264270.
37. Bush, K. 1989. Classification of β-lactamases: groups 2c, 2d, 2e, 3, and 4. Antimicrob. Agents Chemother. 33:271276.
38. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:12111233.
39. Sykes, R. B.,, and M. Matthew. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2:115157.
40. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. Ser. B 289:321331.
41. Huovinen, P.,, S. H uovinen,, and G. A. Jacoby. 1988. Sequence of PSE-2 β-lactamase. Antimicrob. Agents Chemother. 32:134136.
42. Jaurin, B.,, and T. Grundstrom. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78:48974901.
43. Bonomo, R. A.,, J. R. Knox,, S. D. Rudin,, and D. Shlaes. 1997. Construction and characterization of an OHIO-1 β-lactamase bearing Met69Ile and Gly238Ser mutations. Antimicrob. Agents Chemother. 41:19401943.
44. Bouthors, A. T.,, N. Dagoneau-Blanchard,., T. Naas,, P. Nordmann,, V. Jarlier,, and W. Sougakoff. 1998. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 β-lactamase-hydrolysing third-generation cephalosporins. Biochem. J. 330:14431449.
45. Bouthors, A. T.,, J. Delettré,, P. Mugnier,, V. Jarlier,, and W. Sougakoff. 1996. Site-directed mutagenesis of residues 164, 170, 171, 179, 220, 237 and 242 in PER-1 β-lactamase hydrolysing expanded-spectrum cephalosporins. Protein Eng. 12:313318.
46. Gheorghiu, R.,, M. Yuan,, L. M. C. Hall,, and D. M. Livermore. 1997. Bases of variation in resistance to β-lactams in Klebsiella oxytoca isolates hyperproducing K1 β-lactamase. J. Antimicrob. Chemother. 40:533541.
47. Hata, M.,, Y. Fujii,, M. Ishii,, T. Hoshino,, and M. Tsuda. 2000. Catalytic mechanism of class A β-lactamases. The role of Glu166 and Ser130 in the deacylation reaction. Chem. Pharm. Bull. 48:447453.
48. Ma, L.,, Y. Ishii,, M. Ishiguro,, H. Matsuzawa,, and K. Yamaguchi. 1998. Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrob. Agents Chemother. 42:11811186.
49. Poirel, L.,, T. Naas,, M. Guibert,, E. B. Chaibi,, R. Labia,, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 43:573581.
50. Tzouvelekis, L. S.,, E. Tzelepi,, P. T. Tassios,, and N. J. Legakis. 2000. CTX-M-type β-lactamases: an emerging group of extendedspectrum enzymes. Int. J. Antimicrob. Agents 14:137142.
51. Adediran, S. A.,, and R. F. Pratt. 1999. β-Secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C β-lactamase. Biochemistry 38:14691477.
52. Bulychev, A.,, and S. Mobashery. 1999. Class C β-lactamases operate at the diffusion limit for turnover of their preferred cephalosporin substrates. Antimicrob. Agents Chemother. 43:17431746.
53. Hanson, N. D.,, and C. C. Sanders. 1999. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Design 8:881894.
54. Jacoby, G. A.,, and J. Tran. 1999. Sequence of the MIR-1 β-lactamase gene. Antimicrob. Agents Chemother. 43:17591760.
55. Marchese, A.,, G. Arlet,, G. C. Schito,, P. H. Lagrange,, and A. Philippon. 1998. Characterization of FOX-3, an AmpC-type plasmid-mediated β-lactamase from an Italian isolate of Klebsiella oxytoca. Antimicrob. Agents Chemother. 42:464467.
56. Patera, A.,, L. C. Blaszczak,, and B. K. Shoichet. 2000. Crystal structures of substrate and inhibitor complexes with AmpC β-lactamase: possible implications for substrate-assisted catalysis. J. Am. Chem. Soc. 122:1050410512.
57. Pfeifle, D.,, E. Janas,, and B. Wiedemann. 2000. Role of penicillin- binding proteins in the initiation of the AmpC β-lactamase expression in Enterobacter cloacae. Antimicrob. Agents Chemother. 44:169172.
58. Pratt, R. F.,, M. Dryjanski,, E. S. Wun,, and V. M. Marathias. 1996. 8-Hydroxypenillic acid from 6-aminopenicillanic acid: a new reaction catalyzed by class C β-lactamase. J. Am. Chem. Soc. 118:82078212.
59. Tondi, D.,, R. A. Powers,, E. Caselli,, M. C. Negri,, J. Blázquez,, M. P. Costi,, and B. K. Shoichet. 2001. Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chem. Biol. 8:593610.
60. Trépanier, S.,, J. R. Knox,, N. Clairoux,, F. Sanschagrin,, R. C. Levesque,, and A. Huletsky. 1999. Structure-function studies of Ser-289 in the class C β-lactamase from Enterobacter cloacae P99. Antimicrob. Agents Chemother. 43:543548.
61. Ledent, P.,, X. Raquet,, B. Joris,, J. Van Beeumen,, and J. M. Frère. 1993. A comparative study of class D β-lactamases. Biochem. J. 292:555562.
62. Naas, T.,, and P. Nordmann. 1999. OXA-type beta-lactamases. Curr. Pharm. Des. 5:865879.
63. Herzberg, O. 1991. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. J. Mol. Biol. 217:701719.
64. Herzberg, O.,, and C. C. H. Chen. 2001. Structures of the acylenzyme complexes of the Staphylococcus aureus β-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Biochemistry 40:23512358.
65. Herzberg, O.,, and J. Moult. 1987. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.5 Å resolution. Science 236:694701.
66. Knox, J. R.,, and P. C. Moews. 1991. β-Lactamase of Bacillus licheniformis 749/C refinement at 2 Å resolution and analysis of hydration. J. Mol. Biol. 220:435455.
67. Moews, P. C.,, J. R. Knox,, O. Dideberg,, P. Charlier,, and J. M. Frère. 1990. β-Lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins Struct. Funct. Genet. 7:156171.
68. Jelsch, C.,, F. Lenfant,, J. M. Masson,, and J. P. Samama. 1992. β-Lactamase TEM1 of E. coli. FEBS Lett. 299:135142.
69. Jelsch, C.,, L. Mourey,, J. M. Masson,, and J. P. Samama. 1993. Crystal structure of Escherichia coli TEM1 β-lactamase at 1.8 Å resolution. Proteins Struct. Funct. Genet. 16:364383.
70. Strynadka, N. C. J.,, H. Adachi,, S. E. Jensen,, K. Johns,, A. Sielecki,, C. Betzel,, K. Sutoh,, and M. N. G. James. 1992. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359:700706.
71. Strynadka, N. C. J.,, R. Martin,, S. E. Jennsen,, M. Gold,, and J. B. Jones. 1996. Structure-based design of a potent transition state analogue for TEM-1 β-lactamase. Nat. Struct. Biol. 3:688695.
72. Swarén, P.,, L. Maveyraud,, X. Raquet,, S. Cabantous,, C. Duez,, J.-D. Pédelacq,, S. Mariotte-Boyer,, L. Mourey,, R. Labia,, M.-H. Nicolas-Chanoine,, P. Nordmann,, J.-M. Frère,, and J.-P. Samama. 1998. X-ray analysis of the NMC-A β-lactamase at 1.64 Å resolution, a class A carbapenemase with broad substrate specificity. J. Biol. Chem. 273:2671426721.
73. Kuzin, A. P.,, M. Nukaga,, Y. Nukaga,, A. M. Nujer,, R. A. Bonomo,, and J. R. Knox. 1999. Structure of the SHV-1 β- lactamase. Biochemistry 38:57205727.
74. Traniert, S.,, A. T. Bouthors,, L. Maveyraudt,, V. Guillett,, W. Sougakoff,, and J. P. Samama. 2000. The high resolution crystal structure for class A β-lactamase PER-1 reveals the bases for its increase in breadth of activity. J. Biol. Chem. 275:2807528082.
75. Lim, D.,, F. Sanschagrin,, L. Passmore,, L. De Castro,, R. C. Levesque,, and N. C. J. Strynadka. 2001. Insights into the molecular basis for the carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry 40:395402.
76. Nukaga, M.,, K. Mayama,, G. V. Crichlow,, and J. R. Knox. 2002. Structure of an extended-spectrum class A β-lactamase from Proteus vulgaris K1. J. Mol. Biol. 317:107117.
77. Ibuka, A.,, A. Taguchi,, M. Ishiguro,, S. Fushinobu,, Y. Ishii,, S. Kamitori,, K. Okuyama,, K. Yamaguchi,, M. Konno,, and H. Matsuzawa. 1999. Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Å resolution. J. Mol. Biol. 285:20792087.
78. Lobkovsky, E.,, P. C. Moews,, H. Liu,, H. Zhao,, J. M. Frère,, and J. R. Knox. 1993. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cephalosporinase from ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA 90:1125711261.
79. Usher, K. C.,, L. C. Blaszczak,, G. S. Weston,, B. K. Shoichet,, and S. J. Remington. 1998. Three-dimensional structure of AmpC β-lactamase from Escherichia coli to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry 37:1608216092.
80. Oefner, C.,, A. D'Arcy,, J. J. Daly,, K. Gubernator,, R. L. Charnas,, I. Heinze,, C. Hubschwerlen,, and F. K. Winkler. 1990. Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactamase hydrolysis. Nature 343:284288.
81. Golemi, D.,, L. Maveyroud,, S. Vakulenku,, S. Tranier,, A. Ishiwata,, L. P. Kotra,, J. P. Samama,, and S. Mobashery. 2000. The first structural and mechanistic insights for class D β-lactamases: evidence for a novel catalytic process for turnover of β-lactam antibiotics. J. Am. Chem. Soc. 122:61326133.
82. Maveyraud, L.,, D. Golemi,, L. P. Kotra,, S. Tranier,, S. Vakulenko,, S. Mobashery,, and J. P. Samama. 2000. Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8:12891298.
83. Paetzel, M.,, F. Danel,, L. Castro,, S. C. Mosimann,, M. G. P. Page,, and N. C. J. Strynadka. 2000. Crystal structure of the class D β-lactamase OXA-10. Nat. Struct. Biol. 7:918925.
84. Frère, J. M.,, A. Dubus,, M. Galleni,, A. Matagne,, and G. Amicosante. 1999. Mechanistic diversity of β-lactamases. Biochem. Soc. Trans. 27:5863.
85. Page, M. I. 1999. The reactivity of β-lactams, the mechanism of catalysis and the inhibition of β-lactamases. Curr. Pharm. Design 5:895913.
86. Page, M. I.,, and A. P. Laws. 1998. The mechanism of catalysis and the inhibition of β-lactamases. J. Chem. Soc. Chem. Commun. 1998:16091617.
87. Adachi, H.,, T. Ohta,, and H. Matsuzawa. 1991. Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266:31863191.
88. Atanasov, B. P.,, D. Mustafi,, and M. M. Makinen. 2000. Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases. Proc. Natl. Acad. Sci. USA 97:31603165.
89. Ishiguro, M.,, and S. Imajo. 1996. Modeling study on a hydrolytic mechanism of class A β-lactamases. J. Med. Chem. 39:22072218.
90. Matagne, A.,, and J. M. Frère. 1995. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A β-lactamases. Biochim. Biophys. Acta 1246:109127.
91. Matagne, A.,, J. Lamotte-Brasseur,, and J. M. Frère. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581598.
92. Bush, K. 1998. Metallo-β-lactamases: a class apart. Clin. Infect. Dis. 27(Suppl. 1):4053.
93. Cricco, J. A.,, and A. J. Vila. 1999. Class B β-lactamases: the importance of being metallic. Curr. Pharm. Design 5:915927.
94. Felici, A.,, G. Amicosante,, A. Oratore,, R. Strom,, P. Ledent,, B. Koris,, L. Fanuel,, and J. M. Frère. 1993. An overview of the kinetic parameters of class B β-lactamases. Biochem. J. 291:151155.
95. Galleni, M.,, J. Lamotte-Brasseur,, G. M. Rossolini,, J. Spencer,, O. Dideberg,, J. M. Frère, and The Metallo-β-Lactamase Working Group. 2001. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45:660663.
96. Gilson, H. S. R.,, and M. Krauss. 1999. Structure and spectroscopy of metallo-β-lactamase active sites. J. Am. Chem. Soc. 121:69846989.
97. Payne, D. J. 1993. Metallo-β-lactamases—a new therapeutic challenge. J. Mol. Microbiol. 39:9399.
98. Payne, D. J.,, R. Cramp,, J. H. Bateson,, J. Neale,, and D. Knowles. 1994. Rapid identification of metallo- and serine β-lactamases. Antimicrob. Agents Chemother. 38:991996.
99. Wang, Z.,, W. Fast,, A. M. Valentine,, and S. J. Benkovic. 1999. Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3:614622.
100. Concha, N. O.,, C. A. Janson,, P. Rowling,, S. Pearson,, C. A. Cheever,, B. P. Clarke,, C. Lewis,, M. Galleni,, J. M. Frère,, D. J. Payne,, J. H. Bateson,, and S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39:42884298.
101. Carfi, A.,, Duée, E.,, R. Paul-Soto,, M. Galleni,, J. M. Frère,, and O. Dideberg. 1998. X-ray structure of the ZnII β-lactamase from Bacteroides fragilis in an orthorhombic crystal form. Acta Crystallogr. D54:4757.
102. Concha, N. O.,, B. A. Rasmussen,, K. Bush,, and O. Herzberg. 1996. Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4:823836.
103. Spencer, J.,, A. R. Clarke,, and T. R. Walsh. 2001. Novel mechanism of hydrolysis of therapeutic β-lactamase by Stenotrophomonas maltophilia L1 metallo-β-lactamase. J. Biol. Chem. 276:3363833644.
104. Ullah, J. H.,, T. R. Walsh,, I. A. Taylor,, D. C. Emery,, C. S. Verma,, S. J. Gamblin,, and J. Spencer. 1998. The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution. J. Mol. Biol. 284:125136.
105. Carfi, A.,, E. Duée,, M. Galeni,, J. M. Frère,, and O. Dideberg. 1998. 1.85 Å resolution structure of the ZnII β-lactamase from Bacillus cereus. Acta Crystallogr. D54:313323.
106. Carfi, A.,, S. Pares,, E. Duée,, M. Galleni,, C. Duez,, J. M. Frère,, and O. Dideberg. 1995. The 3-D structure of a zinc metallo-β-lactamase reveals a new type of protein fold. EMBO J. 14:49144921.
107. Fabiane, S. M.,, M. K. Sohi,, T. Wan,, D. J. Payne,, J. H. Bateson,, T. Mitchell,, and B. Sutton. 1998. Crystal structure of the zincdependent β-lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37:1240412411.
108. Bounaga, S.,, A. P. Laws,, M. Galleni,, and M. I. Page. 1998. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem. J. 331:703711.
109. Cricco, J. A.,, E. G. Orellano,, R. R. Rasia,, E. A. Ceccarelli,, and A. J. Vila. 1999. Metallo-β-lactamases: does it take two to tango? Coord. Chem. Rev. 190192:519535.
110. Crowder, M. W.,, Z. Wang,, S. L. Franklin,, E. P. Zovinka,, and S. J. Benkovic. 1996. Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis. Biochemistry 35:1212612132.
111. Franceschini, N. A.,, B. Caravelli,, J. D. Docquier,, M. Galleni,, J. M. Frère,, G. Amicosante,, and G. M. Rossolini. 2000. Purification and biochemical characterization of the VIM-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 44:30033007.
112. Hernandez Valladares, M.,, A. Felici,, G. Weber,, H. W. Adolph,, M. Zeppezauer,, G. M. Rossolini,, G. Amicosante,, J. M. Frère,, and M. Galleni. 1997. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 36:1153411541.
113. Kaminskaia, N. V.,, B. Spingler,, and S. J. Lippard. 2000. Hydrolysis of β-lactam antibiotics catalyzed by dinuclear zinc(II) complexes: functional mimics of metallo-β-lactamases. J. Am. Chem. Soc. 122:64116422.
114. McManus-Munoz, S.,, and M. W. Crowder. 1999. Kinetic mechanism of metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Biochemistry 38:15471553.
115. Orellano, E. G.,, J. E. Giardini,, J. A. Cricco,, E. A. Ceccarelli,, and A. J. Vila. 1998. Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry 37:1017310180.
116. Paul-Soto, R.,, R. Bauer,, J. M. Frère,, M. Galleni,, W. Meyer-Klauckel,, H. Nolting,, G. M. Rossolini,, D. de Seny,, M. Hernandez-Valladares,, M. Zeppezauer,, and H.W. Adolph. 1999. Mono- and binuclear Zn2+-β-lactamase. Role of the conserved cysteine in the catalytic mechanism J. Biol. Chem. 274:1324213249.
117. Sutton, B. J.,, P. J. Artyniuk,, A. E. Cordero-Barbosa,, C. Little,, D. C. Phillips,, and S. G. Welley. 1987. An X-ray crystallographic study of β-lactamase I from Bacillus cereus at 0.35 nm resolution. Biochem. J. 248:181188.
118. Wang, Z.,, W. Fast,, and S. J. Benkovic. 1998. Direct observation of an enzyme-bound intermediate in the catalytic cycle of the metallo-β-lactamase from Bacteroides fragilis. J. Am. Chem. Soc. 120:1078810789.
119. Wang, Z.,, W. Fast,, and S. J. Benkovic. 1999. On the mechanism of the metallo-β-lactamase from Bacteroides fragilis. Biochemistry 38:1001310023.

Tables

Generic image for table
Table 7.1

Properties of the PBPs of E. coli K-12 a

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Generic image for table
Table 7.2

β-Lactamase classification a

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error