1887

Chapter 7 : β-Lactams, Penicillin-Binding Proteins, and β-Lactamases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817794/9781555812584_Chap07-2.gif

Abstract:

Several properties shared by some of the β-lactam antibiotics are spectral characteristics of the β-lactam group; however, in other cases the properties are very different, and it is difficult to give a clear picture of properties of the individual members and how they differ from each other. Penicillin-binding protein (PBPs) are a group of bacterial membrane-bound enzymes whose active sites are available in the periplasmic space. The production of β-lactamases is considered to be the most common mechanism of bacterial resistance to β-lactam antibiotics. According to Ambler, β-lactamases are also grouped into four molecular classes based on their primary sequence homology. Serine β-lactamases differ from serine DD-transpeptidases in that they catalyze the deacylation step very efficiently only with β-lactams that have an aromatic (planar) substituent joined to the secondary amide side chain. The amino acid alignments reveal several conserved boxes that consist of strict identities or homologous amino acids. The significance of the homologies and differences is highlighted by the recent results of X-ray crystallography and site-directed mutagenesis experiments that have demonstrated the three-dimensional structural similarities between representatives of β-lactamases enzymes. Structural studies suggested that the conserved residue Tyr150 is the catalytic base that activates the hydrolytic water for its attack on the acyl intermediate.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 7.1
Figure 7.1

Structures of representative classical and nonclassical β-lactam antibiotics.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.2
Figure 7.2

Basic skeleton and nomenclature systems of penicillins.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.3
Figure 7.3

Conformation of the sodium salt of benzylpenicillin in the solid state. R is –NHCOCH2C6H5. The absolute configuration of chiral centers and the α and β positions below or above the plane are shown.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.4
Figure 7.4

Chemical structure of 6-β-aminopenicillanic acid in its nonionized and zwitterionic forms.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.5
FIGURE 7.5

(a to c) Basic skeleton of cephalosporins and cephamycins (a), carbapenems (b), and clavulanic acid (c). (d and e) Chemical structures of cephalosporanic acid (d) and desacetylcephalosporanic acid (e).

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.6
FIGURE 7.6

Resonance in secondary amides, unstrained monocyclic β-lactams, and strained β-lactams.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.7
FIGURE 7.7

Hydrogen atoms in penicillins and cephalosporins and coupling signals in the 1H NMR spectra.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.8
FIGURE 7.8

Penicillanic acid derivative structure showing some positions where chemical transformations are made. Chemical mapping of the different positions and orientation of the molecule is very useful for structure-activity relationships.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.9
FIGURE 7.9

Carboxypeptidase and transpeptidase reactions (pathways I and II). These reactions are catalyzed by bacterial PBPs. Pathway III shows the action of a penicillin. The penicilloyl-transpeptidase is more stable than the acyl-d-alanyl-transpeptidase, and consequently the transfer of the acyl group to an amino group does not take place (pathway III).

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.10
FIGURE 7.10

Dreiding stereomodels of penicillin and of the acyl-d-alanyl-d-alanine end of the nascent peptidoglycan. Arrows indicate the position of the OC—N bond in the β-lactam ring of the penicillin and of the OC—N peptide bond joining the two d-alanine residues. Reprinted from D. J. Tipper and J. L. Strominger, Proc. Natl. Acad. Sci. USA 54:1133, 1965, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.11
FIGURE 7.11

Opening of the β-lactam ring by catalysis with a β-lactamase enzyme.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.12
FIGURE 7.12

Inactivation of penicillin by active-site serine β-lactamases.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.13
FIGURE 7.13

The penicillin-interactive, serine-active-site PBPs and β-lactamases. Enz, enzyme; C, antibiotic; Enz-C, noncovalent Michaelis complex; Enz-C*, covalent acyl-enzyme; P, inactive degradation product(s) of the antibiotic.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.14
FIGURE 7.14

Schematic drawing of a possible catalytic mechanism for class A β-lactamases. Through an electrostatic interaction between the ammonium group of Lys234 and the C-3 carboxylate the substrate is recognized by the enzyme in both ground-state binding and transition-state binding. Reprinted from H. Adachi, T. Ohta, and H. Matsuzawa, J. Biol. Chem. 266:3186–3191, 1991, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.15
FIGURE 7.15

Simplified mechanism of β-lactam hydrolysis by group C β-lactamases. Enz, enzyme.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.16
FIGURE 7.16

Proposed catalytic mechanism of benzylpenicillin hydrolysis by the mononuclear metallo-β-lactamase from B. cereus. H, histidine; Asp, aspartate. Adapted from S. Bounaga, A. P. Laws, M. Galleni, and M. I. Page, Biochem. J. 331:703–711, 1998, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.17
FIGURE 7.17

Catalytic mechanism of nitrocefin hydrolysis by the dizinc metallo-β-lactamase from B. fragilis. H, histidine; C, cysteine; Asp, aspartate; Asn, asparaginamide. Adapted from Z. Wang, W. Fast, and S. J. Benkovic, Biochemistry 38:10013–10023, 1999, with permission from the publisher.

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817794.chap7
1. Flynn, E. H. 1972. Cephalosporins and Penicillins. Chemistry and Biology. Academic Press, Inc., New York, N.Y.
2. Howe-Grant, M. 1993. Chemotherapeutics and Disease Control. John Wiley & Sons, Inc., New York, N.Y.
3. Page, M. I. 1992. The Chemistry of β-Lactams. Blackie Academic & Professional, London, United Kingdom.
4. Salton, M.,, and G. D. Shockman. 1981. β-Lactam Antibiotics. Mode of Action, New Developments, and Future Prospects. Academic Press, Inc., New York, N.Y.
5. Sheehan, J. C. 1982. The Enchanted Ring. The Untold Story of Penicillin. MIT Press, Cambridge, Mass.
6. Sykes, R. B.,, C. M. Cimarusti,, D. P. Bommer,, K. Bush,, D. M. Floyd,, N. H. Georgopapadakou,, W. H. Koster,, W. C. Liu,, W. L. Parker,, P. A. Principe,, M. L. Rathmum,, W. A. Slusarchyk,, W. H. Trejo,, and J. S. Wells. 1981. Monocyclic β-lactam antibiotics produced by bacteria. Nature 291: 489 491.
7. Demarco, P. V.,, and R. Nagerajan,. 1972. Physical-chemical properties of cephalosporins and penicillins, p. 311 369. In E. H. Flynn (ed.), Cephalosporins and Penicillins. Chemistry and Biology . Academic Press, Inc., New York, N.Y.
8. Tipper, D. J.,, and J. L. Strominger. 1965. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl- D-alanyl- D-alanine. Proc. Natl. Acad. Sci. USA 54: 1133 1141.
9. Waxman, D. J.,, and J. L. Strominger,. 1982. β-Lactam antibiotics: biochemical mode of action, p. 209 285. In R. B. Morin,, and M. Gorman (ed.), Chemistry and Biology of β-Lactam Antibiotics , vol. 3. Academic Press, Inc., New York, N.Y.
10. Waxman, D. J.,, and J. L. Strominger. 1983. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Annu. Rev. Biochem. 52: 825 869.
11. Waxman, D. J.,, R. R. Yocum,, and J. L. Strominger. 1980. Penicillins and cephalosporins are active site-directed acylating agents: evidence in support of the substrate analogue hypothesis. Philos. Trans. R. Soc. Lond. Ser. B 259: 257 271.
12. Beadle, B. M.,, R. A. Nicholas,, and B. K. Shoichet. 2001. Interaction energies between β-lactam antibiotics and E. coli penicillin-binding protein 5 by reversible thermal denaturation. Protein Sci. 10: 1254 1259.
13. Denome, S. A.,, P. K. Elf,, T. A. Henderson,, D. E. Nelson,, and K. D. Young. 1999. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181: 3981 3993.
14. Di Giulini, A. M.,, A. Dessen,, O. Dideberg,, and T. Vernet. 2003. Functional characterization of penicillin-binding protein 1b from Streptococcus pneumoniae. J. Bacteriol. 185: 1650 1658.
15. Ghuysen, J. M. 1991. Serine β-lactamases and penicillinbinding proteins. Annu. Rev. Microbiol. 45: 37 67.
16. Ghuysen, J. M. 1994. Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol. 2: 372 380.
17. Ghuysen, J. M. 1996. Penicillin-binding proteins. Wall peptidoglycan assembly and resistance to penicillins: facts, doubts and hopes. Int. J. Antimicrob. Agents 8: 45 60.
18. Ghuysen, J. M.,, and G. Dive,. 1994. Biochemistry of the penicilloyl serine transferase, p. 103 129. In J. M. Ghuysen, and R. Hakenbeck (ed.), Bacterial Cell Wall. Elsevier, Amsterdam, The Netherlands.
19. Goffin, C.,, and J. M. Ghuysen. 1998. Multimodular penicillinbinding proteins: family of orthologs and paralogs. Microbiol. Mol. Biol. Rev. 62: 1079 1093.
20. Herzberg, O.,, and J. Moult. 1991. Penicillin-binding and degrading enzymes. Curr. Opin. Struct. Biol. 1: 946 953.
21. Lee, W.,, M. A. McDonough,, L. P. Kotra,, Z. Li,, N. R, Silvaggi,, Y. Takeda,, J. A. Kelly,, and S. Mobashery. 2001. A 1.2-Å snapshot of the final step of bacterial cell wall biosynthesis. Proc. Natl. Acad. Sci. USA 98: 1427 1431.
22. Nanninga, N. 1998. Morphogenesis of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 110 129.
23. Nelson, D. E.,, and K. D. Young. 2000. Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J. Bacteriol. 182: 1714 1721.
24. Dessen, A.,, N. Mouz,, E. Gordon,, J. Hopkins,, and O. Dideberg. 2001. Crystal structure of PBP2x from a highly penicillinresistant Streptococcus pneumoniae clinical isolate. J. Biol. Chem. 276: 45106 45112.
25. Gordon, E.,, N. Mouz,, E. Duée,, and O. Dideberg. 2000. The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. J. Mol. Biol. 299: 477 485.
26. Kelly, J. A.,, and A. P. Kuzin. 1995. The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 Å resolution. J. Mol. Biol. 254: 223 236.
27. Lim, D.,, and N. C. J. Strydnaka. 2002. Structural basis for the β-lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus. Nat. Struct. Biol. 9: 870 876.
28. Pares, S.,, N. Mouz,, Y. Pétillot,, R. Hakenbeck,, and O. Dideberg. 1996. X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme. Nat. Struct. Biol. 3: 284 288.
29. Rhazi, N.,, P. Charlier,, D. Dehareng,, D. Engher,, M. Vermeire,, J. M. Frère,, M. Nguyen-Distèche,, and E. Fonzé. 2003. Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein by site-directed mutagenesis and structural analysis. Biochemistry 42: 2895 2906.
30. Matagne, A.,, A. Dubus,, M. Galleni,, and J. M. Frère. 1999. The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity. Nat. Prod. Rep. 16: 1 19.
31. Medeiros, A. A. 1997. Evolution and dissemination of betalactamases accelerated by generations of beta-lactam antibiotics. Clin. Infect. Dis. 24( Suppl. 1): S19 S45.
32. Ghuysen, J.-M., 1988. Evolution of DD-peptidases and β-lactamases, p. 268 284. In P. Actor,, L. Daneo-Moore,, M. L. Higgins,, M. R. J. Salton,, and G. D. Shockman (ed.), Antibiotic Inhibition of Bacterial Cell Surface Assembly and Function. American Society for Microbiology, Washington, D.C.
33. Massova, I.,, and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42: 1 17.
34. Massova, I.,, and S. Mobashery. 1999. Structural and mechanistic aspects of evolution of β-lactamases and penicillinbinding proteins. Curr. Pharm. Design 5: 929 937.
35. Bush, K. 1989. Characterization of β-lactamases. Antimicrob. Agents Chemother. 33: 259 263.
36. Bush, K. 1989. Classification of β-lactamases: groups 1, 2a, 2b, and 2b'. Antimicrob. Agents Chemother. 33: 264 270.
37. Bush, K. 1989. Classification of β-lactamases: groups 2c, 2d, 2e, 3, and 4. Antimicrob. Agents Chemother. 33: 271 276.
38. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: 1211 1233.
39. Sykes, R. B.,, and M. Matthew. 1976. The β-lactamases of gram-negative bacteria and their role in resistance to β-lactam antibiotics. J. Antimicrob. Chemother. 2: 115 157.
40. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. Ser. B 289: 321 331.
41. Huovinen, P.,, S. H uovinen,, and G. A. Jacoby. 1988. Sequence of PSE-2 β-lactamase. Antimicrob. Agents Chemother. 32: 134 136.
42. Jaurin, B.,, and T. Grundstrom. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78: 4897 4901.
43. Bonomo, R. A.,, J. R. Knox,, S. D. Rudin,, and D. Shlaes. 1997. Construction and characterization of an OHIO-1 β-lactamase bearing Met69Ile and Gly238Ser mutations. Antimicrob. Agents Chemother. 41: 1940 1943.
44. Bouthors, A. T.,, N. Dagoneau-Blanchard,., T. Naas,, P. Nordmann,, V. Jarlier,, and W. Sougakoff. 1998. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 β-lactamase-hydrolysing third-generation cephalosporins. Biochem. J. 330: 1443 1449.
45. Bouthors, A. T.,, J. Delettré,, P. Mugnier,, V. Jarlier,, and W. Sougakoff. 1996. Site-directed mutagenesis of residues 164, 170, 171, 179, 220, 237 and 242 in PER-1 β-lactamase hydrolysing expanded-spectrum cephalosporins. Protein Eng. 12: 313 318.
46. Gheorghiu, R.,, M. Yuan,, L. M. C. Hall,, and D. M. Livermore. 1997. Bases of variation in resistance to β-lactams in Klebsiella oxytoca isolates hyperproducing K1 β-lactamase. J. Antimicrob. Chemother. 40: 533 541.
47. Hata, M.,, Y. Fujii,, M. Ishii,, T. Hoshino,, and M. Tsuda. 2000. Catalytic mechanism of class A β-lactamases. The role of Glu166 and Ser130 in the deacylation reaction. Chem. Pharm. Bull. 48: 447 453.
48. Ma, L.,, Y. Ishii,, M. Ishiguro,, H. Matsuzawa,, and K. Yamaguchi. 1998. Cloning and sequencing of the gene encoding Toho-2, a class A β-lactamase preferentially inhibited by tazobactam. Antimicrob. Agents Chemother. 42: 1181 1186.
49. Poirel, L.,, T. Naas,, M. Guibert,, E. B. Chaibi,, R. Labia,, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 43: 573 581.
50. Tzouvelekis, L. S.,, E. Tzelepi,, P. T. Tassios,, and N. J. Legakis. 2000. CTX-M-type β-lactamases: an emerging group of extendedspectrum enzymes. Int. J. Antimicrob. Agents 14: 137 142.
51. Adediran, S. A.,, and R. F. Pratt. 1999. β-Secondary and solvent deuterium kinetic isotope effects on catalysis by the Streptomyces R61 DD-peptidase: comparisons with a structurally similar class C β-lactamase. Biochemistry 38: 1469 1477.
52. Bulychev, A.,, and S. Mobashery. 1999. Class C β-lactamases operate at the diffusion limit for turnover of their preferred cephalosporin substrates. Antimicrob. Agents Chemother. 43: 1743 1746.
53. Hanson, N. D.,, and C. C. Sanders. 1999. Regulation of inducible AmpC beta-lactamase expression among Enterobacteriaceae. Curr. Pharm. Design 8: 881 894.
54. Jacoby, G. A.,, and J. Tran. 1999. Sequence of the MIR-1 β-lactamase gene. Antimicrob. Agents Chemother. 43: 1759 1760.
55. Marchese, A.,, G. Arlet,, G. C. Schito,, P. H. Lagrange,, and A. Philippon. 1998. Characterization of FOX-3, an AmpC-type plasmid-mediated β-lactamase from an Italian isolate of Klebsiella oxytoca. Antimicrob. Agents Chemother. 42: 464 467.
56. Patera, A.,, L. C. Blaszczak,, and B. K. Shoichet. 2000. Crystal structures of substrate and inhibitor complexes with AmpC β-lactamase: possible implications for substrate-assisted catalysis. J. Am. Chem. Soc. 122: 10504 10512.
57. Pfeifle, D.,, E. Janas,, and B. Wiedemann. 2000. Role of penicillin- binding proteins in the initiation of the AmpC β-lactamase expression in Enterobacter cloacae. Antimicrob. Agents Chemother. 44: 169 172.
58. Pratt, R. F.,, M. Dryjanski,, E. S. Wun,, and V. M. Marathias. 1996. 8-Hydroxypenillic acid from 6-aminopenicillanic acid: a new reaction catalyzed by class C β-lactamase. J. Am. Chem. Soc. 118: 8207 8212.
59. Tondi, D.,, R. A. Powers,, E. Caselli,, M. C. Negri,, J. Blázquez,, M. P. Costi,, and B. K. Shoichet. 2001. Structure-based design and in-parallel synthesis of inhibitors of AmpC β-lactamase. Chem. Biol. 8: 593 610.
60. Trépanier, S.,, J. R. Knox,, N. Clairoux,, F. Sanschagrin,, R. C. Levesque,, and A. Huletsky. 1999. Structure-function studies of Ser-289 in the class C β-lactamase from Enterobacter cloacae P99. Antimicrob. Agents Chemother. 43: 543 548.
61. Ledent, P.,, X. Raquet,, B. Joris,, J. Van Beeumen,, and J. M. Frère. 1993. A comparative study of class D β-lactamases. Biochem. J. 292: 555 562.
62. Naas, T.,, and P. Nordmann. 1999. OXA-type beta-lactamases. Curr. Pharm. Des. 5: 865 879.
63. Herzberg, O. 1991. Refined crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.0 Å resolution. J. Mol. Biol. 217: 701 719.
64. Herzberg, O.,, and C. C. H. Chen. 2001. Structures of the acylenzyme complexes of the Staphylococcus aureus β-lactamase mutant Glu166Asp:Asn170Gln with benzylpenicillin and cephaloridine. Biochemistry 40: 2351 2358.
65. Herzberg, O.,, and J. Moult. 1987. Bacterial resistance to β-lactam antibiotics: crystal structure of β-lactamase from Staphylococcus aureus PC1 at 2.5 Å resolution. Science 236: 694 701.
66. Knox, J. R.,, and P. C. Moews. 1991. β-Lactamase of Bacillus licheniformis 749/C refinement at 2 Å resolution and analysis of hydration. J. Mol. Biol. 220: 435 455.
67. Moews, P. C.,, J. R. Knox,, O. Dideberg,, P. Charlier,, and J. M. Frère. 1990. β-Lactamase of Bacillus licheniformis 749/C at 2 Å resolution. Proteins Struct. Funct. Genet. 7: 156 171.
68. Jelsch, C.,, F. Lenfant,, J. M. Masson,, and J. P. Samama. 1992. β-Lactamase TEM1 of E. coli. FEBS Lett. 299: 135 142.
69. Jelsch, C.,, L. Mourey,, J. M. Masson,, and J. P. Samama. 1993. Crystal structure of Escherichia coli TEM1 β-lactamase at 1.8 Å resolution. Proteins Struct. Funct. Genet. 16: 364 383.
70. Strynadka, N. C. J.,, H. Adachi,, S. E. Jensen,, K. Johns,, A. Sielecki,, C. Betzel,, K. Sutoh,, and M. N. G. James. 1992. Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution. Nature 359: 700 706.
71. Strynadka, N. C. J.,, R. Martin,, S. E. Jennsen,, M. Gold,, and J. B. Jones. 1996. Structure-based design of a potent transition state analogue for TEM-1 β-lactamase. Nat. Struct. Biol. 3: 688 695.
72. Swarén, P.,, L. Maveyraud,, X. Raquet,, S. Cabantous,, C. Duez,, J.-D. Pédelacq,, S. Mariotte-Boyer,, L. Mourey,, R. Labia,, M.-H. Nicolas-Chanoine,, P. Nordmann,, J.-M. Frère,, and J.-P. Samama. 1998. X-ray analysis of the NMC-A β-lactamase at 1.64 Å resolution, a class A carbapenemase with broad substrate specificity. J. Biol. Chem. 273: 26714 26721.
73. Kuzin, A. P.,, M. Nukaga,, Y. Nukaga,, A. M. Nujer,, R. A. Bonomo,, and J. R. Knox. 1999. Structure of the SHV-1 β- lactamase. Biochemistry 38: 5720 5727.
74. Traniert, S.,, A. T. Bouthors,, L. Maveyraudt,, V. Guillett,, W. Sougakoff,, and J. P. Samama. 2000. The high resolution crystal structure for class A β-lactamase PER-1 reveals the bases for its increase in breadth of activity. J. Biol. Chem. 275: 28075 28082.
75. Lim, D.,, F. Sanschagrin,, L. Passmore,, L. De Castro,, R. C. Levesque,, and N. C. J. Strynadka. 2001. Insights into the molecular basis for the carbenicillinase activity of PSE-4 β-lactamase from crystallographic and kinetic studies. Biochemistry 40: 395 402.
76. Nukaga, M.,, K. Mayama,, G. V. Crichlow,, and J. R. Knox. 2002. Structure of an extended-spectrum class A β-lactamase from Proteus vulgaris K1. J. Mol. Biol. 317: 107 117.
77. Ibuka, A.,, A. Taguchi,, M. Ishiguro,, S. Fushinobu,, Y. Ishii,, S. Kamitori,, K. Okuyama,, K. Yamaguchi,, M. Konno,, and H. Matsuzawa. 1999. Crystal structure of the E166A mutant of extended-spectrum β-lactamase Toho-1 at 1.8 Å resolution. J. Mol. Biol. 285: 2079 2087.
78. Lobkovsky, E.,, P. C. Moews,, H. Liu,, H. Zhao,, J. M. Frère,, and J. R. Knox. 1993. Evolution of an enzyme activity: crystallographic structure at 2 Å resolution of cephalosporinase from ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc. Natl. Acad. Sci. USA 90: 11257 11261.
79. Usher, K. C.,, L. C. Blaszczak,, G. S. Weston,, B. K. Shoichet,, and S. J. Remington. 1998. Three-dimensional structure of AmpC β-lactamase from Escherichia coli to a transition-state analogue: possible implications for the oxyanion hypothesis and for inhibitor design. Biochemistry 37: 16082 16092.
80. Oefner, C.,, A. D'Arcy,, J. J. Daly,, K. Gubernator,, R. L. Charnas,, I. Heinze,, C. Hubschwerlen,, and F. K. Winkler. 1990. Refined crystal structure of β-lactamase from Citrobacter freundii indicates a mechanism for β-lactamase hydrolysis. Nature 343: 284 288.
81. Golemi, D.,, L. Maveyroud,, S. Vakulenku,, S. Tranier,, A. Ishiwata,, L. P. Kotra,, J. P. Samama,, and S. Mobashery. 2000. The first structural and mechanistic insights for class D β-lactamases: evidence for a novel catalytic process for turnover of β-lactam antibiotics. J. Am. Chem. Soc. 122: 6132 6133.
82. Maveyraud, L.,, D. Golemi,, L. P. Kotra,, S. Tranier,, S. Vakulenko,, S. Mobashery,, and J. P. Samama. 2000. Insights into class D β-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa. Structure 8: 1289 1298.
83. Paetzel, M.,, F. Danel,, L. Castro,, S. C. Mosimann,, M. G. P. Page,, and N. C. J. Strynadka. 2000. Crystal structure of the class D β-lactamase OXA-10. Nat. Struct. Biol. 7: 918 925.
84. Frère, J. M.,, A. Dubus,, M. Galleni,, A. Matagne,, and G. Amicosante. 1999. Mechanistic diversity of β-lactamases. Biochem. Soc. Trans. 27: 58 63.
85. Page, M. I. 1999. The reactivity of β-lactams, the mechanism of catalysis and the inhibition of β-lactamases. Curr. Pharm. Design 5: 895 913.
86. Page, M. I.,, and A. P. Laws. 1998. The mechanism of catalysis and the inhibition of β-lactamases. J. Chem. Soc. Chem. Commun. 1998: 1609 1617.
87. Adachi, H.,, T. Ohta,, and H. Matsuzawa. 1991. Site-directed mutants, at position 166, of RTEM-1 β-lactamase that form a stable acyl-enzyme intermediate with penicillin. J. Biol. Chem. 266: 3186 3191.
88. Atanasov, B. P.,, D. Mustafi,, and M. M. Makinen. 2000. Protonation of the β-lactam nitrogen is the trigger event in the catalytic action of class A β-lactamases. Proc. Natl. Acad. Sci. USA 97: 3160 3165.
89. Ishiguro, M.,, and S. Imajo. 1996. Modeling study on a hydrolytic mechanism of class A β-lactamases. J. Med. Chem. 39: 2207 2218.
90. Matagne, A.,, and J. M. Frère. 1995. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A β-lactamases. Biochim. Biophys. Acta 1246: 109 127.
91. Matagne, A.,, J. Lamotte-Brasseur,, and J. M. Frère. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330: 581 598.
92. Bush, K. 1998. Metallo-β-lactamases: a class apart. Clin. Infect. Dis. 27( Suppl. 1): 40 53.
93. Cricco, J. A.,, and A. J. Vila. 1999. Class B β-lactamases: the importance of being metallic. Curr. Pharm. Design 5: 915 927.
94. Felici, A.,, G. Amicosante,, A. Oratore,, R. Strom,, P. Ledent,, B. Koris,, L. Fanuel,, and J. M. Frère. 1993. An overview of the kinetic parameters of class B β-lactamases. Biochem. J. 291: 151 155.
95. Galleni, M.,, J. Lamotte-Brasseur,, G. M. Rossolini,, J. Spencer,, O. Dideberg,, J. M. Frère, and The Metallo-β-Lactamase Working Group. 2001. Standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 45: 660 663.
96. Gilson, H. S. R.,, and M. Krauss. 1999. Structure and spectroscopy of metallo-β-lactamase active sites. J. Am. Chem. Soc. 121: 6984 6989.
97. Payne, D. J. 1993. Metallo-β-lactamases—a new therapeutic challenge. J. Mol. Microbiol. 39: 93 99.
98. Payne, D. J.,, R. Cramp,, J. H. Bateson,, J. Neale,, and D. Knowles. 1994. Rapid identification of metallo- and serine β-lactamases. Antimicrob. Agents Chemother. 38: 991 996.
99. Wang, Z.,, W. Fast,, A. M. Valentine,, and S. J. Benkovic. 1999. Metallo-β-lactamase: structure and mechanism. Curr. Opin. Chem. Biol. 3: 614 622.
100. Concha, N. O.,, C. A. Janson,, P. Rowling,, S. Pearson,, C. A. Cheever,, B. P. Clarke,, C. Lewis,, M. Galleni,, J. M. Frère,, D. J. Payne,, J. H. Bateson,, and S. S. Abdel-Meguid. 2000. Crystal structure of the IMP-1 metallo β-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Biochemistry 39: 4288 4298.
101. Carfi, A.,, Duée, E.,, R. Paul-Soto,, M. Galleni,, J. M. Frère,, and O. Dideberg. 1998. X-ray structure of the ZnII β-lactamase from Bacteroides fragilis in an orthorhombic crystal form. Acta Crystallogr. D54: 47 57.
102. Concha, N. O.,, B. A. Rasmussen,, K. Bush,, and O. Herzberg. 1996. Crystal structure of the wide-spectrum binuclear zinc β-lactamase from Bacteroides fragilis. Structure 4: 823 836.
103. Spencer, J.,, A. R. Clarke,, and T. R. Walsh. 2001. Novel mechanism of hydrolysis of therapeutic β-lactamase by Stenotrophomonas maltophilia L1 metallo-β-lactamase. J. Biol. Chem. 276: 33638 33644.
104. Ullah, J. H.,, T. R. Walsh,, I. A. Taylor,, D. C. Emery,, C. S. Verma,, S. J. Gamblin,, and J. Spencer. 1998. The crystal structure of the L1 metallo-β-lactamase from Stenotrophomonas maltophilia at 1.7 Å resolution. J. Mol. Biol. 284: 125 136.
105. Carfi, A.,, E. Duée,, M. Galeni,, J. M. Frère,, and O. Dideberg. 1998. 1.85 Å resolution structure of the ZnII β-lactamase from Bacillus cereus. Acta Crystallogr. D54: 313 323.
106. Carfi, A.,, S. Pares,, E. Duée,, M. Galleni,, C. Duez,, J. M. Frère,, and O. Dideberg. 1995. The 3-D structure of a zinc metallo-β-lactamase reveals a new type of protein fold. EMBO J. 14: 4914 4921.
107. Fabiane, S. M.,, M. K. Sohi,, T. Wan,, D. J. Payne,, J. H. Bateson,, T. Mitchell,, and B. Sutton. 1998. Crystal structure of the zincdependent β-lactamase from Bacillus cereus at 1.9 Å resolution: binuclear active site with features of a mononuclear enzyme. Biochemistry 37: 12404 12411.
108. Bounaga, S.,, A. P. Laws,, M. Galleni,, and M. I. Page. 1998. The mechanism of catalysis and the inhibition of the Bacillus cereus zinc-dependent β-lactamase. Biochem. J. 331: 703 711.
109. Cricco, J. A.,, E. G. Orellano,, R. R. Rasia,, E. A. Ceccarelli,, and A. J. Vila. 1999. Metallo-β-lactamases: does it take two to tango? Coord. Chem. Rev. 190 192: 519 535.
110. Crowder, M. W.,, Z. Wang,, S. L. Franklin,, E. P. Zovinka,, and S. J. Benkovic. 1996. Characterization of the metal-binding sites of the β-lactamase from Bacteroides fragilis. Biochemistry 35: 12126 12132.
111. Franceschini, N. A.,, B. Caravelli,, J. D. Docquier,, M. Galleni,, J. M. Frère,, G. Amicosante,, and G. M. Rossolini. 2000. Purification and biochemical characterization of the VIM-1 metallo-β-lactamase. Antimicrob. Agents Chemother. 44: 3003 3007.
112. Hernandez Valladares, M.,, A. Felici,, G. Weber,, H. W. Adolph,, M. Zeppezauer,, G. M. Rossolini,, G. Amicosante,, J. M. Frère,, and M. Galleni. 1997. Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-β-lactamase activity and stability. Biochemistry 36: 11534 11541.
113. Kaminskaia, N. V.,, B. Spingler,, and S. J. Lippard. 2000. Hydrolysis of β-lactam antibiotics catalyzed by dinuclear zinc(II) complexes: functional mimics of metallo-β-lactamases. J. Am. Chem. Soc. 122: 6411 6422.
114. McManus-Munoz, S.,, and M. W. Crowder. 1999. Kinetic mechanism of metallo-β-lactamase L1 from Stenotrophomonas maltophilia. Biochemistry 38: 1547 1553.
115. Orellano, E. G.,, J. E. Giardini,, J. A. Cricco,, E. A. Ceccarelli,, and A. J. Vila. 1998. Spectroscopic characterization of a binuclear metal site in Bacillus cereus β-lactamase II. Biochemistry 37: 10173 10180.
116. Paul-Soto, R.,, R. Bauer,, J. M. Frère,, M. Galleni,, W. Meyer-Klauckel,, H. Nolting,, G. M. Rossolini,, D. de Seny,, M. Hernandez-Valladares,, M. Zeppezauer,, and H.W. Adolph. 1999. Mono- and binuclear Zn 2+-β-lactamase. Role of the conserved cysteine in the catalytic mechanism J. Biol. Chem. 274: 13242 13249.
117. Sutton, B. J.,, P. J. Artyniuk,, A. E. Cordero-Barbosa,, C. Little,, D. C. Phillips,, and S. G. Welley. 1987. An X-ray crystallographic study of β-lactamase I from Bacillus cereus at 0.35 nm resolution. Biochem. J. 248: 181 188.
118. Wang, Z.,, W. Fast,, and S. J. Benkovic. 1998. Direct observation of an enzyme-bound intermediate in the catalytic cycle of the metallo-β-lactamase from Bacteroides fragilis. J. Am. Chem. Soc. 120: 10788 10789.
119. Wang, Z.,, W. Fast,, and S. J. Benkovic. 1999. On the mechanism of the metallo-β-lactamase from Bacteroides fragilis. Biochemistry 38: 10013 10023.

Tables

Generic image for table
Table 7.1

Properties of the PBPs of E. coli K-12 a

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7
Generic image for table
Table 7.2

β-Lactamase classification a

Citation: Mascaretti O. 2003. β-Lactams, Penicillin-Binding Proteins, and β-Lactamases, p 107-128. In Bacteria versus Antibacterial Agents. ASM Press, Washington, DC. doi: 10.1128/9781555817794.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error