1887

Chapter 23 : How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap23-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap23-2.gif

Abstract:

A novel focus of the work has been on defining the molecular and cellular mechanisms underlying the interactions between bacterial pathogens and host cells. During infection, enteropathogenic (EPEC) and enterohemorrhagic (EHEC) induce a characteristic ‘‘attaching and effacing’’ (A/E) histopathology on gut enterocytes. Since studies investigating the function of EPEC’s virulence factors are the most advanced, this chapter deals with EPEC as the prototype for the family of A/E-inducing pathogens. EPEC infection is estimated to cause the deaths of several hundred thousand children per year owing to dehydration and other complications. First widely recognized as the causative agent of hamburger disease, EHEC is a zoonotic pathogen that appears to be asymptomatically carried by various ruminants. Mutants lacking the bundle-forming pilus (BFP) plasmid still attach to host cells, but do not form microcolonies and produce fewer A/E lesions than wild-type EPEC. Immunofluorescence studies have shown that in addition to membrane-bound Tir, the tips of EPEC pedestals contain predominantly filamentous (F)-actin, as well as talin, α- actinin, ezrin, and several other cytoskeletal proteins. Diarrhea is undoubtedly the most prominent and widespread symptom associated with both EPEC and EHEC infection. Approaches using molecular biology, genetics, and cell biology have provided many new insights into how EPEC and related pathogens interact with and exploit host cells during the course of infection and how this ultimately leads to disease.

Citation: Vallance B, Chan C, Finlay B. 2003. How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic , p 423-438. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch23

Key Concept Ranking

Type III Secretion System
0.48794135
Tumor Necrosis Factor alpha
0.45593017
Bacterial Proteins
0.42969617
0.48794135
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Transmission electron micrograph of A/E lesions in rabbit intestinal epithelial tissue (Peyer's patch) caused by the REPEC O103. Bacteria are labeled with “B”; pedestals are labeled with “P.” (×20,000.) (Photograph courtesy of Ursula Heczko, Biotechnology Laboratory, University of British Columbia, modified with permission from reference .)

Citation: Vallance B, Chan C, Finlay B. 2003. How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic , p 423-438. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The structure of the EPEC-induced pedestal. EPEC intimately attaches to the host cell through intimin-Tir binding. Several cytoskeletal proteins including α-actinin, talin, and Nck are recruited to the tip of the pedestal. Talin binds to Tir, but to which region is unknown; however, α-actinin binds to the N terminus of Tir, while Nck binds to the phosphotyrosine 474 at the C terminus of Tir. Binding of Nck is required for the recruitment of N-WASP and the Arp 2/3 complex, resulting in the nucleation of actin. F-actin, as well as many other host proteins, is found along the length of the pedestal while non-muscle myosin II and tropomyosin are found at the pedestal base. (Modified with permission from reference .)

Citation: Vallance B, Chan C, Finlay B. 2003. How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic , p 423-438. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Putative mechanisms underlying EPEC-induced diarrhea include increased epithelial permeability and alterations in Cl and HCO ion secretion. Contributing structural changes include loss of absorptive surfaces, while the translocated EPEC effector EspF has been implicated in the loss of tight junction integrity. Signaling events within infected cells may also play a role in diarrhea, including increased MAP kinase activity and IL-8 production, causing the recruitment of neutrophils resulting in tissue damage. (Modified with permission from reference .)

Citation: Vallance B, Chan C, Finlay B. 2003. How Noninvasive Pathogens Induce Disease: Lessons from Enteropathogenic and Enterohemorrhagic , p 423-438. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch23
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap23
1. Abe, A.,, U. Heczko,, R. G. Hegele,, and B. B. Finlay. 1998. Two enteropathogenic Escherichia coli type III secreted proteins, EspA and EspB, are virulence factors. J. Exp. Med. 188: 1907 1916.
2. Cantarelli, V. V.,, A. Takahashi,, I. Yanagihara,, Y. Akeda,, K. Imura,, T. Kodoma,, G. Kono,, Y. Sato,, and T. Honda. 2001. Talin, a host cell protein, interacts directly with the translocated intimin receptor, Tir, of enteropathogenic Escherichia coli, and is essential for pedestal formation. Cell. Microbiol. 3: 745 751.
3. Celli, J.,, M. Olivier,, and B. B. Finlay. 2001. Enteropathogenic Escherichia coli mediates antiphagocytosis through the inhibition of PI 3-kinase-dependent pathways. EMBO J. 20: 1245 1258.
4. Cornelis, G. R.,, and F. Van Gijsegem. 2000. Assembly and function of type III secretory systems. Annu. Rev. Microbiol. 54: 735 774.
5. Crane, J. K.,, B. P. McNamara,, and M. S. Donnenberg. 2001. Role of EspF in host cell death induced by enteropathogenic Escherichia coli. Cell. Microbiol. 2: 197 211.
5a. Crane, J. K.,, and J. S. Oh. 1997. Activation of host cell protein kinase C by enteropathogenic Escherichia coli. Infect. Immun. 65: 3277 3285.
6. Czerucka, D.,, S. Dahan,, B. Mograbi,, B. Rossi,, and P. Rampal. 2001. Implication of mitogen-activated protein kinases in T84 cell responses to enteropathogenic Escherichia coli infection. Infect. Immun. 69: 1298 1305.
7. de Grado, M.,, C. M. Rosenberger,, A. Gauthier,, B. A. Vallance,, and B. B. Finlay. 2001. Enteropathogenic Escherichia coli infection induces expression of the early growth response factor by activating mitogen-activated protein kinase cascades in epithelial cells. Infect. Immun. 69: 6217 6224.
8. Deng, W.,, Y. Li,, B. A. Vallance,, and B. B. Finlay. 2001. Locus of enterocyte effacement from Citrobacter rodentium: sequence analysis and evidence for horizontal transfer among attaching and effacing pathogens. Infect. Immun. 69: 6323 6335.
9. DeVinney, R.,, J. L. Puente,, A. Gauthier,, D. Goosney,, and B. B. Finlay. 2001. Enterohaemorrhagic Escherichia coli use a different Tir-based mechanism for pedestal formation. Mol. Microbiol. 41: 1445 1458.
10. DeVinney, R.,, M. Stein,, D. Reinscheid,, A. Abe,, S. Ruschkowski,, and B. B. Finlay. 1999. Enterohemorrhagic Escherichia coli O157: H7 produces Tir, which is translocated to the host cell membrane but is not tyrosine phosphorylated. Infect. Immun. 67: 2389 2398.
11. Donnenberg, M. S.,, and T. S. Whittam. 2001. Pathogenesis and evolution of virulence in enteropathogenic and enterohemorrhagic Escherichia coli. J. Clin. Invest. 107: 539 548.
12. Elliott, S. J.,, E. O. Krejany,, J. L. Mellies,, R. M. Robins-Browne,, C. Sasakawa,, and J. B. Kaper. 2001. EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect. Immun. 69: 4027 4033.
13. Frankel, G.,, A. D. Philipps,, L. R. Trabulsi,, S. Knutton,, G. Dougan,, and S. Matthews. 2001. Intimin and the host cell—is it bound to end in Tir(s)? Trends Microbiol. 9: 214 218.
14. Ghaem-Maghami, M.,, C. P. Simmons,, S. Daniell,, M. Pizza,, D. Lewis,, G. Frankel,, and G. Dougan. 2001. Intimin-specific immune responses prevent bacterial colonization by the attaching-effacing pathogen Citrobacter rodentium. Infect. Immun. 69: 5597 5605.
15. Goncalves, N. S.,, M. Ghaem-Maghami,, G. Monteleone,, G. Frankel,, G. Dougan,, D. J. Lewis,, C. P. Simmons,, and T. T. MacDonald. 2001. Critical role for tumor necrosis factor alpha in controlling the number of lumenal pathogenic bacteria and immunopathology in infectious colitis. Infect. Immun. 69: 6651 6659.
16. Goosney, D. L.,, R. DeVinney,, and B. B. Finlay. 2001. Recruitment of cytoskeletal and signaling proteins to enteropathogenic and enterohemorrhagic Escherichia coli pedestals. Infect. Immun. 69: 3315 3322.
17. Goosney, D. L.,, R. DeVinney,, R. A. Pfuetzner,, E. A. Frey,, N. C. Strynadka,, and B. B. Finlay. 2000. Enteropathogenic E. coli translocated intimin receptor, Tir, interacts directly with alpha actinin. Curr. Biol. 10: 735 738.
18. Gruenheid, S.,, R. DeVinney,, F. Bladt,, D. Goosney,, S. Gelkop,, G. D. Gish,, T. Pawson,, and B. B. Finlay. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell. Biol. 3: 856 859.
19. Hecht, G. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. VII. Enteropathogenic Escherichia coli: physiological alterations from an extracellular position. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G1 G7.
20. Higgins, L. M.,, G. Frankel,, I. Connerton,, N. S. Goncalves,, G. Dougan,, and T. T. MacDonald. 1999. Role of bacterial intimin in colonic hyperplasia and inflammation. Science 285: 588 591.
21. Kalman, D.,, O. D. Weiner,, D. L. Goosney,, J. W. Sedat,, B. B. Finlay,, A. Abe,, and J. M. Bishop. 1999. Enteropathogenic E. coli acts through WASP and Arp2/3 complex to form actin pedestals. Nat. Cell. Biol. 1: 389 391.
22. Kenny, B. 2001. The enterohaemorrhagic Escherichia coli (serotype O157:H7) Tir molecule is not functionally interchangeable for its enteropathogenic E. coli (serotype O127:H6) homologue. Cell. Microbiol. 3: 499 510.
23. Kenny, B.,, and J. Warawa. 2001. Enteropathogenic Escherichia coli (EPEC) Tir receptor molecule does not undergo full modification when introduced into host cells by EPECindependent mechanisms. Infect. Immun. 69: 1444 1453.
24. Kenny, B.,, and M. Jepson. 2000. Targeting of an enteropathogenic Escherichia coli (EPEC) effector protein to host mitochondria. Cell. Microbiol. 2: 579 590.
25. Kenny, B.,, R. D. DeVinney,, M. Stein,, D. J. Reinscheid,, E. A. Frey,, and B. B. Finlay. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91: 511 520.
26. Klapproth, J. M.,, I. C. Scaletsky,, B. P. Mc-Namara,, L. C. Lai,, C. Malstrom,, S. P. James,, and M. S. Donnenberg. 2000. A large toxin from pathogenic Escherichia coli strains that inhibits lymphocyte activation. Infect. Immun. 68: 2148 2155.
27. Luo, Y.,, E. A. Frey,, R. A. Pfuetzner,, A. L. Creagh,, D. G. Knoechel,, C. A. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405: 1073 1077.
28. Luo, Y.,, M. G. Bertero,, E. A. Frey,, R. A. Pfuetzner,, M. R. Wenk,, L. Creagh,, S. L. Marcus,, D. Lim,, F. Sicheri,, C. Kay,, C. Haynes,, B. B. Finlay,, and N. C. Strynadka. 2001. Structural and biochemical characterization of the type III secretion chaperones CesT and SigE. Nat. Struct. Biol. 8: 1031 1036.
29. Marches, O.,, J. P. Nougayrede,, S. Bouillier,, J. Mainil,, G. Charlier,, I. Raymond,, P. Pohl,, M. Boury,, J. De Rycke,, A. Milon,, and E. Oswald. 2000. Role of Tir and intimin in the virulence of rabbit enteropathogenic Escherichia coli serotype O103:H2. Infect. Immun. 68: 2171 2182.
30. McNamara, B. P.,, A. Koutsouris,, C. B. O’Connell,, J. P. Nougayrede,, M. S. Donnenberg,, and G. Hecht. 2001. Translocated EspF protein from enteropathogenic Escherichia coli disrupts host intestinal barrier function. J. Clin. Invest. 107: 621 629.
31. Nataro, J. P.,, and J. B. Kaper. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142 201.
32. Newman, J. V.,, B. A. Zabel,, S. S. Jha,, and D. B. Schauer. 1999. Citrobacter rodentium espB is necessary for signal transduction and for infection of laboratory mice. Infect. Immun. 67: 6019 6025.
33. Savkovic, S. D.,, A. Ramaswamy,, A. Koutsouris,, and G. Hecht. 2001. EPEC-activated ERK1/2 participate in inflammatory response but not tight junction barrier disruption. Am. J. Physiol. Gastrointest. Liver Physiol. 281: G890 G898.
34. Sekiya, K.,, M. Ohishi,, T. Ogino,, K. Tamano,, C. Sasakawa,, and A. Abe. 2001. Supermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure. Proc. Natl. Acad. Sci. USA 98: 11638 11643.
35. Simmons, C. P.,, S. Clare,, and G. Dougan. 2001. Understanding mucosal responsiveness: lessons from enteric bacterial pathogens. Semin. Immunol. 13: 201 209.
36. Vallance, B. A.,, and B. B. Finlay. 2000. Exploitation of host cells by enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 8799 8806.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error