1887

Chapter 3 : Target Tissues for Bacterial Adhesion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Target Tissues for Bacterial Adhesion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap03-2.gif

Abstract:

A thorough understanding of cell and tissue biology is critical to the identification of the mechanisms of bacterial adhesion that operate within the host, especially in order to develop methods to selectively prevent pathogen adhesion. This chapter discusses some basic elements of cell biology that are relevant to bacterial adhesion. The distinction between membrane constituents as integral, peripheral, or belonging to the cell coat or extracellular matrix is based to some extent on the method required to dissociate the constituent in question from the cell membrane. The extracellular domains of integrins are located preferentially, but not exclusively, on basolateral surfaces of epithelial cells, where they bind to basal lamina components and other extracellular matrix macromolecules, while the cytoplasmic domains interact with cytoskeletal components and other cytoplasmic signaling partners. The peripheral membrane proteins and glycoproteins are anchored to the surface of the membrane by weak ionic interactions or by hydrogen bonding with integral constituents of the cell membranes, e.g., glycoproteins, glycolipids, or polar head groups of phospholipids. Some key examples of peripheral and extracellular components important for bacterial adhesion are discussed in the chapter. Changes are also bound to occur in cells exposed to the actions of drugs, some of which may affect the biosynthesis and expression of cell membrane constituents. Such changes have been best documented in carbohydrate residues of glycoproteins and glycolipids, largely due to the availability of specific lectin and gycosidase probes.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3

Key Concept Ranking

Integral Membrane Proteins
0.54862404
Heparan Sulfate Proteoglycans
0.52903086
Peripheral Membrane Proteins
0.5113954
0.54862404
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 3.1
FIGURE 3.1

Schematic illustration of stratified (A) and simple (B) epithelia. Stratified epithelia, such as stratified squamous epithelium of the pharyngeal mucosa (A), have up to 20 or more layers of cells. The basal layer of cuboidal cells lies on a basal lamina composed primarily of type IV collagen, laminin, heparan sulfate proteoglycans, fibronectin, and other extracellular matrix components. The cells are joined by a variety of junctional complexes composed, for instance, of tight junctions, desmosomes, and gap junctions (see also Fig. 3.2 ). The cells differentiate and change shape as they come closer to the luminal surface. The apical (luminal) surfaces of the squamous cells are covered with a mucus blanket, except for the skin, where the superficial cells are protected by becoming keratinized. In the buccal and pharyngeal epithelium, the mucus coat is not very thick. Nevertheless, to become attached, bacteria must be able to bind to mucus components, and before they are able to attach directly to epithelial cells, they must be able to penetrate or destroy the mucus blanket. Simple epithelia, such as the simple columnar epithelium lining most of the lower gastrointestinal tract (B), have only a single layer of cells. The majority of the cells are enterocytes, but mucus-producing goblet cells are interspersed with them. Specialized areas of the GALT called Peyer's patches are also found along the length of the intestine (see Fig. 3.3 ). The apical surface of each cell borders the lumen, and the basal layer rests on a basal lamina. The mucus blanket covering most of the intestinal surfaces is very thick, ranging up to 500 μm, several times thicker than the height of the cells. As in panel A, to gain attachment, bacteria must have adhesins for the mucus components. To enter the mucus blanket, bacteria frequently must be able to cycle between adhesive and nonadhesive phases. Once within this blanket, the bacteria can withstand being swept away by the much more rapid flows of fluid within the intestinal lumen (indicated by different- sized arrows).

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.2
FIGURE 3.2

Schematic illustration of the basic components of intestinal epithelial cells (enterocytes). The apical surface of enterocytes have microvilli (i.e., the brush border). The microvilli are filled with contractile elements of the cytoskeleton and coated with a glycocalyx (see the text). Covering the microvilli and glycocalyx is a mucus blanket that can be up to 500 μm thick (see the text for a description of its composition). The cells contain typical organelles, such as the nucleus, endoplasmic reticulum, and Golgi apparatus. They are joined by junctional complexes such as tight junctions, desmosomes, and gap junctions. The basal surface of the cells rests on a basal lamina composed of type IV collagen, laminin, heparan sulfate proteoglycans, fibronectin, and other extracellular matrix components. Fibrillar collagen, as well as other elements not illustrated (blood vessels and a variety of cell types, such as macrophages and mast cells), are found beneath the basal lamina. The cells are joined to the basal lamina by integrins. Cadherins, integrins, and connexins are localized preferentially but not exclusively to the basolateral membranes.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.3
FIGURE 3.3

Schematic illustration of a segment of the follicle-associated epithelium of a Peyer's patch. M cells have much shorter surface projections than do the surrounding enterocytes, and the mucus blanket is essentially absent. Absence of the mucus blanket allows microbes relatively free access to the apical membrane of M cells. Leukocytes are present within a compartment between the M-cell basolateral membrane and the basal lamina. The basal lamina underlying M cells is incomplete.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.4
FIGURE 3.4

Schematic composite illustration of the various components of animal cell membranes. The components illustrated vary depending on the cell type and on whether the membrane under discussion is the apical or basolateral membrane. Other than the lipid bilayer, the integral membrane components consist of integral membrane glycoproteins (e.g., integrins) and proteoglycans (e.g., syndecan), GPI-linked glycoproteins (e.g., CD14) and proteoglycans (e.g., glypican), and glycolipids (e.g., globoseries glycolipids). Peripheral components consist of glycoproteins such as fibronectin and laminin. The cell coat consists of the much more heavily glycosylated mucins and other components of the mucus blanket (see the text). Fibronectins and laminins would be present in greater amounts on basolateral surfaces, while mucins would be present in greater amounts on apical surfaces. The integral membrane proteins are linked to the actin cytoskeleton via linking elements such as talin, α-actinin, and vinculin.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.5
FIGURE 3.5

(A) Uniform binding of lipoteichoic acid (LTA) to polymorphonuclear leukocytes in the absence of a cross-linking agent. (B and C) Capping that occurs 5 to 30 min after exposure to anti-lipoteichoic acid antibodies. (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.6
FIGURE 3.6

Schematic illustration of the fibronectin monomer, its type I (GEOMETIC SHAPE), II ( GEOMETIC SHAPE) and III (GEOMETIC SHAPE) domains, and an indication of some of their binding activities. ED-A and ED-B indicate the “extra” domains that are spliced into or out of some fibronectin variants. (B) Disulfide-linked dimer of fibronectin.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.7
FIGURE 3.7

Schematic illustration of cartilage proteoglycans linked to hyaluronan. Chondroitin sulfate and dermatan sulfate glycosaminoglycan chains are covalently linked to serine residues of core proteins. These are, in turn, linked to hyaluronan (hyaluronic acid) by link proteins to form the cartilage proteoglycan, also called aggrecan.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.8
FIGURE 3.8

Schematic illustration of a mucin monomer. (A) Large numbers of O-linked and a few N-linked oligosaccharide chains are bound to the apomucin protein. (B) Cross section showing that the oligosaccharide chains take on a radial arrangement.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817800.chap3
1. Alberts, B.,, A. Johnson,, J. Lewis,, M. Raff,, K. Roberts,, and P. Walter. 2002. Molecular Biology of the Cell. Garland Publishing Co., New York, N.Y.
2. Alvarez-Dominguez, C.,, J. A. Vazquez- Boland,, E. Carrasco-Marin,, P. Lopez- Mato,, and F. Leyva-Cobian. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65: 78 88.
3. Ascencio, F.,, L. Fransson,, and T. Wadström. 1993. Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulphate. J. Med. Microbiol. 38: 240 244.
4. Bennett, H. S. 1963. Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem. 11: 14 23.
5. Bernfield, M.,, M. Gotte,, P. W. Park,, O. Feizes,, M. L. Fitzgerald,, J. Lincecum,, and M. Zako. 1999. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68: 729 777.
6. Bernfield, M.,, R. Kokenyesi,, M. Kato,, M. T. Hinkes,, J. Spring,, R. L. Gallo,, and E. J. Lose. 1992. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8: 365 393.
7. Blaser, M. J. 1997. Helicobacter pylori eradication and its implications for the future. Aliment. Pharmacol. Ther. 11: 103 107.
8. Brown, D. A.,, and E. London. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14: 111 136.
9. Callies, R.,, G. Schwarzmann,, K. Radsak,, R. Siegert,, and H. Weigandt. 1977. Characterization of the cellular binding of exogenous gangliosides. Eur. J. Biochem. 80: 425 423.
10. Chen, J. C. R.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271: 11134 11140.
11. Cherry, R. J. 1979. Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559: 289 327.
12. Cone, R. A., 1999. Mucus, p. 43 64. In P. L. Ogran,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
13. Courtney, H.,, I. Ofek,, W. A. Simpson,, and E. H. Beachey. 1981. Characterization of lipoteichoic acid binding to polymorphonuclear leukocytes of human blood. Infect. Immun. 32: 625 631.
14. Courtney, H. S.,, and D. L. Hasty. 1991. Aggregation of group A streptococci by human saliva and its effect on streptococcal adherence to host cells. Infect. Immun. 59: 1661 1666.
15. Critchely, D. R., 1979. Glycolipids as membrane receptors important in growth regulation, p. 63 101. In R. O. Hynes (ed.), Surfaces of Normal and Malignant Cells. John Wiley & Sons, Inc., New York, N.Y.
16. Daniel, H.,, B. Neugebauer,, A. Kratz,, and G. Rehner. 1985. Localization of acid microclimate along intestinal villi of rat jejunum. Am. J. Physiol. 248: G293 G298.
17. Denari, G.,, T. L. Hale,, and O. Washington. 1986. Effect of guinea pig or monkey colonic mucus on Shigella aggregation and invasion of HeLa cells by Shigella flexneri 1b and 2a. Infect. Immun. 51: 975 978.
18. Edidin, M. 1974. Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng. 8: 165 193.
19. Erickson, A. C.,, and J. R. Couchman. 2000. Still more complexity in mammalian basement membranes. J. Histochem. Cytochem. 48: 1291 1306.
20. Esko, J. D.,, and U. Lindahl. 2001. Molecular diversity of heparan sulfate. J. Clin. Investig. 108: 169 173.
21. Eytan, G. D. 1982. Use of liposomes for reconstruction of biological function. Biochim. Biophys. Acta 694: 185 202.
22. Falk, P. G.,, A. J. Snyder,, J. L. Guruge,, D. Kirschner,, M. J. Blaser,, and J. I. Gordon. 2000. Theoretical and experimental approaches for studying factors defining the Helicobacter pylori-host relationship. Trends Microbiol. 8: 321 329.
23. Filmus, J.,, and S. B. Selleck. 2001. Glypicans: proteoglycans with a surprise. J. Clin. Investig. 108: 497 501.
24. Finean, J. B.,, R. Coleman,, and R. H. Mitchell. 1984. Membranes and Their Cellular Function, 3rd ed. Blackwell Scientific Publications, Oxford, United Kingdom.
25. Fleckenstein, J. M.,, J. T. Holland,, and D. L. Hasty. 2002. Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect. Immun. 70: 1530 1537.
26. Flowers, H. M.,, and N. Sharon. 1979. Glycosidases-properties and application to the study of complex carbohydrates and cell surfaces. Adv. Enzymol. 48: 29 95.
27. Frey, A.,, K. T. Giannasca,, R. Weltzin,, P. J. Giannasca,, H. Reggio,, W. I. Lencer,, and M. R. Neutra. 1996. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184: 1045 1059.
28. Fukuda, M.,, and M. N. Fukuda. 1989. Changes in cell surface glycoproteins and carbohydrate structures during the development and differentation of human erythroid cells. J. Supramol. Struct. 8: 313 324.
29. Gahmberg, C. G., 1977. Cell surface proteins: changes during cell growth and malignant transformation, p. 371 421. In G. Poste, and G. L. Nicholson (ed.), Cell Surface Reviews. North- Holland, Amsterdam, The Netherlands.
30. Gahmberg, C. G., 1981. Membrane glycoproteins and glycolipids: structure, localization and function of carbohydrates, p. 127 160. In J. B. Finean, and R. H. Mitchell (ed.), Membrane Structure. Elsevier/North-Holland, Amsterdam, The Netherlands.
31. Gahmberg, C. G.,, and L. C. Andersson. 1982. Surface glycoproteins of malignant cells. Biochim. Biophys. Acta 651: 65 83.
32. Garoff, H. 1979. Structure and assembly of the Semliki Forest virus membrane. Biochem. Soc. Trans. 7: 301 306.
33. Gebb, C.,, E. G. Hayman,, E. Engvall,, and E. Ruoslahti. 1986. Interaction of vitronectin with collagen. J. Biol. Chem. 261: 16698 16703.
34. Geiger, B. 1983. Membrane cytoskeleton interactions. Biochim. Biophys. Acta 737: 305 341.
35. Gendler, S. J.,, and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57: 607 634.
36. Geuijen, C. A. W.,, R. J. L. Willems,, and F. R. Mooi. 1996. The major fimbrial subunit of Bordetella pertussis binds sulfated sugars. Infect. Immun. 64: 2657 2665.
37. Gum, J. R. Jr., 1995. Human mucin glycoproteins: varied structures predict diverse properties and specific functions. Biochem. Soc. Trans. 23: 795 799.
38. Hakomori, S. 1981. Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50: 733 764.
39. Hoskins, L. C.,, M. Agustined,, W. B. Mckee,, E. T. Boulding,, M. Kriaris,, and G. Niedermeyer. 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Investig. 75: 944 953.
40. Hulmes, D. J. 2002. Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137: 2 10.
41. Hynes, R. O. 1992. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69: 11 25.
42. Hynes, R. O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110: 673 687.
43. Iozzo, R. V. 2001. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Investig. 108: 165 167.
44. Isaacs, R. D. 1994. Borrelia burgdorferi bind to epithelial cell proteoglycans. J. Clin Investig. 93: 809 819.
45. Ito, S. 1965. The enteric surface coat on cat intestinal microvilli. J. Cell Biol. 27: 475 491.
46. Ito, S. 1969. Structure and function of the glycocalyx. Fed. Proc. 28: 12 25.
47. Karlsson, K. A. 1998. Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol. Microbiol. 29: 1 11.
48. Karlsson, N. G.,, A. Herrmann,, H. Karlsson,, M. E. Johansson,, I. Carlstedt,, and G. C. Hansson. 1997. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J. Biol. Chem. 272: 27025 27034.
49. Karnovsky, M. I.,, and E. P. Unanue. 1973. Mapping and migration of lymphocyte surface macromolecules. Fed. Proc. 32: 55 59.
50. Kato, T.,, and R. L. Owen,. 1999. Structure and function of intestinal mucosal epithelium, p. 115 132. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
51. Liang, O. D.,, F. Ascencio,, L. Fransson,, and T. Wadström. 1992. Binding of heparan sulfate to Staphylococcus aureus. Infect. Immun. 60: 899 906.
52. Liang, O. D.,, K. T. Preissner,, and G. S. Chhatwal. 1997. The hemopexin-type repeats of human vitronectin are recognized by Streptococcus pyogenes. Biochem. Biophys. Res. Commun. 234: 445 449.
53. Lichtenberg, D.,, R. J. Robson,, and E. A. Dennis. 1982. Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim. Biophys. Acta 737: 285 304.
54. Lichtenberger, L. M. 1995. The hydrophobic barrier properties of gastrointestinal mucus. Annu. Rev. Physiol. 57: 565 583.
55. Lodish, H.,, A. Berk,, S. L. Zipursky,, P. Matsudaira,, D. Baltimore,, and J. Darnell. 1999. Molecular Cell Biology. W.H. Freeman & Co., New York, N.Y.
56. Marchesi, V. T.,, H. Furthmayr,, and M. Tomita. 1976. The red cell membrane. Annu. Rev. Biochem. 45: 667 698.
57. Marinetti, G. V.,, and R. C. Crain. 1978. Topology of amino-phospho-lipids in the redcell membrane. J. Supramol. Struct. 8: 191 213.
58. McCormick, B. A.,, P. Klemm,, K. A. Krogfelt,, R. L. Burghoff,, L. Pallesen,, D. C. Laux,, and P. S. Cohen. 1993. Escherichia coli F-18 phase locked ‘on’ for expression of type 1 fimbriae is a poor colonizer of the streptomycin- treated mouse large intestine. Microb. Pathog. 14: 33 43.
59. Menozzi, F. D.,, J. H. Rouse,, M. Alavi,, M. Laude-Sharp,, J. Muller,, R. Bischoff,, M. J. Brennan,, and C. Locht. 1996. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med. 184: 993 1001.
60. Miller, E. J.,, and S. Gay,. 1992. Collagen structure and function, p. 130 151. In I. K. Cohen,, R. F. Diggelman,, and W. J. Lindblad (ed.), Wound Healing: Biochemical and Clinical Aspects. The W. B. Saunders, Co., Philadelphia, Pa.
61. Mirelman, D.,, and I. Ofek,. 1986. Introduction to microbial lectins and agglutinins, p. 1 19. In D. Mirelman (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, Inc., New York, N.Y.
62. Myllyharju, J.,, and K. I. Kivirikko. 2001. Collagens and collagen-related diseases. Ann. Med. 33: 7 21.
63. Neutra, M. R.,, and J.-P. Kraehenbuhl,. 1999. Cellular and molecular basis for antigen transport across epithelial barriers, p. 101 114. In P. L. Ogran,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
64. Nicolson, G. L. 1976. Trans-membrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence of cell surface components. Biochim. Biophys. Acta 457: 57 108.
65. Nicolson, G. L. 1979. Topographic display of cell surface components and their role in transmembrane signaling. Curr. Top. Dev. Biol. 3: 305 338.
66. Noel, G. J.,, D. C. Love,, and D. M. Mosser. 1994. High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans. Infect. Immun. 62: 4028 4033.
67. Ottani, V.,, M. Raspanti,, and A. Ruggeri. 2001. Collagen structure and functional implications. Micron 32: 251 260.
68. Raff, M. C.,, and S. dePetris. 1973. Movement of lymphocyte surface antigens and receptors: the fluid nature of the lymphocyte plasma membrane and its immunological significance. Fed. Proc. 32: 48 54.
69. Rapraeger, A. C. 2000. Syndecan-regulated receptor signaling. J. Cell Biol. 149: 995 998.
70. Ross, M. H.,, L. J. Romrell,, and G. I. Kaye. 1995. Histology. A Text and Atlas. Lippincott Williams & Wilkins, Philadelphia, Pa.
71. Rostand, K. S.,, and J. D. Esko. 1997. Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65: 1 8.
72. Roth, J. 1980. The use of lectins as probes for carbohydrates-cytochemical techniques and their application in studies on cell surface dynamics. Acta Histochem. Suppl. 22: 113 121.
73. Roussel, P.,, G. Lamblin,, M. Lhermitte,, N. Houdret,, J. J. Lafitte,, J. M. Perini,, A. Klein,, and A. Scharfman. 1988. The complexity of mucins. Biochemie 70: 1471 1482.
74. Ruoslahti, E. 1991. Integrins. J. Clin. Investig. 87: 1 5.
75. Said, H. M.,, R. Smith,, and R. Redha. 1987. Studies on the intestinal surface acid microclimate: developmental aspects. Pediatr. Res. 22: 497 499.
76. Schulster, D.,, and A. Levitski. 1980. Cellular Receptors for Hormones and Neurotransmitters. John Wiley & Sons, Inc., New York, N.Y.
77. Sedlacek, H. H.,, J. Stark,, F. R. Seiler,, W. Ziegler,, and H. Wiegandt. 1976. Cholera toxin induces redistribution of sialoglycolipid receptor at the lymphocyte membrane. FEBS Lett. 61: 272 276.
78. Seiffert, D.,, and D. J. Loskutoff. 1996. Type 1 plasminogen activator inhibitor induces multimerization of plasma vitronectin. A suggested mechanism for the generation of the tissue form of vitronectin in vivo. J. Biol. Chem. 271: 29644 29651.
79. Sharon, N., 1981. Glycoproteins in membranes, p. 117 182. In R. Balian,, M. Chabre,, and P. F. Devaux (ed.), Membranes and Intercellular Communications. North-Holland, Amsterdam, The Netherlands.
80. Sharon, N.,, and H. Lis. 1981. Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Eng. News 59: 21 24.
81. Sharon, N.,, and H. Lis,. 1982. Glycoproteins, p. 1 144. In H. Neurath,, and R. L. Hill (ed.), The Proteins, vol. V, 3rd. ed. Academic Press, Inc., New York, N.Y.
82. Sharon, N.,, and H. Lis. 1989. Lectins as cell recognition molecules. Science 246: 227 234.
83. Sheehan, J. K.,, D. J. Thornton,, M. Somerville,, and I. Carlstedt. 1991. Mucin structure. The structure and heterogenicity of respiratory mucus glycoproteins. Am. Rev. Respir. Dis. 144: S4 S9.
84. Sherman, P.,, N. Fleming,, J. Forstner,, N. Roomi,, and G. Forstner. 1987. Bacteria and the mucus blanket in experimental small bowel bacterial overgrowth. Am. J. Pathol. 126: 527 534.
85. Shin, J. S.,, and S. N. Abraham. 2001. Cooption of endocytic functions of cellular caveolae by pathogens. Immunology 102: 2 7.
86. Shin, J. S.,, Z. Gao,, and S. N. Abraham. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289: 732 733.
87. Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43: 805 833.
88. Singer, S. J.,, and G. L. Nicolson. 1972. The fluid mosaic model of cell membranes. Science 175: 710 731.
89. Speziale, P.,, M. Höök,, T. Wadström,, and R. Timpl. 1982. Binding of basement membrane protein laminin to Escherichia coli. FEBS Lett. 146: 55 58.
90. Steck, T. L. 1978. Band 3 protein of the human red cell membrane: a review. J. Supramol. Struct. 8: 311 324.
91. Stephens, R. S.,, K. Koshiyama,, E. Lewis,, and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40: 691 699.
92. Switalski, L. M.,, H. Murchison,, R. Timpl,, R. Curtiss,, and M. Höök. 1987. Binding of laminin to oral and endocarditis strains of viridans streptococci. J. Bacteriol. 169: 1095 1101.
93. Switalski, L. M.,, P. Speziale,, M. Höök,, T. Wadström,, and R. Timpl. 1984. Binding of Streptococcus pyogenes to laminin. J. Biol. Chem. 259: 3734 3738.
94. Szentkuti, L.,, H. Rieesel,, M. L. Enss,, K. Gaertner,, and W. VonEngelhardt. 1990. Pre-epithelilal mucus layer in the colon of conventional and germ-free rats. Histochem. J. 22: 491 497.
95. Tabak, L. A. 1995. In defense of the oral cavity: structure, biosynthesis and function of salivary mucins. Annu. Rev. Physiol. 57: 547 564. .
96. Tam, P. Y.,, and P. Verdugo. 1981. Control of mucus hydration as a Donnan equilibrium process. Nature 292: 340 342.
97. Tanner, M. J. A. 1978. Erythrocyte glycoproteins. Curr. Top. Membr. Transp. 11: 279 325.
98. Tepass, U.,, K. Truong,, D. Godt,, M. Ikura,, and M. Peifer. 2000. Cadherins in embryonic and neural morphogenesis. Nat. Rev. Mol. Cell Biol. 1: 91 100.
99. Tomasini, B. R.,, and D. F. Mosher. 1988. Conformational states of vitronectin: preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood 72: 903 912.
100. Tomasini, B. R.,, and D. F. Mosher. 1990. Vitronectin. Prog. Hemostasis Thromb. 10: 269 305.
101. Toribara, N. W.,, J. R. Gum Jr.,, P. J. Culhane,, R. E. Lagace,, J. W. Hicks,, G. M. Petersen,, and Y. S. Kim. 1991. MUC-2 human small intestinal mucin gene. Structure, repeated arrrays and polymorphism. J. Clin. Investig. 88: 1005 1013.
102. Tranh van Nhieu, J.,, and P. J. Sansonetti,. 2000. Cell adhesion molecules and bacterial pathogens, p. 97 111. In P. Cossart,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.), Cellular Microbiology. ASM Press, Washington, D.C.
103. Valentin-Weigand, P.,, J. Grulich-Henn,, G. S. Chhatwal,, G. Muller-Berghaus,, H. Blobel,, and K. T. Preissner. 1988. Mediation of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect. Immun. 56: 2851 2855.
104. van Putten, J. P. M.,, and S. M. Paul. 1995. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 14: 2144 2154.
105. Varki, A., 1999. Exploring the biological roles of glycans, p. 57 68. In A. Varki,, R. Cummings,, J. Esko,, H. Freeze,, G. Hart,, and J. Martin (ed.), Essentials of Gycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
106. Vuorio, E.,, and B. deCrombrugghe. 1990. The family of collagen genes. Annu. Rev. Biochem. 59: 837 872.
107. Wicken, A. J.,, and K. W. Knox,. 1981. Composition and properties of amphiphiles, p. 1 7. In G. D. Shockman, and A. J. Wicken (ed.), Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Academic Press, Inc., New York, N.Y.
108. Wiegandt, H.,, S. Kanda,, K. Inoue,, K. Utsumi,, and S. Nojima. 1981. Studies on the cell association of exogenous glycolipids. Adv. Exp. Med. Biol. 152: 3433 3352.
109. Winters, B. D.,, N. Ramasubbu,, and M. W. Stinson. 1993. Isolation and characterization of a Streptococcus pyogenes protein that binds to basal laminae of human cardiac muscle. Infect. Immun. 61: 3259 3264.
110. Yamakawa, T.,, and Y. Nagai. 1978. Glycolipids at the cell surface and their biological functions. Trends Biochem. Sci. 3: 128 131.

Tables

Generic image for table
TABLE 3.1

Examples of bacteria taken up by M cells

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Generic image for table
TABLE 3.2

Some important integral membrane components of epithelial cells that act as receptors for bacterial adhesins

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Generic image for table
TABLE 3.3

Examples of bacteria that bind to heparan sulfate proteoglycan receptors

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error