1887

Chapter 1 : Basic Concepts in Bacterial Adhesion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Basic Concepts in Bacterial Adhesion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap01-2.gif

Abstract:

During the first several decades of intensified investigation of bacterial adhesion mechanisms, several fundamental principles were established. The contribution of hydrophobicity to bacterial adhesion to mucosal surfaces is probably underestimated because it is often responsible for the initial, weak and reversible interaction that is so difficult to measure. A key feature of bacterial adhesins is that they are associated with surface structures. It has recently been found that mannose derivatives can also be used to detect even intraspecies differences, such as differences among isolates. Until recently, only lectins expressed on the surface of macrophages had been found to interact with complementary carbohydrates on bacterial surfaces. In all of these cases, the carbohydrate structures recognized by the macrophage lectins were contained in either the capsular polysaccharides or the lipopolysaccharides (LPS) of the outer membrane of gram-negative bacteria. The protein-protein type of interaction in bacterial adhesion is probably best exemplified by the interaction of fibronectin binding proteins and fibronectin on the animal cell surface. One of the fibronectin binding proteins, protein F1, binds fibronectin via domains that are 37 amino acids in length and repeated two to six times. The adhesin on is a fibronectin binding protein, whereas one of the fibronectin-specific adhesins of is lipoteichoic acid (LTA).

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1

Key Concept Ranking

Bacterial Proteins
0.77759653
Type 1 Fimbriae
0.56672114
Urinary Tract Infections
0.44906396
Streptococcus pyogenes
0.40228412
0.77759653
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1.1
FIGURE 1.1

Description of the electrical double layer and bacterial adhesion. In this diagram, three distinct interaction regions are depicted. One region (>50 nm) reflects van der Waals' attractions only. A closer region (10 to 20 nm) involves both van der Waals' attractions and Coulombic forces, and it is in this region that maximum repulsion due to the net negative charges of the opposing surfaces occurs. Because the repulsive forces increase in proportion to the diameter of the particles approaching each other, fimbriae or other polymers having a smaller diameter can be a very effective means of overcoming the barrier. A third, even closer region (>2 nm) requires complementary binding sites, which may involve hydrophobin-hydrophobin, lectincarbohydrate (complementary), and charge-charge (electrostatic) interactions. The presence of hydrophobic sites may stabilize other interacting sites. Hydrophobic sites and/or numerous charge-charge sites contribute to form, over time, a virtually irreversible adhesion. (Adapted from reference .)

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.2
FIGURE 1.2

Hypothetical two-step model for the interaction of bacteria with host substrata. The model suggests that there are at least two sequential steps leading to firm adhesion. The different steps probably involve two different adhesins and receptors but could involve different binding sites on a single molecule. The first step may be relatively weak and reversible and is probably accomplished by adhesins that extend some distance from the surface of the bacterium in order to bridge the charge repulsion of the opposing surfaces. In this model, successful completion of the first step is predicted to be requisite and facilitatory for the second step, which perhaps would involve more stereospecific interactions. Successful completion of this second step would probably bring the organism past the charge repulsion barrier, within a very few nanometers of the host cell surface, and increase the strength of adhesion, making the interaction essentially irreversible. This model should be considered generic, but the figure is based on one hypothetical mechanism for adhesion of group A streptococci to host cells. The first step occurs when LTA (complexed with a surface protein) binds to fibronectin, and the second step occurs as protein F subsequently binds to fibronectin. Reactions of other bacteria with other subtrata, such as binding to the dental pellicle, should follow similar steps. Although the model is largely derived from results with and ( ), its principal features should be valid for any bacterium-host cell interaction.

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.3
FIGURE 1.3

Diagrammatic representation of bacterial adhesion involving lectin-carbohydrate interactions (A1, bacterial lectin-host glycoprotein; A2, bacterial lectin-host glycolipid; A3, host lectin-bacterial LPS) (A), hydrophobin-protein interactions (B), and protein-protein interactions (C). For more details, see Table 1.2 and the text.

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.4
FIGURE 1.4

Three-dimensional structure of a fimbrial adhesin. The FimH lectin adhesin is presented at the tips of type 1 fimbriae of . Purification of soluble FimH was made possible by overexpressing FimH in a complex with its periplasmic chaperone, FimC. Although the fine sugar specificity of this FimH complex has not been defined, a ligand binding pocket present on the surface of the lectin domain of FimH is capable of accommodating a monomannose unit. The saccharide indicated in the figure, cyclohexylbutanoyl--hydroxyethyl--glucamide, was cocrystallized with the FimH-FimC complex ( ). This has now been confirmed by cocrystallization with mannoside ( ). (Courtesy of Stefan Knight.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 1.5
FIGURE 1.5

Schematic illustration of the three classes of globoseries glycolipid receptors for PapG adhesins of P fimbriae. The simplest carbohydrate structure for the PapG adhesins is the Gal(α1→4)Gal moiety, but flanking saccharides are important in the binding of different classes of the adhesins. Class I, represented by the PapG adhesin cloned from J96, binds most effectively to the globotriaosyl ceramide (GbO). The class II adhesin is represented by the PapG adhesins cloned from IA2 and AD110 and binds globotetraosyl ceramide (GbO). Class III adhesins, represented by another PapG cloned from J96, binds best to the Forssman glycolipid (GbO). The classes of adhesins affect both tissue and host tropism, with class II predominating in human urinary tract infections due to the predominance of the globotetraosyl ceramide at the mucosal surface of the human urinary tract (see chapter 6). (Reprinted from N. Strömberg, P. G. Nyholm, I. Pascher, and S. Normark, Saccharide orientation at the cell surface affects glycolipid receptor function, 88:9340–9344, 1991, with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817800.chap1
1. Alam, M.,, S.-I. Miyoshi,, K.-I. Tomochika,, and S. Shinoda. 1996. Purification and characterization of novel hemagglutinins from Vibrio mimicus: a 39-kilodalton major outer membrane protein and lipopolysaccharide. Infect. Immun. 64: 4035 4041.
2. Aronson, M.,, O. Medalia,, L. Schori,, D. Mirelman,, N. Sharon, and I Ofek. 1979. Prevention of colonization of the urinary tract of mice with Escherichia coli by blocking of bacterial adherence with methyl alpha-Dmannopyranoside. J. Infect Dis. 139: 329 332.
3. Baorto, D. M.,, Z. Gao,, R. Malaviya,, M. L. Dustin,, A. van der Merwe,, D. M. Lublin,, and S. N. Abraham. 1997. Survival of FimHexpressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389: 636 639.
4. Brinton, C. C. Jr., 1959. Non-flagellar appendages of bacteria. Nature 183: 782 786.
5. Brinton, C. C. Jr., 1965. The structure, function, synthesis and genetic control of bacterial pili and a molecular model for DNA and RNA transport in Gram-negative bacteria. Trans. N. Y. Acad. Sci. 27: 1003 1054.
6. Brinton, C. C.,, P. C. Gemski Jr.,, S. Falkow,, and L. S. Baron. 1961. Location of the piliation factor on the chromosome of Escherichia coli. Biophys. Biochem. Res. Commun. 5: 293 299.
7. Busscher, H. J.,, and A. H. Weerkamp. 1987. Specific and non-specific interactions in bacterial adhesion to solid substrata. FEMS Microbiol. Rev. 46: 165 173.
8. Choudhury, D.,, A. Thompson,, V. Stojanoff,, S. Langermann,, J. Pinkner,, S. J. Hultgren,, and S. D. Knight. 1999. X-ray structure of the FimC-FimH chaperoneadhesin complex from uropathogenic Escherichia coli. Science 285: 1061 1065.
9. Collier, W. A.,, and J. C. deMiranda. 1955. Bacterien—Haemagglutination. III. Die Hemmung der Coli—Haemagglutination durch Mannose. Antonie Leeuwenhoek 21: 133 140.
10. Connell, H.,, W. Agace,, P. Klemm,, M. Schembri,, S. Mårild,, and C. Svanborg. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93: 9827 9832.
11. Courtney, H. S.,, D. L. Hasty,, and I. Ofek,. 1990. Hydrophobicity of group A streptococci and its relationship to adhesion of streptococci to host cells, p. 361 386. In R. J. Doyle, and M. Rosenberg (ed.), Microbial Cell Surface Hydrophobicity. American Society for Microbiology, Washington, D.C.
12. Courtney, H. S.,, M. S. Bronze,, J. B. Dale,, and D. L. Hasty. 1994. Analysis of the role of M24 protein in streptococcal adhesion and colonization by use of ω-interposon mutagenesis. Infect. Immun. 62: 4868 4873.
13. Cowan, M. M.,, K. G. Taylor,, and R. J. Doyle. 1986. Kinetic analysis of Streptococcus sanguis adhesion to artificial pellicle. J. Dent. Res. 65: 1278 1283.
14. Cowan, M. M.,, K. G. Taylor,, and R. J. Doyle. 1987. Role of sialic acid in the kinetics of Streptococcus sanguis adhesion to artificial pellicle. Infect. Immun. 55: 1552 1557.
15. Cowan, M. M.,, K. G. Taylor,, and R. J. Doyle. 1987. Energetics of the initial phase of adhesion of Streptococcus sanguis to hydroxylapatite. J. Bacteriol. 169: 2995 3000.
16. Cywes, C.,, I. Stamenkovic,, and M. R. Wessels. 2000. CD44 as a receptor for colonization of the pharynx by group A streptococcus. J. Clin. Investig. 106: 995 1002.
17. Derjaguin, B. V.,, and L. Landau. 1941. Theory of the stability of strongly charged lyophobic soils and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. (USSR) 14: 633 662.
18. Doyle, R. J. 2000. Contribution of the hydrophobic effect to microbial infection. Microbes Infect. 2: 391 400.
19. Drake, D.,, K. G. Taylor,, A. S. Bleiweis,, and R. J. Doyle. 1988. Specificity of the glucan- binding lectin of Streptococcus cricetus. Infect. Immun. 56: 1864 1872.
20. Duguid, J. P.,, and R. R. Gillies. 1957. Fimbriae and adhesive properties of dysentery bacilli. J. Pathol. Bacteriol. 74: 397 411.
21. Duguid, J. P.,, E. S. Anderson,, and I. Campbell. 1966. Fimbriae and adhesive properties in salmonellae. J. Pathol. Bacteriol. 92: 107 138.
22. Duguid, J. P.,, I. W. Smith,, G. Dempster,, and P. N. Edmunds. 1955. Non-flagellar filamentous appendages (“fimbriae”) and hemagglutinating activity in Bacterium coli. J. Pathol. Bacteriol. 70: 335 358.
23. Ellen, R. P.,, and R. J. Gibbons. 1972. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: prerequisite for virulence. Infect. Immun. 5: 826 830.
24. Ellen, R. P.,, and R. J. Gibbons. 1973. Parameters affecting the adherence and tissue tropisms of Streptococcus pyogenes. Infect. Immun. 9: 85 91.
25. Finlay, B. B.,, and M. G. Caparon,. 2000. Bacterial adherence to cell surfaces and extracellular matrix, p. 67 80. In P. Cossart,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.), Cellular Microbiology. ASM Press, Washington, D.C.
26.Firon N., S. Ashkenazi, D. Mirelman, I. Ofek, and N. Sharon. 1987. Aromatic alphaglycosides of mannose are powerful inhibitors of the adherence of type 1 fimbriated Escherichia coli to yeast and intestinal epithelial cells. Infect. Immun. 55: 472476.
27. Fives-Taylor, P. M.,, and D. W. Thompson. 1985. Surface properties of Streptococcus sanguis FW 213 mutants non-adherent to saliva coated hydroxyapatite. Infect. Immun. 47: 752 759.
28. Gaastra, W.,, and A. M. Svennerholm. 1996. Colonization factors of human enterotoxigenic Escherichia coli (ETEC). Trends Microbiol. 4: 444 452.
29. Gabius, H. G. 1997. Animal lectins. Eur. J. Biochem. 243: 543 576.
30. Gibbons, R. J.,, and J. van Houte. 1971. On the formation of dental plaques. J. Periodontol. 44: 347 360.
31. Gibbons, R. J.,, I. Etherden,, and E. C. Moreno. 1983. Association of neuraminidasesensitive receptors and putative hydrophobic interactions with high-affinity binding sites for Streptococcus sanguis C5 in salivary pellicles. Infect. Immun. 42: 1006 1012.
32. Guyot, G. 1908. Uber die bakterielle haemagglutination. Zentbl. Bakteriol. Abt. I Orig. 47: 640 653.
33. Hanski, E.,, J. Jaffe,, and V. Ozeri,. 1996. Proteins F1 and F2 of Streptococcus pyogenes. Properties of fibronectin binding, p. 141 150. In I. Kahane, and I. Ofek (ed.), Toward Anti- Adhesion Therapy for Microbial Diseases. Plenum Press, New York, N.Y.
34. Hanski, E.,, P. A. Horwitz,, and M. G. Caparon. 1992. Expression of protein F, the fibronectin-binding protein of Streptococcus pyogenes JRS4, in heterologous streptococcal and enterococcal strains promotes their adherence to respiratory epithelial cells. Infect. Immun. 60: 5119 5125.
35. Hansson, L.,, P. Wallbrandt,, J.-O. Andersson,, M. Byström,, A. Bäckman,, A. Carlstein,, K. Enquist,, H. Lönn,, C. Otter,, and M. Strömqvist. 1995. Carbohydrate specificity of the Escherichia coli P-pilus PapG protein is mediated by its N-terminal part. Biochim. Biophys. Acta 1244: 377 383.
36. Hasty, D. L.,, H. S. Courtney,, E. V. Sokurenko,, and I. Ofek,. 1994. Bacteriaextracellular matrix interactions, p. 197 211. In P. Klemm (ed.), Fimbriae. Adhesion, Genetics, Biogenesis and Vaccines. CRC Press, Inc., Boca Raton, Fla.
37. Hasty, D. L.,, I. Ofek,, H. S. Courtney,, and R. J. Doyle. 1992. Multiple adhesins of strepcococci. Infect. Immun. 60: 2147 2152.
38. Houwink, A. L.,, and W. van Iterson. 1949. Electron microscopical observations on bacterial cytology. II. A study on flagellaton. Biochim. Biophys. Acta 5: 10 44.
39. Hung, C. S.,, J. Bouckaert,, D. Hung,, J. Pinkner,, C. Widberg,, A. DeFusco,, C. G. Auguste,, R. Strouse,, S. Langermann,, G. Waksman,, and S. J. Hultgren. 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol. Microbiol. 44: 903 915.
40. Jacques, M. 1996. Role of lipo-oligosaccharides and lipopolysaccharides in bacterial adherence. Trends Microbiol. 4: 408 409.
41. Karlsson, K.-A. 1995. Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 5: 622 635.
42. Kuan, S. F.,, K. Rust,, and E. Crouch. 1992. Interaction of surfactant protein D with bacterial lipopolysaccharides: Surfactant protein D is an Escherichia coli-binding protein in bronchoalveolar lavage. J. Clin. Investig. 90: 97 106.
43. Kuusela, P. 1978. Fibronectin binds to Staphylococcus aureus. Nature 276: 718 720.
44. Leffler, H.,, and C. Svanborg-Eden. 1980. Chemical-identification of a glycosphingolipid receptor for Escherichia coli attaching to human urinary-tract epithelial cells and agglutinating human-erythrocytes. FEMS Microbiol. Lett. 8: 127 134.
45. Lindberg, F.,, J. M. Tennent,, S. J. Hultgren,, B. Lund,, and S. Normark. 1989. Pap D, a periplasmic transport protein in P-pilus biogenesis. J. Bacteriol. 171: 6052 6058.
46. Lindhorst, T. K.,, C. Kieburg,, and U. Krallmann-Wenzel. 1998. Inhibition of the type 1 fimbriae-mediated adhesion of Escherichia coli to erythrocytes by multiantennary alphamannosyl clusters: the effect of multivalency. Glycoconjugate J. 15: 605 613.
47. Madsen, J.,, A. Kliem,, I. Tornoe,, K. Skjodt,, C. Koch,, and U. Holmskov. 2000. Localization of lung surfactant protein D on mucosal surfaces in human tissues. J. Immunol. Methods 164: 5866 5870.
48. Maurer, L.,, and P. E. Orndorff. 1985. A new locus, pilE, required for the binding of type 1 piliated Escherichia coli to erythrocytes. FEMS Microbiol. Lett. 30: 59 66.
49. Menozzi, F. D.,, R. Mutombo,, G. Renauld,, C. Gantiez,, J. H. Hannah,, E. Leininger,, M. J. Brennan,, and C. Locht. 1994. Heparin-inhibitable lectin activity of the filamentous hemagglutinin adhesin of Bordetella pertussis. Infect. Immun. 62: 769 778.
50. Mooi, F. R.,, F. K. De Graaf,, and J. D. van Embden. 1979. Cloning, mapping, and expression of the genetic determinant that encodes for the K88ab antigen. Nucleic Acids Res. 6: 849 865.
51. Morris, E. J.,, and B. C. McBride. 1984. Adherence of Streptococcus sanguis to salivacoated hydroxyapatite: evidence for two binding sites. Infect. Immun. 43: 656 663.
52. Morris, E. J.,, N. Ganeshkumar,, and B. C. McBride. 1985. Cell surface components of Streptococcus sanguis: relationship to aggregation, adherence, and hydrophobicity. J. Bacteriol. 164: 255 262.
53. Nesbitt, W. E.,, R. J. Doyle,, K. G. Taylor,, R. H. Staat,, and R. R. Arnold. 1982. Positive cooperativity in the binding of Streptococcus sanguis to hydroxylapatite. Infect. Immun. 35: 157 165.
54. Nesbitt, W. E.,, R. J. Doyle,, and K. G. Taylor. 1982. Hydrophobic interactions and the adherence of Streptococcus sanguis to hydroxylapatite. Infect. Immun. 38: 637 644.
55. Ofek, I.,, and E. H. Beachey,. 1980. General concepts and principles of bacterial adherence in animals and man, p. 1 27. In E. H. Beachey (ed.), Bacterial Adherence. Receptors and Recognition, series B, vol. 6. Chapman & Hall, Ltd. London, United Kingdom.
56. Ofek, I.,, and R. J. Doyle. 1994. Bacterial Adhesion to Cells and Tissues. p. 321 512. Chapman & Hall, New York, N.Y.
57. Ofek, I.,, and R. J. Doyle. 1994. Bacterial Adhesion to Cells and Tissues. p. 54 93. Chapman & Hall, New York, N.Y.
58. Ofek, I.,, and R. J. Doyle. 1994. Bacterial Adhesion to Cells and Tissues. p. 94 135. Chapman & Hall, New York, N.Y.
59. Ofek, I.,, and R. J. Doyle. 1994. Bacterial Adhesion to Cells and Tissues, p. 239 320. Chapman & Hall, New York, N.Y.
60. Ofek, I.,, and R. J. Doyle. 1994. Bacterial Adhesion to Cells and Tissues. p. 1 15. Chapman & Hall, New York, N.Y.
61. Ofek, I.,, D. Mirelman,, and N. Sharon. 1977. Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors. Nature 265: 623 625.
62. Ofek, I.,, D. L. Hasty,, S. N. Abraham,, and N. Sharon. 2000. Role of bacterial lectins in urinary tract infections: molecular mechanisms for diversification of bacterial surface lectins. Adv. Exp. Med. Biol. 485: 182 192.
63. Ofek, I.,, E. H. Beachey,, B. I. Eisenstein,, M. L. Alkan,, and N. Sharon. 1979. Suppression of bacterial adherence by subminimal inhibitory concentrations of beta-lactam and aminoglycoside antibiotics. Rev. Infect. Dis. 1: 832 837.
64. Ofek, I.,, E. H. Beachey,, W. Jefferson,, and G. L. Campbell. 1975. Cell membrane-binding properties of group A streptococcal lipoteichoic acid. J. Exp. Med. 141: 990 1003.
65. Ofek, I.,, J. Goldhar,, Y. Keisari,, and N. Sharon. 1995. Nonopsonic phagocytosis of microorganisms. Annu. Rev. Microbiol. 49: 239 276.
66. Ozeri, V.,, A. Tovi,, I. Burstein,, S. Natanson-Yaron,, M. G. Caparon,, K. M. Yamada,, S. K. Akiyama,, I. Vlodavsky,, and E. Hanski. 1996. A two-domain mechanism for group A streptococcal adherence through protein F to the extracellular matrix. EMBO J. 15: 989 998.
67. Parent, J. B. 1990. Membrane receptors on rat hepatocytes for the inner core region of bacterial lipopolysaccharides. J. Biol. Chem. 265: 3455 3461.
68. Patti, J. M.,, B. L. Allen,, M. J. McGavin,, and M. Höök. 1994. MSCRAMM-mediated adherence of microorganisms to host tissues. Annu. Rev. Microbiol. 48: 585 617.
69. Przondo-Mordarska, A.,, D. Smutnicka,, H. L. Ko,, J. Beuth,, and G. Pulverer. 1996. Adhesive properties of P-like fimbriae in Klebsiella-species. Zentbl. Bakteriol. 284: 372 377.
70. Relman, D. A.,, M. Domenighini,, E. Tuomanen,, R. Rappuoli,, and S. Falkow. 1989. Filamentous hemagglutinin of Bordetella pertussis: nucleotide sequence and crucial role in adherence. Proc. Natl. Acad. Sci. USA 86: 2637 2641.
71. Robins-Browne, R. M.,, A. M. Tokhi,, L. M. Adams,, and V. Bennett-Wood. 1994. Host specificity of enteropathogenic Escherichia coli from rabbits: lack of correlation between adherence in vitro and pathogenicity for laboratory animals. Infect. Immun. 62: 3329 3336.
72. Rosenberg, M.,, and R. J. Doyle,. 1990. Microbial cell surface hydrophobicity. History, measurement and significance, p. 1 37. In R. J. Doyle, and M. Rosenberg (ed.), Microbial Cel Surface Hydrophobicity. ASM Press, Washington, D.C.
73. Rosenberg, M.,, and S. Kjelleberg. 1986. Hydrophobic interactions: role in microbial adhesion. Adv. Microb. Ecol. 9: 353 393.
74. Rosenberg, M.,, R. B.-N. Greenstein,, M. Barki,, and S. Goldberg,. 1996. Hydrophobic interactions as a basis for interfering with microbial adhesion, p. 241 248. In I. Kahane, and I. Ofek (ed.), Toward Anti-Adhesion Therapy for Microbial Diseases. Plenum Press, New York, N.Y.
75. Rottini, G.,, F. Cian,, M. R. Soranzo,, R. Albrigo,, and P. Patriarc. 1979. Evidence for the involvement of human polymorphonuclear leukocyte mannose-like receptors in the phagocytosis of Escherichia coli. FEBS Lett. 105: 307 312.
76. Rutter, J. M.,, and G. W. Jones. 1973. Protection against enteric disease caused by Escherichia coli—a model for vaccination with a virulence determinant? Nature 242: 531 532.
77. Salit, I. E.,, and E. C. Gotschlich. 1977. Hemagglutination by purified type 1 Escherichia coli pili. J. Exp. Med. 146: 1169 1181.
78. Satterwhite, T. K.,, D. G. Evans,, H. L. DuPont,, and D. J. Evans Jr., 1978. Role of Escherichia coli colonisation factor antigen in acute diarrhoea. Lancet ii: 181 184.
79. Scheld, W. M.,, J. A. Valone,, and M. A. Sande. 1978. Bacterial adherence in the pathogenesis of endocarditis. Interaction of bacterial dextran, platelets, and fibrin. J. Clin. Investig. 61: 1394 1404.
80. Sharon, N.,, and H. Lis,. 1996. Micribial lectins and their receptors, p. 475 506. In J. F. Montreuil,, G. Vliegenthart,, and H. Schachter (ed.), Glycoproteins. Elsevier Publishing Co., Amsterdam, The Netherlands.
81. Silverblatt, F. J. 1974. Host-parasite interaction in the rat renal pelvis: a possible role for pili in the pathogenesis of pyelonephritis. J. Exp. Med. 140: 1696 1711.
82. Silverblatt, F. J.,, and L. S. Cohen. 1979. Antipili antibody affords protection against experimental ascending pyelonephritis. J. Clin. Investig. 64: 333 336.
83. Silverblatt, F. J.,, J. S. Dreyer,, and S. Schauer. 1979. Effect of pili on susceptibility of Escherichia coli type 1 pili and capsular polysaccharides on the interaction between bacteria and human granulocytes. Scand. J. Immunol. 20: 299 305.
84. Simpson, W. A.,, and E. H. Beachey. 1983. Adherence of group A streptococci to fibronectin on oral epithelial cells. Infect. Immun. 39: 275 279.
85. Sokurenko, E. V.,, V. Chesnokova,, D. E. Dykhuizen,, X.-R. Wu,, K. A. Krogfelt,, M. A. Schembri,, I. Ofek,, and D. L. Hasty. 1998. Pathogenic adaptation of Escherichia coli by natural variation of the FimH adhesin. Proc. Natl. Acad. Sci. USA 95: 8922 8926.
86. Sokurenko, E. V.,, V. Chesnokova,, R. J. Doyle,, and D. L. Hasty. 1997. Diversity of the Escherichia coli type 1 fimbrial lectin: differential binding to mannosides and uroepithelial cells. J. Biol. Chem. 272: 17880 17886.
87. Speziale, P.,, M. Höök,, L. Switalski,, and T. Wadström. 1984. Fibronectin binding to a Streptococcus pyogenes strain. J. Bacteriol. 157: 420 427.
88. Striker, R.,, U. Nilsson,, A. Stonecipher,, G. Magnusson,, and S. J. Hultgren. 1995. Structural requirements for the glycolipid receptor of human uropathogenic Escherichia coli. Mol. Microbiol. 16: 1021 1029.
89. Strömberg, N.,, B.-I. Marklund,, B. Lund,, D. Ilver,, A. Hamers,, W. Gaastra,, K. -A Karlsson,, and S. Normark. 1990. Hostspecificity of uropathogenic Escherichia coli depends on differences in binding specificity to Galα1-4Gal-containing isoreceptors. EMBO J. 9: 2001 2010.
90. Svanborg-Eden, C.,, T. Sandberg,, K. Stenqvist,, and S. Ahlstedt. 1979. Effects of subinhibitory amounts of ampicillin, amoxycillin and mecillinam on the adhesion of Escherichia coli bacteria to human urinary tract epithelial cells: a preliminary study. Infection 7: S452 S455.
91. Sylvester, F. A.,, D. Philpott,, B. Gold,, A. Lastovica,, and J. F. Forstner. 1996. Adherence to lipids and intestinal mucin by a recently recognized human pathogen, Campylobacter upsaliensis. Infect. Immun. 64: 4060 4066.
92. Szymanski, C. M.,, and G. D. Armstrong. 1996. Interactions between Campylobacter jejuni and lipids. Infect. Immun. 64: 3467 3474.
93. Thankavel, K.,, B. Madison,, T. Ideda,, R. Malaviya,, A. H. Shah,, P. M. Arumugam,, and S. N. Abraham. 1997. Localization of a domain in the FimH adhesin of Escherichia coli type 1 fimbriae capable of receptor recognition and use of a domain-specific antibody to confer protection against experimental urinary tract infection. J. Clin. Investig. 100: 1123 1136.
94. Thomas, W. E.,, E. Trintchina,, M. Forero,, V. Vogel,, and E. V. Sokurenko. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109: 913 923.
95. Tikkanen, K.,, S. Haataja,, C. François- Gerard,, and J. Finne. 1995. Purification of a galactosyl-α1-4-galactose-binding adhesin from the gram-positive meningitis-associated bacterium Streptococcus suis. J. Biol. Chem. 270: 28874 28878.
96. Tuomanen, E.,, H. Towbin,, G. Rosenfelder,, D. Braun,, G. Larson,, G. C. Hansson,, and R. Hill. 1988. Receptor analogues and monoclonal antibodies that inhibit adherence of Bordetella pertussis to human ciliated respiratory epithelial cells. J. Exp. Med. 168: 267 277.
97. van Heyningen, T.,, G. Fogg,, D. Yates,, E. Hanski,, and M. Caparon. 1993. Adherence and fibronectin binding are environmentally regulated in the group A streptococci. Mol. Microbiol. 9: 1213 1222.
98. Van Oss, C. J. 1978. Phagocytosis as a surface phenomenon. Annu. Rev. Microbiol. 32: 19 39.
99. Verwey, E. J. W.,, and J. T. G. Overbeek. 1948. Theory of Stability of Lyophobic Colloids. Elsevier Publishing Co., Amsterdam, The Netherlands.
100. Watt, P. J.,, and M. E. Ward,. 1980. Adherence of Neisseria gonorrhoeae and other Neisseria species to mammalian cells, p. 251 288. In E. H. Beachey (ed.), Bacterial Adherence. Chapman & Hall, New York, N.Y.
101. Weiss, E. I.,, B. Shenitzki,, and R. Leibusor,. 1996. Microbial coaggregation in the oral cavity, p. 233 240. In I. Kahane, and I. Ofek (ed.), Toward Anti-Adhesion Therapy of Infectious Diseases. Plenum Press, New York, N.Y.
102. Wessels, M. R.,, and M. S. Bronze. 1994. Critical role of the group A streptococcal capsule in pharyngeal colonization and infection in mice. Proc. Natl. Acad. Sci. USA 91: 12238 12242.
103. Wilson, M. 2002. Bacterial Adhesion to Host Tissues. Mechanisms and Consequences. Cambridge University Press, Cambridge, United Kingdom.
104. Wu, X.-R.,, T. T. Sun,, and J. J. Medina. 1996. In vitro binding of type 1-fimbriated Escherichia coli to uroplakins Ia and Ib: relation to urinary tract infections. Proc. Natl. Acad. Sci. USA 93: 9630 9635.
105. Zaidi, T. S.,, S. M. Fleiszig,, M. J. Preston,, J. B. Goldbeg,, and G. B. Pier. 1996. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Investig. Ophthalmol. Visual Sci. 37: 976 986.
106. Zhang, X.-H.,, M. Rosenberg,, and R. J. Doyle. 1990. Inhibition of the cooperative adhesion of Streptococcus sanguis to hydroxylapatite. FEMS Microbiol. Lett. 71: 315 318.

Tables

Generic image for table
TABLE 1.1

Some of the milestones in bacterial adhesion from 1900 to 2001

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Generic image for table
TABLE 1.2

Types of adhesin-receptor interactions in bacterial adhesion to mucosal surfaces

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Generic image for table
TABLE 1.3

Examples of carbohydrates as attachment sites for bacteria colonizing mucosal surfaces

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Generic image for table
TABLE 1.4

Examples of various complexities of receptor-adhesin relationships

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1
Generic image for table
TABLE 1.5

Examples showing relationship of adhesion to infectivity

Citation: Ofek I, Hasty D, Doyle R. 2003. Basic Concepts in Bacterial Adhesion, p 1-18. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error