1887

Chapter 22 : Type III Secretion Systems of Enteric Bacterial Pathogens

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Type III Secretion Systems of Enteric Bacterial Pathogens, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap22-2.gif

Abstract:

This chapter covers what is known about how the enteropathogenic (EPEC)/enterohemorrhagic (EHEC) Esc/Sep, serovar Typhimurium SPI1, and Mxi/Spa type III secretion systems (TTSSs) secrete and translocate proteins into mammalian cells. Since studies of other TTSSs have guided the thinking about how the enteric TTSSs work, information about TTSSs in plant pathogens, the Ysc TTSS of species, and the flagellar TTSS of serovar Typhimurium is also discussed. Effectors delivered by the Ysc TTSS block the antimicrobial activities of macrophages, allowing species to survive and grow in lymphoid tissues. The mechanism by which TTSSs transport effector proteins across the bacterial inner membrane may have evolved from ancestral flagellar genes. The most comprehensive approaches to identify the proteins that make up the Esc/ Sep, SPI1, and Mxi/Spa secretons have involved genomic and mutational studies. In summary, recent studies have revealed many interesting details about the structures and functions of the EPEC/EHEC, , and secretons. Further work is needed to identify all the proteins, their stoichiometries, and locations in these structures. Micrographs of the purified complexes indicate that many are damaged and missing important substructures. Determining whether any of the purified complexes are functional secretons or whether all have lost essential components will require their reconstitution into lipid bilayers. Much has been learned about TTSS in enteric bacterial pathogens.

Citation: Lee C. 2003. Type III Secretion Systems of Enteric Bacterial Pathogens, p 403-422. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch22

Key Concept Ranking

Type III Flagellar Export Apparatus
0.47232068
0.47232068
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Model of the SPI1 secretion showing putative locations and functions of individual components

Citation: Lee C. 2003. Type III Secretion Systems of Enteric Bacterial Pathogens, p 403-422. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap22
1.Abe, A., M. de Grado, R. A. Pfuetzner, C. Sánchez-SanMartín, R. DeVinney, J. L. Puente, N. C. J. Strynadka, and B. B. Finlay. 1999. Enteropathogenic Escherichia coli translocated intimin receptor, Tir, requires a specific chaperone for stable secretion. Mol. Microbiol. 33: 11621175.
2. Allaoui, A.,, S. J. Sansonetti,, and C. Parsot. 1992. MxiJ, a lipoprotein involved in secretion of Shigella Ipa invasins, is homologous to YscJ, a secretion factor of the Yersinia Yop proteins. J. Bacteriol. 174:76617669.
3. Anderson, D. M.,, and O. Schneewind. 1997. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278: 11401143.
4. Anderson, D. M.,, and O. Schneewind. 1999. Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol. Microbiol. 31:11391148.
5. Bennett, J. C. Q.,, and C. Hughes. 2000. From flagellum assembly to virulence: the extended family of type III export chaperones. Trends Microbiol. 8:202204.
6. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147:683693.
7. Blocker, A.,, D. Holden,, and G. Cornelis. 2000. Type III secretion systems: what is the translocator and what is the translocated? Cell. Microbiol. 2:387390.
8. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri "needle complex," a part of its type III secreton. Mol. Microbiol. 39:652663.
9. Boyd, A. P.,, I. Lambermont,, and G. R. Cornelis. 2000. Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J. Bacteriol. 182:48114821.
10. Bronstein, P. A.,, E. A. Miao,, and S. I. Miller. 2000. InvB is a type III chaperone specific for SspA. J. Bacteriol. 182:66386644.
11. Buchrieser, C.,, P. Glaser,, C. Rusniok,, H. Nedjari,, H. d’Hauteville,, F. Kunst,, P. Sansonetti,, and C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38:760771.
12. Chen, Y.,, M. R. Smith,, K. Thirumalai,, and A. Zychlinsky. 1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15:38533860.
13. Cheng, L. W.,, D. M. Anderson,, and O. Schneewind. 1997. Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol. Microbiol. 24:757765.
14. Cheng, L. W.,, and O. Schneewind. 1999. Yersinia enterocolitica type III secretion: on the role of SycE in targeting YopE into HeLa cells. J. Biol. Chem. 274:2210222108.
15. Chilcott, G. S.,, and K. T. Hughes. 1998. The type III secretion determinants of the flagellar anti-transcription factor, FlgM, extend from the amino-terminus into the anti-σ28 domain. Mol. Microbiol. 30:10291040.
16. Collazo, C. M.,, and J. E. Galán. 1996. Requirement for exported proteins in secretion through the invasion-associated type III system of Salmonella typhimurium. Infect. Immun. 64:35243531.
17. Collazo, C. M.,, M. K. Zierler,, and J. E. Galán. 1995. Functional analysis of the Salmonella typhimurium invasion genes invI and invJ and identification of a target of the protein secretion apparatus encoded in the inv locus. Mol. Microbiol. 15:2538.
18. Crago, A. M.,, and V. Koronakis. 1998. Salmonella InvG forms a ring-like multimer that requires InvH lipoprotein for outer membrane localization. Mol. Microbiol. 30:4756.
19. Daefler, S.,, and M. Russel. 1998. The Salmonella typhimurium InvH protein is an outer membrane lipoprotein required for the proper localization of InvG. Mol. Microbiol. 28:13671380.
20. Daniell, S.,, N. Takahashi,, R. Wilson,, D. Friedberg,, I. Rosenshine,, F. P. Booy,, R. K. Shaw,, S. Knutton,, G. Frankel,, and S.-I. Aizawa. 2001. The filamentous type III secretion translocon of enteropathogenic Escherichia coli. Cell. Microbiol. 3:865871.
21. Daniell, S. J.,, R. M. Delahay,, R. K. Shaw,, E. L. Hartland,, M. J. Pallen,, F. Booy,, F. Ebel,, S. Knutton,, and G. Frankel. 2001. Coiled-coil domain of enteropathogenic Escherichia coli type III secreted protein EspD is involved in EspA filament-mediated cell attachment and hemolysis. Infect. Immun. 69:40554064.
22. Darwin, K. H.,, and V. L. Miller. 1999. Molecular basis of the interaction of Salmonella with the intestinal mucosa. Clin. Microbiol. Rev. 12: 405428.
23. Darwin, K. H.,, L. S. Robinson,, and V. L. Miller. 2001. SigE is a chaperone for the Salmonella enterica serovar Typhimurium invasion protein SigD. J. Bacteriol. 183:14521454.
24. Day, J. B.,, and G. V. Plano. 2000. The Yersinia pestis YscY protein directly binds YscX, a secreted component of the type III secretion machine. J. Bacteriol. 182:18341843.
25. De Geyter, C.,, R. Wattiez,, P. Sansonetti,, P. Falmagne,, J.-M. Ruysschaert,, C. Parsot,, and V. Cabiaux. 2000. Characterization of the interaction of IpaB and IpaD, proteins required for entry of Shigella flexneri into epithelial cells, with a lipid membrane. Eur. J. Biochem. 267: 57695776.
26. Donnenberg, M. S.,, and T. S. Whittam. 2001. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J. Clin. Invest. 107:539548.
27. Eichelberg, E.,, C. C. Ginocchio,, and J. E. Galán. 1994. Molecular and functional characterization of the Salmonella typhimurium invasion genes invB and invC: homology of InvC to the F0F1 ATPase family of proteins. J. Bacteriol. 176: 45014510.
28. Elliot, S. J.,, S. W. Hutcheson,, M. S. Dubois,, J. L. Mellies,, L. A. Wainwright,, M. Batchelor,, G. Frankel,, S. Knutton,, and J. B. Kaper. 1999. Identification of CesT, a chaperone for the type III secretion of Tir in enteropathogenic Escherichia coli. Mol. Microbiol. 33:11761189.
29. Elliott, S. J.,, C. B. O’Connell,, A. Koutsouris,, C. Brinkley,, M. S. Donnenberg,, G. Hecht,, and J. B. Kaper. 2002. A gene from the locus of enterocyte effacement that is required for enteropathogenic Escherichia coli to increase tight-junction permeabiity encodes a chaperone for EspF. Infect. Immun. 70:22712277.
30. Fan, F.,, and R. M. Macnab. 1996. Enzymatic characterization of FliI: an ATPase involved in flagellar assembly in Salmonella typhimurium. J. Biol. Chem. 271:3198131988.
31. Francis, M. S.,, S. A. Lloyd,, and H. Wolf-Watz. 2001. The type III secretion chaperone LcrH co-operates with YopD to establish a negative regulatory loop for control of Yop synthesis in Yersinia pseudotuberculosis. Mol. Microbiol. 42: 10751093.
32. Fu, Y.,, and J. E. Galán. 1998. Identification of a specific chaperone for SptP, a substrate of the centisome 63 type III secretion system of Salmonella typhimurium. J. Bacteriol. 180:33933399.
33. Fu, Y.,, and J. E. Galán. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293297.
34. Ginocchio, C. C.,, S. B. Olmsted,, C. L. Wells,, and J. E. Galán. 1994. Contact with epithelial cells induces the formation of surface appendages on Salmonella typhimurium. Cell 76:717724.
35. Håkansson, S.,, K. Schesser,, C. Persson,, E. E. Galyov,, R. Rosqvist,, F. Homble,, and H. Wolf-Watz. 1996. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 15:58125823.
36. Hartland, E. L.,, S. J. Daniell,, R. M. Delahay,, B. C. Neves,, T. Wallis,, R. K. Shaw,, C. Hale,, S. Knutton,, and G. Frankel. 2000. The type III protein translocation system of enteropathogenic Escherichia coli involves EspA-EspB protein interactions. Mol. Microbiol. 35:14831492.
37. Hayward, R. D.,, E. J. McGhie,, and V. Koronakis. 2000. Membrane fusion activity of purified SipB, a Salmonella surface protein essential for mammalian cell invasion. Mol. Microbiol. 37: 727739.
38. Hersh, D.,, D. M. Monack,, M. R. Smith,, N. Ghori,, S. Falkow,, and A. Zychlinsky. 1999. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96:23962401.
39. Hoiczyk, E.,, and G. Blobel. 2001. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc. Natl. Acad. Sci. USA 98:46694674.
40. Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Molec. Biol. Rev. 62:379433.
41. Ide, T.,, S. Laarmann,, L. Greune,, H. Schillers,, H. Oberleithner,, and M. A. Schmidt. 2001. Characterizaton of translocation pores inserted into plasma membranes by type IIIsecreted Esp proteins of enteropathogenic Escherichia coli. Cell. Microbiol. 3:669679.
42. Iriarte, M.,, and G. R. Cornelis. 1999. Identification of SycN, YscX, and YscY, three new elements of the Yersinia Yop virulon. J. Bacteriol. 181:675680.
43. Jin, Q.,, and S.-Y. He. 2001. Role of the Hrp pilus in type III secretion in Pseudomonas syringae. Science 294:25562558.
44. Kaniga, K.,, D. Trollinger,, and J. E. Galán. 1995. Identification of two targets of the type III protein secretion system encoded by the inv and spa loci of Salmonella typhimurium that have homology to the Shigella IpaD and IpaA proteins. J. Bacteriol. 177:70787085.
45. Karlinsey, J. E.,, J. Lonner,, K. L. Brown,, and K. T. Hughes. 2000. Translation/secretion coupling by type III secretion systems. Cell 102:487497.
46. Karlinsey, J. E.,, S. Tanaka,, V. Bettenworth,, S. Yamaguchi,, W. Boos,, S.-I. Aizawa,, and K. T. Hughes. 2000. Completion of the hookbasal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol. Microbiol. 37:12201231.
47. Kenny, B.,, L. C. Lai,, B. B. Finlay,, and M. S. Donnenberg. 1996. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol. Microbiol. 20: 313323.
48. Kimbrough, T. G.,, and S. I. Miller. 2000. Contribution of Salmonella typhimurium type III secretion components to needle complex formation. Proc. Natl. Acad. Sci. USA 97:1100811013.
49. Knutton, S.,, I. Rosenshine,, M. J. Pallen,, I. Nisan,, B. C. Neves,, C. Bain,, C. Wolff,, G. Dougan,, and G. Frankel. 1998. A novel EspA-associated surface organelle of enteropathogenic Escherichia coli involved in protein translocation into epithelial cells. EMBO J. 17:21662176.
50. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galán,, and S.-I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280:602605.
51. Kubori, T.,, A. Sukhan,, S.-I. Aizawa,, and J. E. Galán. 2000. Molecular characterization and assembly of the needle complex of the Salmonella typhimurium type III protein secretion system. Proc. Natl. Acad. Sci. USA 97:1022510230.
52. Kuwae, A.,, S. Yoshida,, K. Tamano,, H. Imuro,, T. Suzuki,, and C. Sasakawa. 2001. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. J. Biol. Chem. 276:3223032239.
53. Lee, C. A.,, M. Silva,, A. M. Siber,, A. J. Kelly,, E. Galyov,, and B. A. McCormick. 2000. A secreted Salmonella protein induces a proinflammatory response in epithelial cells, which promotes neutrophil migration. Proc. Natl. Acad. Sci. USA 97:1228312288.
54. Lee, V. T.,, S. K. Mazmanian,, and O. Schneewind. 2001. A program of Yersinia enterocolitica type III secretion reactions is activated by specific signals. J. Bacteriol. 183:49704978.
55. Lee, V. T.,, and O. Schneewind. 1999. Type III machines of pathogenic yersiniae secrete virulence factors into the extracellular milieu. Mol. Microbiol. 31:16191629.
56. Li, J.,, H. Ochman,, E. A. Groisman,, E. F. Boyd,, F. Solomon,, K. Nelson,, and R. K. Selander. 1995. Relationship between evolutionary rate and cellular location among the Inv/Spa invasion proteins of Salmonella enterica. Proc. Natl. Acad. Sci. USA 92:72527256.
57. Lloyd, S. A.,, M. Norman,, R. Rosqvist,, and H. Wolf-Watz. 2001. Yersinia YopE is targeted for type III secretion by N-terminal, not mRNA, signals. Mol. Microbiol. 39:520531.
58. Luo, Y.,, M. G. Bertero,, E. A. Frey,, R. A. Pfuetzner,, M. R. Wenk,, L. Creagh,, S. L. Marcus,, D. Lim,, R. Sicheri,, C. Kay,, C. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2001. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8:10311036.
59. Makishima, S.,, K. Komoriya,, S. Yamaguchi,, and S.-I. Aizawa. 2001. Length of the flagellar hook and the capacity of the type III export apparatus. Science 291:24112413.
60. Ménard, R.,, P. Sansonetti,, and C. Parsot. 1994. The secretion of the Shigella flexneri Ipa invasins is activated by epithelial cells and controlled by IpaB and IpaD. EMBO J. 13:52935302.
61. Ménard, R.,, P. Sansonetti,, C. Parsot,, and T. Vasselon. 1994. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79:515525.
62. Miao, E. A.,, and S. I. Miller. 2000. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium. Proc. Natl. Acad. Sci. USA 97:75397544.
63. Miao, E. A.,, C. A. Scherer,, R. M. Tsolis,, R. A. Kingsley,, L. G. Adams,, A. J. Bäumler,, and S. I. Miller. 1999.Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34:850864.
64. Minamino, T.,, B. González-Pedrajo,, K. Yamaguchi,, S.-I. Aizawa,, and R. M. Macnab. 1999. FliK, the protein responsible for flagellar hook length control in Salmonella, is exported during hook assembly. Mol. Microbiol. 34: 295304.
65. Minamino, T.,, and R. M. Macnab. 1999. Components of the Salmonella flagellar export apparatus and classification of export substrates. J. Bacteriol. 181:13881394.
66. Minamino, T.,, and R. M. Macnab. 2000. FliH, a soluble component of the type III flagellar export apparatus of Salmonella, forms a complex with FliI and inhibits its ATPase activity. Mol. Microbiol. 37:14941503.
67. Minamino, T.,, and R. M. Macnab. 2000. Interactions among components of the Salmonella flagellar export apparatus and its substrates. Mol. Microbiol. 35:10521064.
68. Muramoto, K.,, S. Makishima,, S.-I. Aizawa,, and R. M. Macnab. 1998. Effect of the cellular level of FliK on flagellar hook and filament assembly in Salmonella typhimurium. J. Mol. Biol. 277:871882.
69. Nguyen, L.,, I. T. Paulsen,, J. Tchieu,, C. J. Hueck,, and M. H. Saier, Jr. 2000. Phylogenetic analyses of the constituents of type III protein secretion systems. J. Mol. Microbiol. Biotechnol. 2:125144.
70. Osiecki, J. C.,, J. Barker,, W. L. Picking,, A. B. Serfis,, E. Berring,, S. Shah,, A. Harrington,, and W. D. Picking. 2001. IpaC from Shigella and SipC from Salmonella possess similar biochemical properties but are functionally distinct. Molec. Microbiol. 42:469481.
71. Page, A.-L.,, M. Fromont-Racine,, P. Sansonetti,, P. Legrain,, and C. Parsot. 2001. Characterization of the interaction partners of secreted proteins and chaperones of Shigella flexneri. Mol. Microbiol. 42:11331145.
72. Picking, W. L.,, L. Coye,, J. C. Osiecki,, A. B. Serfis,, E. Schaper,, and W. D. Picking. 2001. Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol. Microbiol. 39:100111.
73. Plano, G. V.,, J. B. Day,, and F. Ferracci. 2001. Type III export: new uses for an old pathway. Mol. Microbiol. 40:284293.
74. Reed, K. A.,, M. A. Clark,, T. A. Booth,, C. J. Hueck,, S. I. Miller,, B. H. Hirst,, and M. A. Jepson. 1998. Cell-contact-stimulated formation of filamentous appendages by Salmonella typhimurium does not depend on the type III secretion system encoded by Salmonella pathogenicity island 1. Infect. Immun. 66:20072017.
75. Rosqvist, R.,, S. Håkansson, Å . Forsberg, and H. Wolf-Watz. 1995. Functional conservation of the secretion and translocation machinery for virulence proteins of yersinia, salmonellae and shigellae. EMBO J. 14:41874195.
76. Scherer, C. A.,, E. Cooper,, and S. I. Miller. 2000. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. Mol. Microbiol. 37:11331145.
77. Schuch, R.,, and A. T. Maurelli. 2001. MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. J. Bacteriol. 183:69916998.
78. Schuch, R.,, and A. T. Maurelli. 2001. Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infect. Immun. 69:21802189.
79. Sekiya, K.,, M. Ohishi,, T. Ogino,, K. Tamano,, C. Sasakawa,, and A. Abe. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98:1163811643.
80. Shaw, R. K.,, S. Daniell,, F. Ebel,, G. Frankel,, and S. Knutton. 2001. EspA filament-mediated protein translocation into red blood cells. Cell. Microbiol. 3:213222.
81. Stebbins, C. E.,, and J. E. Galán. 2001. Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion. Nature 414:7781.
82. Sukhan, A.,, T. Kubori,, J. Wilson,, and J. E. Galán. 2001. Genetic analysis of assembly of the Salmonella enterica serovar Typhimurium type III secretion-associated needle complex. J. Bacteriol. 183:11591167.
83. Tamano, K.,, S.-I. Aizawa,, E. Katayama,, T. Nonaka,, S. Imajoh-Ohmi,, A. Kuwae,, S. Nagai,, and C. Sasakawa. 2000. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19:38763887.
84. Tamano, K.,, E. Katayama,, T. Toyotome,, and C. Sasakawa. 2002. Shigella Spa32 is an essential secretory protein for functional type III secretion machinery and uniformity of its needle length. J. Bacteriol. 184:12441252.
85. Tran, N.,, A. B. Serfis,, J. C. Osiecki,, W. L. Picking,, L. Coye,, R. Davis,, and W. D. Picking. 2000. Interaction of Shigella flexneri IpaC with model membranes correlates with effects on cultured cells. Infect. Immun. 68:37103715.
86. Tran Van Nhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18: 32493262.
87. Tucker, S. C.,, and J. E. Galán. 2000. Complex function for SicA, a Salmonella enterica serovar Typhimurium type III secretion-associated chaperone. J. Bacteriol. 182:22622268.
88. Viboud, G. I.,, and J. B. Bliska. 2001. A bacterial type III secretion system inhibits actin polymerization to prevent pore formation in host cell membranes. EMBO J. 20:53735382.
89. Wachter, C.,, C. Beinke,, M. Mattes,, and M. A. Schmidt. 1999. Insertion of EspD into epithelial target cell membranes by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 31: 16951707.
90. Wainwright, L. A.,, and J. B. Kaper. 1998. EspB and EspD require a specific chaperone for proper secretion from enteropathogenic Escherichia coli. Mol. Microbiol. 27:12471260.
91. Warawa, J.,, B. B. Finlay,, and B. Kenny. 1999. Type III secretion-dependent hemolytic activity of enteropathogenic Escherichia coli. Infect. Immun. 67:55385540.
92. Watarai, M.,, T. Tobe,, M. Yoshikawa,, and C. Sasakawa. 1995. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 14: 24612470.
93. Wilson, R. K.,, R. K. Shaw,, S. Danniell,, S. Knutton,, and G. Frankel. 2001. Role of EscF, a putative needle complex protein, in the type III protein translocation system of enteropathogenic Escherichia coli. Cell. Microbiol. 3:753762.
94. Wolff, C.,, I. Nisan,, E. Hanski,, G. Frankel,, and I. Rosenshine. 1998. Protein translocation into host epithelial cells by infecting enteropathogenic Escherichia coli. Mol. Microbiol. 28:143155.
95. Wulff-Strobel, C. R.,, A. W. Williams,, and S. C. Straley. 2002. LcrQ and SycH function together at the Ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol. Microbiol. 43:411423.
96. Zhou, D.,, M. S. Mooseker,, and J. E. Galán. 1999. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. Proc. Natl. Acad. Sci. USA 96:1017610181.
97. Zierler, M. K.,, and J. E. Galán. 1995. Contact with cultured epithelial cells stimulates secretion of Salmonella typhimurium invasion protein InvJ. Infect. Immun. 63:40244028.

Tables

Generic image for table
TABLE 1

SPI1 secreton components conserved in other TTSSs

Citation: Lee C. 2003. Type III Secretion Systems of Enteric Bacterial Pathogens, p 403-422. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch22
Generic image for table
TABLE 2

Chaperones and their cognate type III secreted proteins

Citation: Lee C. 2003. Type III Secretion Systems of Enteric Bacterial Pathogens, p 403-422. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error