1887

Chapter 3 : Target Tissues for Bacterial Adhesion

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Target Tissues for Bacterial Adhesion, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap03-2.gif

Abstract:

A thorough understanding of cell and tissue biology is critical to the identification of the mechanisms of bacterial adhesion that operate within the host, especially in order to develop methods to selectively prevent pathogen adhesion. This chapter discusses some basic elements of cell biology that are relevant to bacterial adhesion. The distinction between membrane constituents as integral, peripheral, or belonging to the cell coat or extracellular matrix is based to some extent on the method required to dissociate the constituent in question from the cell membrane. The extracellular domains of integrins are located preferentially, but not exclusively, on basolateral surfaces of epithelial cells, where they bind to basal lamina components and other extracellular matrix macromolecules, while the cytoplasmic domains interact with cytoskeletal components and other cytoplasmic signaling partners. The peripheral membrane proteins and glycoproteins are anchored to the surface of the membrane by weak ionic interactions or by hydrogen bonding with integral constituents of the cell membranes, e.g., glycoproteins, glycolipids, or polar head groups of phospholipids. Some key examples of peripheral and extracellular components important for bacterial adhesion are discussed in the chapter. Changes are also bound to occur in cells exposed to the actions of drugs, some of which may affect the biosynthesis and expression of cell membrane constituents. Such changes have been best documented in carbohydrate residues of glycoproteins and glycolipids, largely due to the availability of specific lectin and gycosidase probes.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3

Key Concept Ranking

Integral Membrane Proteins
0.54862404
Heparan Sulfate Proteoglycans
0.52903086
Peripheral Membrane Proteins
0.5113954
0.54862404
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 3.1
FIGURE 3.1

Schematic illustration of stratified (A) and simple (B) epithelia. Stratified epithelia, such as stratified squamous epithelium of the pharyngeal mucosa (A), have up to 20 or more layers of cells. The basal layer of cuboidal cells lies on a basal lamina composed primarily of type IV collagen, laminin, heparan sulfate proteoglycans, fibronectin, and other extracellular matrix components. The cells are joined by a variety of junctional complexes composed, for instance, of tight junctions, desmosomes, and gap junctions (see also Fig. 3.2 ). The cells differentiate and change shape as they come closer to the luminal surface. The apical (luminal) surfaces of the squamous cells are covered with a mucus blanket, except for the skin, where the superficial cells are protected by becoming keratinized. In the buccal and pharyngeal epithelium, the mucus coat is not very thick. Nevertheless, to become attached, bacteria must be able to bind to mucus components, and before they are able to attach directly to epithelial cells, they must be able to penetrate or destroy the mucus blanket. Simple epithelia, such as the simple columnar epithelium lining most of the lower gastrointestinal tract (B), have only a single layer of cells. The majority of the cells are enterocytes, but mucus-producing goblet cells are interspersed with them. Specialized areas of the GALT called Peyer's patches are also found along the length of the intestine (see Fig. 3.3 ). The apical surface of each cell borders the lumen, and the basal layer rests on a basal lamina. The mucus blanket covering most of the intestinal surfaces is very thick, ranging up to 500 μm, several times thicker than the height of the cells. As in panel A, to gain attachment, bacteria must have adhesins for the mucus components. To enter the mucus blanket, bacteria frequently must be able to cycle between adhesive and nonadhesive phases. Once within this blanket, the bacteria can withstand being swept away by the much more rapid flows of fluid within the intestinal lumen (indicated by different- sized arrows).

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.2
FIGURE 3.2

Schematic illustration of the basic components of intestinal epithelial cells (enterocytes). The apical surface of enterocytes have microvilli (i.e., the brush border). The microvilli are filled with contractile elements of the cytoskeleton and coated with a glycocalyx (see the text). Covering the microvilli and glycocalyx is a mucus blanket that can be up to 500 μm thick (see the text for a description of its composition). The cells contain typical organelles, such as the nucleus, endoplasmic reticulum, and Golgi apparatus. They are joined by junctional complexes such as tight junctions, desmosomes, and gap junctions. The basal surface of the cells rests on a basal lamina composed of type IV collagen, laminin, heparan sulfate proteoglycans, fibronectin, and other extracellular matrix components. Fibrillar collagen, as well as other elements not illustrated (blood vessels and a variety of cell types, such as macrophages and mast cells), are found beneath the basal lamina. The cells are joined to the basal lamina by integrins. Cadherins, integrins, and connexins are localized preferentially but not exclusively to the basolateral membranes.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.3
FIGURE 3.3

Schematic illustration of a segment of the follicle-associated epithelium of a Peyer's patch. M cells have much shorter surface projections than do the surrounding enterocytes, and the mucus blanket is essentially absent. Absence of the mucus blanket allows microbes relatively free access to the apical membrane of M cells. Leukocytes are present within a compartment between the M-cell basolateral membrane and the basal lamina. The basal lamina underlying M cells is incomplete.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.4
FIGURE 3.4

Schematic composite illustration of the various components of animal cell membranes. The components illustrated vary depending on the cell type and on whether the membrane under discussion is the apical or basolateral membrane. Other than the lipid bilayer, the integral membrane components consist of integral membrane glycoproteins (e.g., integrins) and proteoglycans (e.g., syndecan), GPI-linked glycoproteins (e.g., CD14) and proteoglycans (e.g., glypican), and glycolipids (e.g., globoseries glycolipids). Peripheral components consist of glycoproteins such as fibronectin and laminin. The cell coat consists of the much more heavily glycosylated mucins and other components of the mucus blanket (see the text). Fibronectins and laminins would be present in greater amounts on basolateral surfaces, while mucins would be present in greater amounts on apical surfaces. The integral membrane proteins are linked to the actin cytoskeleton via linking elements such as talin, α-actinin, and vinculin.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.5
FIGURE 3.5

(A) Uniform binding of lipoteichoic acid (LTA) to polymorphonuclear leukocytes in the absence of a cross-linking agent. (B and C) Capping that occurs 5 to 30 min after exposure to anti-lipoteichoic acid antibodies. (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.6
FIGURE 3.6

Schematic illustration of the fibronectin monomer, its type I (GEOMETIC SHAPE), II ( GEOMETIC SHAPE) and III (GEOMETIC SHAPE) domains, and an indication of some of their binding activities. ED-A and ED-B indicate the “extra” domains that are spliced into or out of some fibronectin variants. (B) Disulfide-linked dimer of fibronectin.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.7
FIGURE 3.7

Schematic illustration of cartilage proteoglycans linked to hyaluronan. Chondroitin sulfate and dermatan sulfate glycosaminoglycan chains are covalently linked to serine residues of core proteins. These are, in turn, linked to hyaluronan (hyaluronic acid) by link proteins to form the cartilage proteoglycan, also called aggrecan.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3.8
FIGURE 3.8

Schematic illustration of a mucin monomer. (A) Large numbers of O-linked and a few N-linked oligosaccharide chains are bound to the apomucin protein. (B) Cross section showing that the oligosaccharide chains take on a radial arrangement.

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817800.chap3
1. Alberts, B.,, A. Johnson,, J. Lewis,, M. Raff,, K. Roberts,, and P. Walter. 2002. Molecular Biology of the Cell. Garland Publishing Co., New York, N.Y.
2. Alvarez-Dominguez, C.,, J. A. Vazquez- Boland,, E. Carrasco-Marin,, P. Lopez- Mato,, and F. Leyva-Cobian. 1997. Host cell heparan sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listerial surface protein ActA is involved in heparan sulfate receptor recognition. Infect. Immun. 65:7888.
3. Ascencio, F.,, L. Fransson,, and T. Wadström. 1993. Affinity of the gastric pathogen Helicobacter pylori for the N-sulphated glycosaminoglycan heparan sulphate. J. Med. Microbiol. 38:240244.
4. Bennett, H. S. 1963. Morphological aspects of extracellular polysaccharides. J. Histochem. Cytochem. 11:1423.
5. Bernfield, M.,, M. Gotte,, P. W. Park,, O. Feizes,, M. L. Fitzgerald,, J. Lincecum,, and M. Zako. 1999. Functions of cell surface heparan sulfate proteoglycans. Annu. Rev. Biochem. 68:729777.
6. Bernfield, M.,, R. Kokenyesi,, M. Kato,, M. T. Hinkes,, J. Spring,, R. L. Gallo,, and E. J. Lose. 1992. Biology of the syndecans: a family of transmembrane heparan sulfate proteoglycans. Annu. Rev. Cell Biol. 8:365393.
7. Blaser, M. J. 1997. Helicobacter pylori eradication and its implications for the future. Aliment. Pharmacol. Ther. 11:103107.
8. Brown, D. A.,, and E. London. 1998. Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14:111136.
9. Callies, R.,, G. Schwarzmann,, K. Radsak,, R. Siegert,, and H. Weigandt. 1977. Characterization of the cellular binding of exogenous gangliosides. Eur. J. Biochem. 80:425423.
10. Chen, J. C. R.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271:1113411140.
11. Cherry, R. J. 1979. Rotational and lateral diffusion of membrane proteins. Biochim. Biophys. Acta 559:289327.
12. Cone, R. A., 1999. Mucus, p. 4364. In P. L. Ogran,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
13. Courtney, H.,, I. Ofek,, W. A. Simpson,, and E. H. Beachey. 1981. Characterization of lipoteichoic acid binding to polymorphonuclear leukocytes of human blood. Infect. Immun. 32:625631.
14. Courtney, H. S.,, and D. L. Hasty. 1991. Aggregation of group A streptococci by human saliva and its effect on streptococcal adherence to host cells. Infect. Immun. 59:16611666.
15. Critchely, D. R., 1979. Glycolipids as membrane receptors important in growth regulation, p. 63101. In R. O. Hynes (ed.), Surfaces of Normal and Malignant Cells. John Wiley & Sons, Inc., New York, N.Y.
16. Daniel, H.,, B. Neugebauer,, A. Kratz,, and G. Rehner. 1985. Localization of acid microclimate along intestinal villi of rat jejunum. Am. J. Physiol. 248:G293G298.
17. Denari, G.,, T. L. Hale,, and O. Washington. 1986. Effect of guinea pig or monkey colonic mucus on Shigella aggregation and invasion of HeLa cells by Shigella flexneri 1b and 2a. Infect. Immun. 51:975978.
18. Edidin, M. 1974. Rotational and translational diffusion in membranes. Annu. Rev. Biophys. Bioeng. 8:165193.
19. Erickson, A. C.,, and J. R. Couchman. 2000. Still more complexity in mammalian basement membranes. J. Histochem. Cytochem. 48:12911306.
20. Esko, J. D.,, and U. Lindahl. 2001. Molecular diversity of heparan sulfate. J. Clin. Investig. 108:169173.
21. Eytan, G. D. 1982. Use of liposomes for reconstruction of biological function. Biochim. Biophys. Acta 694:185202.
22. Falk, P. G.,, A. J. Snyder,, J. L. Guruge,, D. Kirschner,, M. J. Blaser,, and J. I. Gordon. 2000. Theoretical and experimental approaches for studying factors defining the Helicobacter pylori-host relationship. Trends Microbiol. 8:321329.
23. Filmus, J.,, and S. B. Selleck. 2001. Glypicans: proteoglycans with a surprise. J. Clin. Investig. 108:497501.
24. Finean, J. B.,, R. Coleman,, and R. H. Mitchell. 1984. Membranes and Their Cellular Function, 3rd ed. Blackwell Scientific Publications, Oxford, United Kingdom.
25. Fleckenstein, J. M.,, J. T. Holland,, and D. L. Hasty. 2002. Interaction of an outer membrane protein of enterotoxigenic Escherichia coli with cell surface heparan sulfate proteoglycans. Infect. Immun. 70:15301537.
26. Flowers, H. M.,, and N. Sharon. 1979. Glycosidases-properties and application to the study of complex carbohydrates and cell surfaces. Adv. Enzymol. 48:2995.
27. Frey, A.,, K. T. Giannasca,, R. Weltzin,, P. J. Giannasca,, H. Reggio,, W. I. Lencer,, and M. R. Neutra. 1996. Role of the glycocalyx in regulating access of microparticles to apical plasma membranes of intestinal epithelial cells: implications for microbial attachment and oral vaccine targeting. J. Exp. Med. 184: 10451059.
28. Fukuda, M.,, and M. N. Fukuda. 1989. Changes in cell surface glycoproteins and carbohydrate structures during the development and differentation of human erythroid cells. J. Supramol. Struct. 8:313324.
29. Gahmberg, C. G., 1977. Cell surface proteins: changes during cell growth and malignant transformation, p. 371421. In G. Poste, and G. L. Nicholson (ed.), Cell Surface Reviews. North- Holland, Amsterdam, The Netherlands.
30. Gahmberg, C. G., 1981. Membrane glycoproteins and glycolipids: structure, localization and function of carbohydrates, p. 127160. In J. B. Finean, and R. H. Mitchell (ed.), Membrane Structure. Elsevier/North-Holland, Amsterdam, The Netherlands.
31. Gahmberg, C. G.,, and L. C. Andersson. 1982. Surface glycoproteins of malignant cells. Biochim. Biophys. Acta 651:6583.
32. Garoff, H. 1979. Structure and assembly of the Semliki Forest virus membrane. Biochem. Soc. Trans. 7:301306.
33. Gebb, C.,, E. G. Hayman,, E. Engvall,, and E. Ruoslahti. 1986. Interaction of vitronectin with collagen. J. Biol. Chem. 261:1669816703.
34. Geiger, B. 1983. Membrane cytoskeleton interactions. Biochim. Biophys. Acta 737: 305341.
35. Gendler, S. J.,, and A. P. Spicer. 1995. Epithelial mucin genes. Annu. Rev. Physiol. 57:607634.
36. Geuijen, C. A. W.,, R. J. L. Willems,, and F. R. Mooi. 1996. The major fimbrial subunit of Bordetella pertussis binds sulfated sugars. Infect. Immun. 64:26572665.
37. Gum, J. R.Jr., 1995. Human mucin glycoproteins: varied structures predict diverse properties and specific functions. Biochem. Soc. Trans. 23:795799.
38. Hakomori, S. 1981. Glycosphingolipids in cellular interaction, differentiation and oncogenesis. Annu. Rev. Biochem. 50:733764.
39. Hoskins, L. C.,, M. Agustined,, W. B. Mckee,, E. T. Boulding,, M. Kriaris,, and G. Niedermeyer. 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Investig. 75:944953.
40. Hulmes, D. J. 2002. Building collagen molecules, fibrils, and suprafibrillar structures. J. Struct. Biol. 137:210.
41. Hynes, R. O. 1992. Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:1125.
42. Hynes, R. O. 2002. Integrins: bidirectional, allosteric signaling machines. Cell 110:673687.
43. Iozzo, R. V. 2001. Heparan sulfate proteoglycans: intricate molecules with intriguing functions. J. Clin. Investig. 108:165167.
44. Isaacs, R. D. 1994. Borrelia burgdorferi bind to epithelial cell proteoglycans. J. Clin Investig. 93:809819.
45. Ito, S. 1965. The enteric surface coat on cat intestinal microvilli. J. Cell Biol. 27:475491.
46. Ito, S. 1969. Structure and function of the glycocalyx. Fed. Proc. 28:1225.
47. Karlsson, K. A. 1998. Meaning and therapeutic potential of microbial recognition of host glycoconjugates. Mol. Microbiol. 29:111.
48. Karlsson, N. G.,, A. Herrmann,, H. Karlsson,, M. E. Johansson,, I. Carlstedt,, and G. C. Hansson. 1997. The glycosylation of rat intestinal Muc2 mucin varies between rat strains and the small and large intestine. A study of O-linked oligosaccharides by a mass spectrometric approach. J. Biol. Chem. 272:2702527034.
49. Karnovsky, M. I.,, and E. P. Unanue. 1973. Mapping and migration of lymphocyte surface macromolecules. Fed. Proc. 32:5559.
50. Kato, T.,, and R. L. Owen,. 1999. Structure and function of intestinal mucosal epithelium, p. 115132. In P. L. Ogra,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
51. Liang, O. D.,, F. Ascencio,, L. Fransson,, and T. Wadström. 1992. Binding of heparan sulfate to Staphylococcus aureus. Infect. Immun. 60:899906.
52. Liang, O. D.,, K. T. Preissner,, and G. S. Chhatwal. 1997. The hemopexin-type repeats of human vitronectin are recognized by Streptococcus pyogenes. Biochem. Biophys. Res. Commun. 234:445449.
53. Lichtenberg, D.,, R. J. Robson,, and E. A. Dennis. 1982. Solubilization of phospholipids by detergents: structural and kinetic aspects. Biochim. Biophys. Acta 737:285304.
54. Lichtenberger, L. M. 1995. The hydrophobic barrier properties of gastrointestinal mucus. Annu. Rev. Physiol. 57:565583.
55. Lodish, H.,, A. Berk,, S. L. Zipursky,, P. Matsudaira,, D. Baltimore,, and J. Darnell. 1999. Molecular Cell Biology. W.H. Freeman & Co., New York, N.Y.
56. Marchesi, V. T.,, H. Furthmayr,, and M. Tomita. 1976. The red cell membrane. Annu. Rev. Biochem. 45:667698.
57. Marinetti, G. V.,, and R. C. Crain. 1978. Topology of amino-phospho-lipids in the redcell membrane. J. Supramol. Struct. 8:191213.
58. McCormick, B. A.,, P. Klemm,, K. A. Krogfelt,, R. L. Burghoff,, L. Pallesen,, D. C. Laux,, and P. S. Cohen. 1993. Escherichia coli F-18 phase locked ‘on’ for expression of type 1 fimbriae is a poor colonizer of the streptomycin- treated mouse large intestine. Microb. Pathog. 14:3343.
59. Menozzi, F. D.,, J. H. Rouse,, M. Alavi,, M. Laude-Sharp,, J. Muller,, R. Bischoff,, M. J. Brennan,, and C. Locht. 1996. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med. 184:9931001.
60. Miller, E. J.,, and S. Gay,. 1992. Collagen structure and function, p. 130151. In I. K. Cohen,, R. F. Diggelman,, and W. J. Lindblad (ed.), Wound Healing: Biochemical and Clinical Aspects. The W. B. Saunders, Co., Philadelphia, Pa.
61. Mirelman, D.,, and I. Ofek,. 1986. Introduction to microbial lectins and agglutinins, p. 119. In D. Mirelman (ed.), Microbial Lectins and Agglutinins. John Wiley & Sons, Inc., New York, N.Y.
62. Myllyharju, J.,, and K. I. Kivirikko. 2001. Collagens and collagen-related diseases. Ann. Med. 33:721.
63. Neutra, M. R.,, and J.-P. Kraehenbuhl,. 1999. Cellular and molecular basis for antigen transport across epithelial barriers, p. 101114. In P. L. Ogran,, J. Mestecky,, M. E. Lamm,, W. Strober,, J. Bienenstock,, and J. R. McGhee (ed.), Mucosal Immunology. Academic Press, Inc., New York, N.Y.
64. Nicolson, G. L. 1976. Trans-membrane control of the receptors on normal and tumor cells. I. Cytoplasmic influence of cell surface components. Biochim. Biophys. Acta 457:57108.
65. Nicolson, G. L. 1979. Topographic display of cell surface components and their role in transmembrane signaling. Curr. Top. Dev. Biol. 3:305338.
66. Noel, G. J.,, D. C. Love,, and D. M. Mosser. 1994. High-molecular-weight proteins of nontypeable Haemophilus influenzae mediate bacterial adhesion to cellular proteoglycans. Infect. Immun. 62:40284033.
67. Ottani, V.,, M. Raspanti,, and A. Ruggeri. 2001. Collagen structure and functional implications. Micron 32:251260.
68. Raff, M. C.,, and S. dePetris. 1973. Movement of lymphocyte surface antigens and receptors: the fluid nature of the lymphocyte plasma membrane and its immunological significance. Fed. Proc. 32:4854.
69. Rapraeger, A. C. 2000. Syndecan-regulated receptor signaling. J. Cell Biol. 149:995998.
70. Ross, M. H.,, L. J. Romrell,, and G. I. Kaye. 1995. Histology. A Text and Atlas. Lippincott Williams & Wilkins, Philadelphia, Pa.
71. Rostand, K. S.,, and J. D. Esko. 1997. Microbial adherence to and invasion through proteoglycans. Infect. Immun. 65:18.
72. Roth, J. 1980. The use of lectins as probes for carbohydrates-cytochemical techniques and their application in studies on cell surface dynamics. Acta Histochem. Suppl. 22:113121.
73. Roussel, P.,, G. Lamblin,, M. Lhermitte,, N. Houdret,, J. J. Lafitte,, J. M. Perini,, A. Klein,, and A. Scharfman. 1988. The complexity of mucins. Biochemie 70:14711482.
74. Ruoslahti, E. 1991. Integrins. J. Clin. Investig. 87:15.
75. Said, H. M.,, R. Smith,, and R. Redha. 1987. Studies on the intestinal surface acid microclimate: developmental aspects. Pediatr. Res. 22:497499.
76. Schulster, D.,, and A. Levitski. 1980. Cellular Receptors for Hormones and Neurotransmitters. John Wiley & Sons, Inc., New York, N.Y.
77. Sedlacek, H. H.,, J. Stark,, F. R. Seiler,, W. Ziegler,, and H. Wiegandt. 1976. Cholera toxin induces redistribution of sialoglycolipid receptor at the lymphocyte membrane. FEBS Lett. 61:272276.
78. Seiffert, D.,, and D. J. Loskutoff. 1996. Type 1 plasminogen activator inhibitor induces multimerization of plasma vitronectin. A suggested mechanism for the generation of the tissue form of vitronectin in vivo. J. Biol. Chem. 271:2964429651.
79. Sharon, N., 1981. Glycoproteins in membranes, p. 117182. In R. Balian,, M. Chabre,, and P. F. Devaux (ed.), Membranes and Intercellular Communications. North-Holland, Amsterdam, The Netherlands.
80. Sharon, N.,, and H. Lis. 1981. Glycoproteins: research booming on long-ignored, ubiquitous compounds. Chem. Eng. News 59:2124.
81. Sharon, N.,, and H. Lis,. 1982. Glycoproteins, p. 1144. In H. Neurath,, and R. L. Hill (ed.), The Proteins, vol. V, 3rd. ed. Academic Press, Inc., New York, N.Y.
82. Sharon, N.,, and H. Lis. 1989. Lectins as cell recognition molecules. Science 246:227234.
83. Sheehan, J. K.,, D. J. Thornton,, M. Somerville,, and I. Carlstedt. 1991. Mucin structure. The structure and heterogenicity of respiratory mucus glycoproteins. Am. Rev. Respir. Dis. 144:S4S9.
84. Sherman, P.,, N. Fleming,, J. Forstner,, N. Roomi,, and G. Forstner. 1987. Bacteria and the mucus blanket in experimental small bowel bacterial overgrowth. Am. J. Pathol. 126:527534.
85. Shin, J. S.,, and S. N. Abraham. 2001. Cooption of endocytic functions of cellular caveolae by pathogens. Immunology 102:27.
86. Shin, J. S.,, Z. Gao,, and S. N. Abraham. 2000. Involvement of cellular caveolae in bacterial entry into mast cells. Science 289:732733.
87. Singer, S. J. 1974. The molecular organization of membranes. Annu. Rev. Biochem. 43:805833.
88. Singer, S. J.,, and G. L. Nicolson. 1972. The fluid mosaic model of cell membranes. Science 175:710731.
89. Speziale, P.,, M. Höök,, T. Wadström,, and R. Timpl. 1982. Binding of basement membrane protein laminin to Escherichia coli. FEBS Lett. 146:5558.
90. Steck, T. L. 1978. Band 3 protein of the human red cell membrane: a review. J. Supramol. Struct. 8:311324.
91. Stephens, R. S.,, K. Koshiyama,, E. Lewis,, and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40:691699.
92. Switalski, L. M.,, H. Murchison,, R. Timpl,, R. Curtiss,, and M. Höök. 1987. Binding of laminin to oral and endocarditis strains of viridans streptococci. J. Bacteriol. 169:10951101.
93. Switalski, L. M.,, P. Speziale,, M. Höök,, T. Wadström,, and R. Timpl. 1984. Binding of Streptococcus pyogenes to laminin. J. Biol. Chem. 259:37343738.
94. Szentkuti, L.,, H. Rieesel,, M. L. Enss,, K. Gaertner,, and W. VonEngelhardt. 1990. Pre-epithelilal mucus layer in the colon of conventional and germ-free rats. Histochem. J. 22:491497.
95. Tabak, L. A. 1995. In defense of the oral cavity: structure, biosynthesis and function of salivary mucins. Annu. Rev. Physiol. 57:547564. .
96. Tam, P. Y.,, and P. Verdugo. 1981. Control of mucus hydration as a Donnan equilibrium process. Nature 292:340342.
97. Tanner, M. J. A. 1978. Erythrocyte glycoproteins. Curr. Top. Membr. Transp. 11:279325.
98. Tepass, U.,, K. Truong,, D. Godt,, M. Ikura,, and M. Peifer. 2000. Cadherins in embryonic and neural morphogenesis. Nat. Rev. Mol. Cell Biol. 1:91100.
99. Tomasini, B. R.,, and D. F. Mosher. 1988. Conformational states of vitronectin: preferential expression of an antigenic epitope when vitronectin is covalently and noncovalently complexed with thrombin-antithrombin III or treated with urea. Blood 72:903912.
100. Tomasini, B. R.,, and D. F. Mosher. 1990. Vitronectin. Prog. Hemostasis Thromb. 10:269305.
101. Toribara, N. W.,, J. R. GumJr.,, P. J. Culhane,, R. E. Lagace,, J. W. Hicks,, G. M. Petersen,, and Y. S. Kim. 1991. MUC-2 human small intestinal mucin gene. Structure, repeated arrrays and polymorphism. J. Clin. Investig. 88:10051013.
102. Tranh van Nhieu, J.,, and P. J. Sansonetti,. 2000. Cell adhesion molecules and bacterial pathogens, p. 97111. In P. Cossart,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.), Cellular Microbiology. ASM Press, Washington, D.C.
103. Valentin-Weigand, P.,, J. Grulich-Henn,, G. S. Chhatwal,, G. Muller-Berghaus,, H. Blobel,, and K. T. Preissner. 1988. Mediation of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect. Immun. 56:28512855.
104. van Putten, J. P. M.,, and S. M. Paul. 1995. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 14:21442154.
105. Varki, A., 1999. Exploring the biological roles of glycans, p. 5768. In A. Varki,, R. Cummings,, J. Esko,, H. Freeze,, G. Hart,, and J. Martin (ed.), Essentials of Gycobiology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
106. Vuorio, E.,, and B. deCrombrugghe. 1990. The family of collagen genes. Annu. Rev. Biochem. 59:837872.
107. Wicken, A. J.,, and K. W. Knox,. 1981. Composition and properties of amphiphiles, p. 17. In G. D. Shockman, and A. J. Wicken (ed.), Chemistry and Biological Activities of Bacterial Surface Amphiphiles. Academic Press, Inc., New York, N.Y.
108. Wiegandt, H.,, S. Kanda,, K. Inoue,, K. Utsumi,, and S. Nojima. 1981. Studies on the cell association of exogenous glycolipids. Adv. Exp. Med. Biol. 152:34333352.
109. Winters, B. D.,, N. Ramasubbu,, and M. W. Stinson. 1993. Isolation and characterization of a Streptococcus pyogenes protein that binds to basal laminae of human cardiac muscle. Infect. Immun. 61:32593264.
110. Yamakawa, T.,, and Y. Nagai. 1978. Glycolipids at the cell surface and their biological functions. Trends Biochem. Sci. 3:128131.

Tables

Generic image for table
TABLE 3.1

Examples of bacteria taken up by M cells

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Generic image for table
TABLE 3.2

Some important integral membrane components of epithelial cells that act as receptors for bacterial adhesins

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3
Generic image for table
TABLE 3.3

Examples of bacteria that bind to heparan sulfate proteoglycan receptors

Citation: Ofek I, Hasty D, Doyle R. 2003. Target Tissues for Bacterial Adhesion, p 43-62. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error