1887

Chapter 7 : Entry of Bacteria into Nonphagocytic Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Entry of Bacteria into Nonphagocytic Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817800/9781555812638_Chap07-2.gif

Abstract:

Entry of bacteria into nonphagocytic cells (NPCs) has, perhaps more than any other postadhesion event, captured the interest of investigators within the field of host-pathogen interactions. There are three categories of bacterial growth in the presence of NPCs: obligate intracellular, facultative intracellular, and extracellular. The zipper mechanism of bacterial uptake is exemplified by and spp. Proteins encoded by the / locus appear to make up the secretion system, while the proteins encoded by the operon are effectors. Internalin binds to E-cadherin, and invasin binds to β-integrins. Currently, it appears that is example of the pathogenic organisms that utilize M cells to gain access to the subepithelial compartment. The invasome mechanism of entry has been described for species, which are able to penetrate and multiply within both nucleated and nonnucleated cells. The fact that a large bacterial aggregate is an apparent requisite for triggering of internalization via this mechanism suggests that expression of the effector molecules may require a quorum-sensing signaling cascade. There is little clear-cut evidence to date that the entry of predominantly extracellular pathogens into NPCs in vitro truly reflects a process that is important in the pathophysiology of infections. However, the fact that this phenomenon has been described for such a large and growing list of pathogens suggests that it must play an important role in the overall survival of the species in a susceptible host.

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7

Key Concept Ranking

Bacterial Proteins
0.5878144
Type III Secretion System Proteins
0.4382909
0.5878144
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 7.1
Figure 7.1

Schematic diagram illustrating the three primary mechanisms of bacterial internalization by NPCs. (A) Internalization of or species is accomplished by surrounding the microorganism via a tight phagosome. High-affinity binding of bacterial cell surface components to their cognate receptors on animal cells (see Table 7.3 ) is required to initiate cytoskeleton-mediated zippering of the host cell plasma membrane around the bacterium. (B) In internalization of and spp. by the trigger mechanism, bacterial effectors translocate through a type III secretion apparatus into the host cell cytosol and trigger a cascade of reactions including activation of small G proteins, which regulate the actin cytoskeleton, to induce membrane extensions. (C) Internalization by the invasome mechanism, described for spp. Internalization by NPCs involves the formation of a bacterial aggregate which is engulfed and subsequently internalized.

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.2
Figure 7.2

Structural analysis of the needle complex by electron microscopy. Negative staining of isolated needle complexes is shown. Arrows point to incomplete needle complexes, lacking the base. Bar, 100 nm. The model of a central axial section of the needle complex indicates the tripartite structure of a base (a), upper ring doublet (b), and needle (c). (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.3
Figure 7.3

Electron micrographs of the trigger mechanism of bacterial entry. (A) Transmission electron micrograph of the ruffling response of the epithelial cell membrane to (Micrograph courtesy of Philippe Sansonetti.) (B) Morphological response of HeLa cells to latex beads bearing the Ipa complex. Semiconfluent HeLa cells were incubated for 2 h at 37°C with Ipa beads. The ultrastructural appearance of the HeLa cell apical plasma membrane in response to Ipa beads is reminiscent of the dramatic membrane-ruffling response to (Reprinted from reference with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7.4
Figure 7.4

Electron micrographs illustrating the invasome mechanism of bacterial entry. (A) Scanning electron micrograph of a invasome on the surface of a cultured endothelial cell. (Micrograph courtesy of Christoph Dehio.) (B) Transmission electron micrograph of a thin section through the invasome. (Reprinted from C. Dehio, M. Meyer, J. Berger, H. Schwarz, and C. Lanz, 110:2141–2154, 1997, with permission from the publisher.)

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817800.chap7
1. Beckert, S.,, B. Kreikemeyer,, and A. Podbielski. 2001. Group A streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 69:534537.
2. Beekhuizen, H.,, J. S. van de Gevel,, B. Olsson,, I. J. van Benten,, and R. van Furth. 1997. Infection of human vascular endothelial cells with Staphylococcus aureus induces hyperadhesiveness for human monocytes and granulocytes. J. Immunol. 158:774782.
3. Bermudez, L. E.,, M. Petrofsky,, and J. Goodman. 1997. Exposure to low oxygen tension and increased osmolarity enhance the ability of Mycobacterium avium to enter intestinal epithelial (HT-29) cells. Infect. Immun. 65:37683773.
4. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147:683693.
4a.. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri ‘needle complex,’ a part of its type III secreton. Mol. Microbiol. 39:652663.
5. Burns, J. L.,, M. Jonas,, E. Y. Chi,, D. K. Clark,, A. Berger,, and A. Griffith. 1996. Invasion of respiratory epithelial cells by Burkholderia (Pseudomonas) cepacia. Infect. Immun. 64:40544059.
6. Cornelis, G. R. 2002. The Yersinia Ysc-Yop ‘type III’ weaponry. Nat. Rev. Mol. Cell Biol. 3:742752.
7. Cossart, P.,, P. Bouquet,, S. Normark,, and R. Rappuoli (ed.). 2000. Cellular Microbiology. ASM Press, Washington, D.C.
8. Cue, D. R.,, and P. P. Cleary. 1997. Highfrequency invasion of epithelial cells by Streptococcus pyogenes can be activated by fibrinogen and peptides containing the sequence RGD. Infect. Immun. 65:27592764.
9. Cundell, D. R.,, N. P. Gerard,, C. Gerard,, I. Idanpaan-Heikkila,, and E. I. Tuomanen. 1995. Streptococcus pneumoniae anchor to activated human cells by the receptor for platelet-activating factor. Nature 377:435438.
10. Darwin, K. H.,, and V. L. Miller 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12:405428.
11. de Boer, E. C.,, R. F. Bevers,, K. H. Kurth,, and D. H. Schamhart. 1996. Double fluorescent flow cytometric assessment of bacterial internalization and binding by epithelial cells. Cytometry 25:381387.
12. Dehio, C.,, S. D. Gray-Owen,, and T. F. Meyer. 1998. The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol. 6:489494.
13. Dehio, C. 1999. Interactions of Bartonella henselae with vascular endothelial cells. Curr. Opin. Microbiol. 2:7882.
14. Dogan, S.,, F. Gunzer,, H. Guenay,, G. Hillmann,, and W. Geurtse. 2000. Infection of primary human gingival fibroblasts by Porphyromonas gingivalis and Prevotella intermedia. Clin. Oral Investig. 4:3541.
15. Dombek, P. E.,, D. Cue,, J. Sedgewick,, H. Lamb,, S. Ruschkowski,, B. B. Finlay,, and P. P. Cleary. 1999. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 31:859870.
16. Feltis, B. A.,, S. M. Wiesner,, A. S. Kim,, S. L. Erlandsen,, D. L. Lyerly,, T. D. Wilkins,, and C. L. Wells. 2000. Clostridium difficile toxins A and B can alter epithelial permeability and promote bacterial paracellular migration through HT-29 enterocytes. Shock 14:629634.
17. Finlay, B. B.,, and P. Cossart. 1997. Exploitation of mammalian host cell functions by bacterial pathogens. Science 276:718725.
18. Fleiszig, S. M.,, T. S. Zaidi,, and G. B. Pier. 1995. Pseudomonas aeruginosa invasion of and multiplication within corneal cells in vitro. Infect. Immun. 63:40724077.
19. Fleiszig, S. M.,, T. S. Zaidi,, M. J. Preston,, M. Grout,, D. J. Evans,, and G. B. Pier. 1996. Relationship between cytotoxicity and corneal epithelial cell invasion by clinical isolates of Pseudomonas aeruginosa. Infect. Immun. 64:22882294.
20. Fluckiger, U.,, K. F. Jones,, and V. A. Fischetti. 1998. Immunoglobulins to group A streptococcal surface molecules decrease adherence to and invasion of human pharyngeal cells. Infect. Immun. 66:974979.
21. Francis, C.,, M. N. Starnback,, and S. Falkow. 1992 Morphological cytoskletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low oxygen conditions. Mol. Microbiol. 6:30773087.
22. Franklin, C. L.,, D. A. Kinden,, P. L. Stogsdill,, and L. K. Riley. 1993. In vitro model of adhesion and invasion by Bacillus piliformis. Infect. Immun. 61:876883.
23. Gaillard, J. L.,, and B. B. Finlay. 1996. Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte- like Caco-2 cell line. Infect. Immun. 64:12991308.
24. Galán, J. E. 1994. Interactions of bacteria with non-phagocytic cells. Curr. Opin. Immunol. 6:590595.
25. Galán, J. E. 1996. Molecular and cellular bases of Salmonella entry into host cells. Curr. Top. Microbiol. Immunol. 209:4360.
26. Galán, J. E. 2000. Alternative strategies for becoming an insider: lessons from the bacterial world. Cell 103:363366.
27. Galán, J. E.,, and D. Zhou. 2000. Striking a balance: modulation of the actin cytoskeleton by Salmonella. Proc. Natl. Acad. Sci. USA 97:87548761.
28. Galán, J. E. 2001. Salmonella interactions with host cells: type III secretion at work. Annu. Rev. Cell Dev. Biol. 17:5386.
29. Garduño, R. A.,, A. R. Moore,, G. Olivier,, A. L. Lizama,, E. Garduño,, and W. W. Kay. 2000. Host cell invasion and intracellular residence by Aeromonas salmonicida: role of the S-layer. Can. J. Microbiol. 46:660668.
30. Ginocchio, C.,, S. B. Olmsted,, C. L. Wells,, and J. E. Galan. 1994 Contact with epithelial cells induces the formation of surface apendages on Salmonella typhimurium. Cell 76:717724.
31. Goodfellow, A. M.,, M. Hibble,, S. R. Talay,, B. Kreikemeyer,, B. J. Currie,, K. S. Sriprakash,, and G. S. Chhatwal. 2000. Distribution and antigenicity of fibronectin-binding proteins (SfbI and SfbII) of Streptococcus pyogenes clinical isolates from the Northern Territory, Australia. J. Clin. Microbiol. 38:389392.
32. Greco, R.,, L. De Martino,, G. Donnarumma,, M. P. Conte,, L. Seganti,, and P. Valenti. 1995. Invasion of cultured human cells by Streptococcus pyogenes. Res. Microbiol. 146:551560.
33. Griffin, F. M.,, J. A. Griffin,, J. E. Leider,, and S. C. Silverstein. 1975. Studies on the mechanism of phagocytosis. I. Requirements for circumferential attachment of particlebound ligands to specific receptors on the macrophage plasma membrane. J. Exp. Med. 142:12631282.
34. Hamill, R. J.,, J. M. Vann,, and R. A. Proctor. 1986. Phagocytosis of Staphylococcus aureus by cultured bovine aortic endothelial cells: model for postadherence events in endovascular infections. Infect. Immun. 54:833836.
35. Han, Y. W.,, W. Shi,, G. T. Huang,, S. Kinder Haake,, N. H. Park,, H. Kuramitsu,, and R. J. Genco. 2000. Interactions between periodontal bacteria and human oral epithelial cells: Fusobacterium nucleatum adheres to and invades epithelial cells. Infect. Immun. 68:31403146.
36. Hartland, E. L.,, V. Huter,, L. M. Higgins,, N. S. Goncalves,, G. Dougan,, A. D. Phillips,, T. T. MacDonald,, and G. Frankel. 2000. Expression of intimin gamma from enterohemorrhagic Escherichia coli in Citrobacter rodentium. Infect. Immun. 68:46374646.
37. Hasty, D. L.,, I. Ofek,, H. S. Courtney,, and R. J. Doyle. 1992. Multiple adhesins of streptococci. Infect. Immun. 60:21472152.
38. Hensel, M. 2000. Salmonella pathogenicity island 2. Mol. Microbiol. 36:10151023.
39. Hulse, M. L.,, S. Smith,, E. Y. Chi,, A. Pham,, and C. E. Rubens. 1993. Effect of type III group B streptococcal capsular polysaccharide on invasion of respiratory epithelial cells. Infect. Immun. 61:48354841.
40. Isberg, R. R.,, and G. Tranh Van Nhieu. 1994. Two mammalian cell internalization strategies used by pathogenic bacteria. Annu. Rev. Genet. 28:395422.
41. Jadoun, J.,, V. Ozeri,, E. Burstein,, E. Skutelsky,, E. Hanski,, and S. Sela. 1998. Protein F1 is required for efficient entry of Streptococcus pyogenes into epithelial cells. J. Infect. Dis. 178:147158.
42. Jadoun, J.,, and S. Sela. 2000. Mutation in csrR global regulator reduces Streptococcus pyogenes internalization. Microb. Pathog. 29:311317.
43. Jerse, A. E.,, and R. F. Rest. 1997. Adhesion and invasion by the pathogenic neisseria. Trends Microbiol. 5:217221.
44. Jones, A. L.,, D. DeShazer,, and D. E. Woods. 1997. Identification and characterization of a two-component regulatory system involved in invasion of eukaryotic cells and heavy-metal resistance in Burkholderia pseudomallei. Infect. Immun. 65:49724977.
45. Jouve, M.,, M. I. Garcia,, P. Courcoux,, A. Labigne,, P. Gounon,, and C. le Bouguenec. 1997. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect. Immun. 65:40824089.
46. Kubori, T.,, Y. Matsuchima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Skhan,, J. E. Galán,, and S. I. Aizawa. 1998. Supramolecular structure of Salmonella typhimurium type III protein secretion. Science 280:602605.
47. Kubori, T.,, A. Sukhan,, S. I. Aizawa,, and J. E. Galán. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97:1022510230.
48. Kupsch, E. M.,, B. Knepper,, T. Kuroki,, I. Heuer,, and T. F. Meyer. 1993. Variable opacity (Opa) outer membrane proteins account for the cell tropism displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 12:641650.
49. Lalonde, M.,, M. Segura,, S. Lacouture,, and M. Gottschalk. 2000. Interactions between Streptococcus suis serotype 2 and different epithelial cell lines. Microbiolology 146:19131921.
50. LaPenta, D.,, C. Rubens,, E. Chi,, and P. P. Cleary. 1994. Group A streptococci efficiently invade human respiratory epithelial cells. Proc. Natl. Acad. Sci. USA 91:1211512119.
51. Lee, C. A.,, and S. Falkow 1990. The ability of Salmonella to enter mammalian cells is affected by bacterial growth state. Proc. Natl. Acad. Sci. USA 87:43044308.
52. Lowy, F. D. 2000. Is Staphylococcus aureus an intracellular pathogen? Trends Microbiol. 8:341343.
53. Makino, S.,, J. P. van Putten,, and T. F. Meyer. 1991. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoea into human epithelial cells. EMBO J. 10:13071315.
54. Marra, A.,, and R. R. Isberg. 1996. Bacterial pathogenesis: common entry mechanisms. Curr. Biol. 6:10841086.
55. McCallum, S. J.,, and J. A. Theriot,. 2000. Bacterial manipulation of the host cell cytoskeleton, p. 171191. In P. Cossart,, P. Boquet,, S. Normark,, and R. Rappuoli (ed.), Cellular Microbiology. ASM Press, Washington, D.C.
56. Meier, C.,, T. A. Oelschlaeger,, H. Merkert,, T. K. Korhonen,, and J. Hacker. 1996. Ability of Escherichia coli isolates that cause meningitis in newborns to invade epithelial and endothelial cells. Infect. Immun. 64:23912399.
57. Ménard, R.,, M. C. Prevost,, P. Gounon,, P. Sansonetti,, and C. Dehio. 1996. The secreted Ipa complex of Shigella flexneri promotes entry into mammalian cells. Proc. Natl. Acad..Sci. USA 93:12541258.
58. Merien, F.,, G. Baranton,, and P. Perolat. 1997. Invasion of Vero cells and induction of apoptosis in macrophages by pathogenic Leptospira interrogans are correlated with virulence. Infect. Immun. 65:729738.
59. Meyer, D. H.,, J. E. Lippmann,, and P. M. Fives-Taylor. 1996. Invasion of epithelial cells by Actinobacillus actinomycetemcomitans: a dynamic, multistep process. Infect. Immun. 64:29882997.
60. Meyer, T. F. 1999. Pathogenic Neisseriae: complexity of pathogen-host cell interplay. Clin. Infect. Dis. 28:433441.
61. Miller, V. L. 1995. Tissue-culture invasion: fact or artefact? Trends Microbiol. 3:6971.
62. Minnick, M. F.,, S. J. Mitchell,, and S. J. McAllister. 1996. Cell entry and the pathogenesis of Bartonella infections. Trends Microbiol. 4:343347.
63. Molinari, G.,, S. R. Talay,, P. Valentin- Weigand,, M. Rohde,, and G. S. Chhatwal. 1997. The fibronectin-binding protein of Streptococcus pyogenes, SfbI, is involved in the internalization of group A streptococci by epithelial cells. Infect. Immun. 65:13571363.
64. Molinari, G.,, and G. S. Chhatwal. 1999. Streptococcal invasion. Curr. Opin. Microbiol. 2:5661.
65. Molinari, G.,, and G. S. Chhatwal. 1999. Role played by the fibronectin-binding protein SfbI (protein F1) of Streptococcus pyogenes in bacterial internalization by epithelial cells. J. Infect. Dis. 179:10491050.
66. Molinari, G.,, M. Rhode,, S. R. Talay,, G. S. Chhatwal,, S. Beckert,, and A. Podbielski. 2001. The role played by the group A streptococcal negative regulator Nra on bacterial interactions with epithelial cells. Mol. Microbiol. 40:99114.
67. Nassif, X. 1999. Interaction mechanisms of encapsulated meningococci with eukaryotic cells: what does this tell us about the crossing of the blood-brain barrier by Neisseria meningitidis? Curr. Opin. Microbiol. 2:7177.
68. Nassif, X.,, and M. So. 1995. Interaction of pathogenic neisseriae with nonphagocytic cells. Clin. Microbiol. Rev. 8:376388.
69. Natanson, S.,, S. Sela,, A. E. Moses,, J. M. Musser,, M. G. Caparon,, and E. Hanski. 1995. Distribution of fibronectin-binding proteins among group A streptococci among different M types. J. Infect. Dis. 171:871878.
70. Neeman, R.,, N. Keller,, A. Barzilai,, Z. Korenman,, and S. Sela. 1998. Prevalence of internalization-associated gene, prtF1, among persisting group-A streptococcus strains isolated from asymptomatic carriers. Lancet 352:19741977.
71. Oelschlaeger, T. A.,, P. Guerry,, and D. J. Kopecko. 1993. Unusual microtubult-dependent endocytosis mechanisms triggered by Campylobacter jejuni and Citrobacter freundii. Proc. Natl. Acad. Sci. USA 90:68846888.
72. Oelschlaeger, T. A.,, and B. Tall. 1997. Invasion of cultured human epithelial cells by Klebsiella pneumoniae isolated from the urinary tract. Infect. Immun. 65:29502958.
73. Oelschlaeger, T. A. 2001. Adhesins as invasins. Int. J. Med. Microbiol. 291:714.
74. Osterlund, A.,, R. Popa,, T. Nikkila,, A. Scheynius,, and L. Engstrand. 1997. Intracellular reservoir of Streptococcus pyogenes in vivo: a possible explanation for recurrent pharyngotonsillitis. Laryngoscope 107:640647.
75. Ozeri, V.,, I. Rosenshine,, D. F. Mosher,, R. Fässler,, and E. Hanski. 1998. Roles of integrins and fibronectin in the entry of Streptococcus pyogenes into cells via protein F1. Mol. Microbiol. 30:625637
76. Perez-Casal, J.,, M. G. Caparon,, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarities to the receptor proteins of two-component regulatory systems. J. Bacteriol. 173:26172624.
77. Perraud, A. L.,, V. Weiss,, and R. Gross. 1999. Signalling pathways in two-component phosphorelay systems. Trends Microbiol. 7:115120.
78. Phalipon, A.,, and P. J. Sansonetti. 1999. Microbial-host interactions at mucosal sites. Host response to pathogenic bacteria at mucosal sites. Curr. Top. Microbiol. Immunol. 236:163189.
79. Pier, G. B.,, M. Grout,, and T. S. Zaidi. 1997. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl. Acad. Sci. USA 94:1208812093.
80. Pizaro-Cerda, J.,, E. Moreno,, and J. P. Gorvel. 2000. Invasion and intracellular trafficking of Brucella abortus in nonphagocytic cells. Microbes Infect. 2:829835.
81. Rasmussen-Lathrop, S. J.,, K. Koshiyama,, N. Phillips,, and R. S. Stephens. 2000. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell. Microbiol. 2:137144.
82. Raupach, B.,, J. Mecsas,, U. Heczko,, S. Falkow,, and B. B. Finlay. 1999. Bacterial epithelial cell cross talk. Curr. Top. Microbiol. Immunol. 236:137161.
83. Sahly, H.,, R. Podschun,, T. A. Oelschlaeger,, M. Greiwe,, H. Parolis,, D. Hasty,, J. Kekow,, U. Ullmann,, I. Ofek,, and S. Sela. 2000. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infect. Immun. 68:67446749.
84. Schülein R.,, A. Seubert,, C. Gille,, C. Lanz,, Y. Hansmann,, Y. Piemont,, and C. Dehio. 2001. Invasion and persistence intracellular colonization of erythrocytes: a unique parasitic strategy of the emerging pathogen Bartonella. J. Exp. Med. 193:10771086.
85. Sela, S.,, R. Neeman,, N. Keller,, and A. Barzilai. 2000. Relationship between asymptomatic carriage of Streptococcus pyogenes and ability of the strains to adhere and internalise cultured epithelial cells. J. Med. Microbiol. 49:499502.
86. Simpson, W. J.,, D. LaPenta,, C. Chen,, and P. P. Cleary. 1990. Coregulation of type 12 M protein and streptococcal C5a peptidase genes in group A streptococci: evidence for a virulence regulon controlled by the VirR locus. J. Bacteriol. 172:696700.
87. Sola-Landa, A.,, J. Pizarro-Cerda,, M. J. Grillo,, E. Moreno,, I. Moriyon,, J. M. Blasco,, J. P. Gorvel,, and I. Lopez-Goni. 1998. A two-component regulatory system playing a critical role in plant pathogens and endosymbionts is present in Brucella abortus and controls cell invasion and virulence. Mol. Microbiol. 29:125138.
88. Stephens, R. S.,, F. S. Fawaz,, K. A. Kennedy,, K. Koshiyama,, B. Nichols,, C. van Ooij,, and J. N. Engel. 2000. Eukaryotic cell uptake of heparin-coated microspheres: a model of host cell invasion by Chlamydia trachomatis. Infect. Immun. 68:10801085.
89. Tran Van Nhieu, G.,, and P. J. Sansonetti. 1999. Mechanism of Shigella entry into epithelial cells. Curr. Opin. Microbiol. 2:5155.
90. Valentin-Wiegand, P.,, S. R. Talay,, A. Kaufhold,, K. N. Timmis,, and G. S. Chhatwal. 1994. The fibronectin-binding domain of Sfb protein of Streptococcus pyogenes occurs in many group A streptococci and does not cross-react with heart myosin. Microb. Pathog. 17:111120.
91. Valentin-Weigand, P.,, P. Benkel,, M. Rohde,, and G. S. Chhatwal. 1996. Entry and intracellular survival of group B streptococci in J774 macrophages. Infect. Immun. 64:24672473.
92. van Schilfgaarde, M.,, P. van Ulsen,, W. van Der Steeg,, V. Winter,, P. Eijk,, V. Everts,, J. Dankert,, and L. van Alphen. 2000. Cloning of genes of nontypeable Haemophilus influenzae involved in penetration between human lung epithelial cells. Infect. Immun. 68:46164623.
93. Virji, M.,, K. Makepeace,, D. G. P. Ferguson,, M. Achtman,, J. Sarkari,, and E. R. Moxon. 1992. Expression of the Opc protein correlates with invasion of epithelial and endothelial cells by Neisseria meningitidis. Mol. Microbiol. 6:27852795.
94. Virji, M.,, K. Makepeace,, D. G. P. Ferguson,, M. Achtman,, and E. R. Moxon. 1993. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol. Microbiol. 10:499510.
95. Vogel, P. J.,, and R. R. Isberg. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2:3034.
96. Watarai, M.,, S. Funato,, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5-beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183:991999.
97. Weel, J. F. L.,, C. T. P. Hopman,, and J. P. M. van Putten. 1991. In situ expression and localization of Neisseria gonorrhoeac opacity proteins in infected epithelial cells: apparant role of Opa proteins in cellular invasion. J. Exp. Med. 173:13951405.
98. Weinberg, A.,, C. M. Belton,, Y. Park,, and R. J. Lamont. 1997. Role of fimbriae in Porphyromonas gingivalis invasion of gingival epithelial cells. Infect. Immun. 65:313316.
99. Wells, C. L.,, E. M. A. van de Westerlo,, R. P. Jechorek,, H. M. Haines,, and S. L. Erlandsen. 1998. Cytochalasin-induced actin disruption of polarized enterocytes can augment internalization of bacteria. Infect. Immun. 66:24102419.
100. Wyrick, P. B.,, J. Choong,, C. H. Davis,, S. T. Knight,, M. O. Royal,, A. S. Maslow,, and C. R. Bagnell. 1989. Entry of genital Chlamydia trachomatis into polarized human epithelial cells. Infect. Immun. 57:23782389.
101. Zaidi, T. S.,, J. Lyczak,, M. Preston,, and G. B. Pier. 1999. Cystic fibrosis transmembrane conductance regulator-mediated corneal epithelial cell ingestion of Pseudomonas aeruginosa is a key component in the pathogenesis of experimental murine keratitis. Infect. Immun. 67:14811492.
102. Zaretzky, F. R.,, and T. H. Kawula. 1999. Examination of early interactions between Haemophilus ducreyi and host cells by using cocultured HaCaT keratinocytes and foreskin fibroblasts. Infect. Immun. 67:53525360.
103. Zhang, J. R.,, K. E. Mostov,, M. E. Lamm,, M. Nanno,, S. Shimida,, M. Ohwaki,, and E. Tuomanen. 2000. The polymeric immunoglobulin receptor translocates pneumococci across human nasopharyngeal epithelial cells. Cell 102:827837.
104. Zierler, M. K.,, and J. E Galán. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella invasion protein InvJ. Infect. Immun. 63:40244028.

Tables

Generic image for table
Table 7.1

Relationship between bacterial entry into and growth within NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Generic image for table
Table 7.2

Examples of extracellular bacteria with the capacity to enter NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7
Generic image for table
Table 7.3

Examples of bacterial ligands and receptors involved in adhesion to and entry into NPCs

Citation: Ofek I, Hasty D, Doyle R. 2003. Entry of Bacteria into Nonphagocytic Cells, p 113-126. In Bacterial Adhesion to Animal Cells and Tissues. ASM Press, Washington, DC. doi: 10.1128/9781555817800.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error