1887

Chapter 25 : Effector Molecules of Pathogenesis and Host Responses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Effector Molecules of Pathogenesis and Host Responses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap25-2.gif

Abstract:

This chapter outlines the expression of the invasive phenotype, as well as the effector molecules required and their unique modes of action. The features of the disease involve specific interactions of with different cell populations, particularly intestinal epithelial cells, resident macrophages, and polymorphonuclear leukocytes (PMN). These interactions between invasive bacteria and the host cell initiate diverse responses, leading to rupture, invasion, dissemination, and inflammatory destruction of the intestinal barrier. As a consequence of the development of an acute inflammatory response, the intestinal tissue is destroyed. Therefore, shigellosis is considered to be a disease resulting from an imbalance in the host mechanisms that regulate inflammation in the presence of an invading microorganism. In shigellosis, several lines of evidence indicate that cytokines and chemokines are mediators of tissue damage. It has been shown that several pathogens, such as , , or spp., can induce apoptosis in host Cells. Signals that induce the transmigration of neutrophils are dependent on basolateral membrane- interactions, and require genes encoded by the virulence plasmid as well as a functional type III secretion apparatus. In relation to spp., it will be important (i) to elucidate their human colonic specificity, (ii) to confirm whether bacterial translocation through M cells in vivo is the unique way to invade the colon, (iii) to proceed to exhaustive identification of the signaling pathways that lead to severe inflammation characteristic of shigellosis, and (iv) to improve our understanding regarding the bases of immune protection against the disease.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25

Key Concept Ranking

Bacterial Proteins
0.50502795
Bacterial Pathogenesis
0.49572673
Shigella flexneri
0.47169235
0.50502795
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Genetic map of the 30-kg locus or entry region of the 5a virulence plasmid pWR100. On the top, the operon, which encodes the secreted entry effectors, is hatched, and genes that encode for chaperones are indicated in black. At the bottom, the and operons, which encode the type III secretion apparatus components, are shown in gray. The gene codes for the activator required for transcription. Courtesy of C. Parsot (Institut Pasteur, Paris, France).

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ultrastructure of the needle complex of the type III secretion apparatus. (A) Negative staining of the isolated needle complex (arrows) by transmission electron microscopy (courtesy of A. Blocker, P. Gounon, and E. Larquet, Institut Pasteur, Paris, France) and (B and C) representation of the structure of the needle complex. OM and IM, outer and inner bacterial membrane, respectively. Scale bar, 100 nm.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Transmission electron microscopy images of entry into epithelial (HeLa) cells (P. Gounon and P. J. Sansonetti, Institut Pasteur, Paris, France). Note in (A) the formation of cellular extensions on the host cell that will engulf the bacteria. In (B), two bacteria are inside the epithelial cell that shows multiple cellular extensions. Scale bars, 1 m.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Bacterial signals and cell responses during entry. (1) Intracellular IpaC induces actin polymerization by activation of Cdc42 and Rac, and filopodial extensions are formed. (2) Translocated IpaA binds to vinculin, and this complex allows the formation of an adhesive structure at the site of bacterial contact with the host cell membrane. (3) Filopodial extensions are transformed into leaflet structures. (4) Finally, is internalized in a vacuole. Courtesy of G. Tran Van Nhieu (Institut Pasteur, Paris, France).

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

(A) Actin-dependent motility enables the bacterium to move intracellularly and invade adjacent cells. (B) S1 myosin fragments decorate short actin filaments nucleated, elongated, and assembled at the pole of a bacterium. (C) Bacterium enclosed by a double membrane after invasion of an adjacent cell. (P. Gounon and P. J. Sansonetti, Institut Pasteur, Paris, France.) Scale bars, 1 m.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Model for actin-based movement of . (1) Binding of NWASP to IcsA at surface activates the connector. Arp2/3 is activated and binds to G-actin. (2) Interaction of VCA domain of N-WASP with activated Arp2/3-G-actin complex. (3) The VCA domain shuttles G-actin subunits to the growing barbed end.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Schematic of -induced inflammation: rupture, invasion, and inflammatory destruction of the intestinal barrier.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Signaling pathways in epithelial cells and macrophages induced by infection, LPS, and/or bacterial products.

Citation: Fernandez M, Sansonetti P. 2003. Effector Molecules of Pathogenesis and Host Responses, p 455-480. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap25
1.Adam, T., M. Arpin, M. C. Prevost, P. Gounon, and P. J. Sansonetti. 1995. Cytoskeletal rearrangements and the functional role of T-plastin during entry of Shigella flexneri into HeLa cells. J. Cell. Biol. 129: 367381.
2. Adam, T.,, M. Giry,, P. Boquet,, and P. Sansonetti. 1996. Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J. 15: 3315 3321.
3. Adler, B.,, C. Sasakawa,, T. Tobe,, S. Makino,, K. Komatsu,, and M. Yoshikawa. 1989. A dual transcriptional activation system for the 230 kb plasmid genes coding for virulenceassociated antigens of Shigella flexneri. Mol. Microbiol. 3: 627 635.
4. Aliprantis, A. O.,, D. S. Weiss,, J. D. Radolf,, and A. Zychlinsky. 2001. Release of Toll-like receptor-2-activating bacterial lipoproteins in Shigella flexneri culture supernatants. Infect. Immun. 69: 6248 6255.
5. Allaoui, A.,, J. Mounier,, M. C. Prevost,, P. J. Sansonetti,, and C. Parsot. 1992. icsB: a Shigella flexneri virulence gene necessary for the lysis of protrusions during intercellular spread. Mol. Microbiol. 6: 1605 1616.
6. Allaoui, A.,, P. J. Sansonetti,, R. Menard,, S. Barzu,, J. Mounier,, A. Phalipon,, and C. Parsot. 1995. MxiG, a membrane protein required for secretion of Shigella spp. Ipa invasins: involvement in entry into epithelial cells and in intercellular dissemination. Mol. Microbiol. 17: 461 470.
7. Arondel, J.,, M. Singer,, A. Matsukawa,, A. Zychlinsky,, and P. J. Sansonetti. 1999. Increased interleukin-1 (Il-1) and imbalance between IL-1 and IL-1 receptor antagonist during acute inflammation in experimental Shigellosis. Infect. Immun. 67: 6056 6066.
8. Bahrani, F. K.,, P. J. Sansonetti,, and C. Parsot. 1997. Secretion of Ipa proteins by Shigella flexneri: inducer molecules and kinetics of activation. Infect. Immun. 65: 4005 4010.
9. Barzu, S.,, Z. Benjelloun-Touimi,, A. Phalipon,, P. Sansonetti,, and C. Parsot. 1997. Functional analysis of the Shigella flexneri IpaC invasin by insertional mutagenesis. Infect. Immun. 65: 1599 1605.
10. Beatty, W. L.,, S. Meresse,, P. Gounon,, J. Davoust,, J. Mounier,, P. J. Sansonetti,, and J. P. Gorvel. 1999. Trafficking of Shigella lipopolysaccharide in polarized intestinal epithelial cells. J. Cell Biol. 145: 689 698.
11. Beatty, W. L.,, and P. J. Sansonetti. 1997. Role of lipopolysaccharide in signaling to subepithlial polymorphonuclear leukocytes. Infect. Immun. 65: 4395 4404.
12. Benjamin, D.,, T. J. Knobloch,, and M. A. Dayton. 1993. Human B-cell interleukin-10: B-cell lines derived from patients with acquired immunodeficiency syndrome and Burkitt’s lymphoma constitutively secrete large quantities of interleukin-10. Blood 80: 1289 1298.
13. Benjelloun-Touimi, Z.,, P. J. Sansonetti,, and C. Parsot. 1995. SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Mol. Microbiol. 17: 123 135.
14. Benjelloun-Touimi, Z.,, M. S. Tahar,, C. Montecucco,, P. J. Sansonetti,, and C. Parsot. 1998. SepA, the 110 kDa protein secreted by Shigella flexneri: two-domain structure and proteolytic activity. Microbiology 144: 1815 1822.
15. Bernardini, M. L.,, J. Mounier,, H. d’Hauteville,, M. Coquis-Rondon,, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra-and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86: 3867 3871.
16. Blocker, A.,, P. Gounon,, E. Larquet,, K. Niebuhr,, V. Cabiaux,, C. Parsot,, and P. Sansonetti. 1999. The tripartite type III secreton of Shigella flexneri inserts IpaB and IpaC into host membranes. J. Cell Biol. 147: 683 693.
17. Blocker, A.,, N. Jouihri,, E. Larquet,, P. Gounon,, F. Ebel,, C. Parsot,, P. Sansonetti,, and A. Allaoui. 2001. Structure and composition of the Shigella flexneri "needle complex," a part of its type III secreton. Mol. Microbiol. 39: 652 663.
18. Bourdet-Sicard, R.,, M. Rudiger,, B. M. Jockusch,, P. Gounon,, P. J. Sansonetti,, and G. T. Nhieu. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18: 5853 5862.
19. Brown, K.,, S. Gerstberger,, L. Carlson,, G. Franzoso,, and U. Siebenlist. 1995. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267: 1485 1488.
20. Buchrieser, C.,, P. Glaser,, C. Rusniok,, H. Nedjari,, H. D’Hauteville,, F. Kunst,, P. Sansonetti,, and C. Parsot. 2000. The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol. Microbiol. 38: 760 771.
21. Burridge, K.,, K. Fath,, T. Kelly,, G. Nuckolls,, and C. Turner. 1988. Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu. Rev. Cell. Biol. 4: 487 525.
22. Cario, E.,, D. Brown,, M. McKee,, K. Lynch-Devaney,, G. Gerken,, and D. K. Podolsky. 2002. Commensal-associated molecular patterns induce selective Toll-like receptor-trafficking from apical membrane to cytoplasmic compartments to polarized intestinal epithelium. Am. J. Pathol. 160: 1665 1673.
23. Cario, E.,, and D. K. Podolsky. 2000. Differential alteration in intestinal epithelial cell expression of Toll-like receptor 3 (TLR3) and TLR4 in inflammatory bowel disease. Infect. Immun. 68: 7010 7017.
24. Chen, Y.,, M. R. Smith,, K. Thirumalai,, and A. Zychlinsky. 1996. A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J. 15: 3853 3860.
25. Chen, Y.,, and A. Zychlinsky. 1994. Apoptosis induced by bacterial pathogens. Microb. Pathog. 17: 203 212.
26. Cohen, D.,, M. S. Green,, C. Block,, R. Slepon,, and Y. Lerman. 1992. Natural immunity to shigellosis in two groups with different previous risks of exposure to Shigella is only partly expressed by serum antibodies to lipopolysaccharide. J. Infect. Dis. 165: 785 787.
27. Cornelis, G. R.,, and H. Wolf-Watz. 1997. The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol. Microbiol. 23: 861 867.
28. Davis, R.,, M. E. Marquart,, D. Lucius,, and W. D. Picking. 1998. Protein-protein interactions in the assembly of Shigella flexneri invasion plasmid antigens IpaB and IpaC into protein complexes. Biochim. Biophys. Acta 1429: 45 56.
29. d’Hauteville, H.,, R. Dufourcq Lagelouse,, F. Nato,, and P. J. Sansonetti. 1996. Lack of cleavage of IcsA in Shigella flexneri causes aberrant movement and allows demonstration of a crossreactive eukaryotic protein. Infect. Immun. 64: 511 517.
30. d’Hauteville, H.,, and P. J. Sansonetti. 1992. Phosphorylation of IcsA by cAMP-dependent protein kinase and its effect on intracellular spread of Shigella flexneri. Mol. Microbiol. 6: 833 841.
31. Dumenil, G.,, J. C. Olivo,, S. Pellegrini,, M. Fellous,, P. J. Sansonetti,, and G. T. Nhieu. 1998. Interferon alpha inhibits a Src-mediated pathway necessary for Shigella-induced cytoskeletal rearrangements in epithelial cells. J. Cell Biol. 143: 1003 1012.
32. Dumenil, G.,, P. Sansonetti,, and G. Tran VanNheiu. 2000. Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fibre formation. J. Cell Sci. 113: 71 80.
33. DuPont, H. L.,, M. M. Levine,, R. B. Hornick,, and S. B. Formal. 1989. Inoculum size in shigellosis and implications for expected mode of transmission. J. Infect. Dis. 159: 1126 1128.
34. Egile, C.,, H. d’Hauteville,, C. Parsot,, and P. J. Sansonetti. 1997. SopA, the outer membrane protease responsible for polar localization of IcsA in Shigella flexneri. Mol. Microbiol. 23: 1063 1073.
35. Egile, C.,, T. P. Loisel,, V. Laurent,, R. Li,, D. Pantaloni,, P. J. Sansonetti,, and M. F. Carlier. 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146: 1319 1332.
36. Fernandez, I. M.,, M. Silva,, R. Schuch,, W. A. Walker,, A. M. Siber,, A. T. Maurelli,, and B. A. McCormick. 2001. Cadaverine prevents the escape of Shigella flexneri from the phagolysosome: a connection between bacterial dissemination and neutrophil transepithelial signaling. J. Infect. Dis. 184: 743 753.
37. Fernandez-Prada, C. M.,, D. L. Hoover,, B. D. Tall,, A. B. Hartman,, J. Kopelowitz,, and M. M. Venkatesan. 2000. Shigella flexneri IpaH(7.8) facilitates escape of virulent bacteria from the endocytic vacuoles of mouse and human macrophages. Infect. Immunol. 68: 3608 3619.
38. Foletta, V. C.,, D. H. Segal,, and D. R. Cohen. 1998. Transcriptional regulation in the immune system: all roads lead to AP-1. J. Leukoc. Biol. 63: 139 152.
39. Francois, M.,, V. Le Cabec,, M. A. Dupont,, P. J. Sansonetti,, and I. Maridonneau-Parini. 2000. Induction of necrosis in human neutrophils by Shigella flexneri requires type III secretion, IpaB and IpaC invasins, and actin polymerization. Infect. Immun. 68: 1289 1296.
40. Galan, J. E.,, and J. B. Bliska. 1996. Cross-talk between bacterial pathogens and their host cells. Annu. Rev. Dev. Biol. 12: 221 255.
41. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322 1328.
42. Ghosh, S.,, M. J. May,, and E. B. Kopp. 1998. NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16: 225 260.
43. Girardin, S. E.,, R. Tournebize,, M. Mavris,, A. L. Page,, X. Li,, G. R. Stark,, J. Bertin,, P. S. DiStefano,, M. Yaniv,, P. J. Sansonetti,, and D. J. Philpott. 2001. CARD4/Nod1 mediates NF-kappaB and JNK activation by invasive Shigella flexneri. EMBO Rep. 2: 736 742.
44. Goldberg, M. B. 1997. Shigella actin-based motility in the absence of vinculin. Cell. Motil. Cytoskel. 37: 44 53.
45. Goldberg, M. B.,, O. Barzu,, C. Parsot,, and P. J. Sansonetti. 1993. Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. Infect. Agents Dis. 2: 210 211.
46. Goldberg, M. B.,, and J. A. Theriot. 1995. Shigella flexneri surface protein IcsA is sufficient to direct actin-based motility. Proc. Natl. Acad. Sci. USA 92: 6572 6576.
47. Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279: 509 514.
48. Hedges, S. R.,, W. W. Agace,, and C. Svanborg. 1995. Epithelial cytokine responses and mucosal cytokine networks. Trends Microbiol. 3: 266 270.
49. Hilbi, H.,, J. E. Moss,, D. Hersh,, Y. Chen,, J. Arondel,, S. Banerjee,, R. A. Flavell,, J. Yuan,, P. J. Sansonetti,, and A. Zychlinsky. 1998. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J. Biol. Chem. 273: 32895 32900.
50. Hilbi, H.,, R. J. Puro,, and A. Zychlinsky. 2000. Tripeptidyl peptidase II promotes maturation of caspase-1 in Shigella flexneri-induced macrophage apoptosis. Infect. Immun. 68: 5502 5508.
51. Hsu, D. H.,, K. W. Moore,, and H. Spits. 1992. Differential effects of IL-4 and IL-10 on IL-2-induced IFN-gamma synthesis and lymphokine-activated killer activity. Int. Immunol. 4: 563 569.
52. Hugot, J. P.,, M. Chamaillard,, H. Zouali,, S. Lesage,, J. P. Cezard,, J. Belaiche,, S. Almer,, C. Tysk,, C. A. O’Morain,, M. Gassull,, V. Binder,, Y. Finkel,, A. Cortot,, R. Modigliani,, P. Laurent-Puig,, C. Gower-Rousseau,, J. Macry,, J. F. Colombel,, M. Sahbatou,, and G. Thomas. 2001. Association of NOD2 leucinerich repeat variants with susceptibility to Crohn’s disease. Nature 411: 599 603.
53. Inohara, N.,, T. Koseki,, L. del Peso,, Y. Hu,, C. Yee,, S. Chen,, R. Carrio,, J. Merino,, D. Liu,, J. Ni,, and G. Nunez. 1999. Nodl, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274: 14560 14567.
54. Inohara, N.,, Y. Ogura,, F. F. Chen,, A. Muto,, and G. Nunez. 2001. Human Nod1 confers responsiveness to bacterial lipopolysaccharides. J. Biol. Chem. 276: 2551 2554.
55. Islam, D.,, P. K. Bardhan,, A. A. Lindberg,, and B. Christensson. 1995. Shigella infection induces cellular activation of T and B cells and distinct species-related changes in peripheral blood lymphocyte subsets during the course of the disease. Infect. Immun. 63: 2941 2949.
56. Islam, D.,, B. Veress,, P. K. Bardhan,, A. A. Lindberg,, and B. Christensson. 1997. In situ characterization of inflammatory responses in the rectal mucosae of patients with shigellosis. Infect. Immun. 65: 739 749.
57. Jung, H. C.,, L. Eckmann,, S. K. Yang,, A. Panja,, J. Fierer,, E. Morzycka-Wroblewska,, and M. F. Kagnoff. 1995. A distinct array of proinflammatory cytokines is expressed in human epithelial cells in response to bacterial invasion. J. Clin. Invest. 95: 55 62.
58. Kato, J.,, K. Ito,, A. Nakamura,, and H. Watanabe. 1989. Cloning of regions required for contact hemolysis and entry into LLC-MK2 cells from Shigella sonnei form I plasmid: virF is a positive regulator gene for these phenotypes. Infect. Immun. 57: 1391 1398.
59. Klimpel, G. R.,, D. W. Niesel,, and K. D. Klimpel. 1986. Natural cytotoxic effector cell activity against Shigella flexneri-infected HeLa cells. J. Immunol. 136: 1081 1086.
60. Kotloff, K. L.,, J. P. Winickoff,, B. Ivanoff,, J. D. Clemens,, D. L. Swerdlow,, P. J. Sansonetti,, G. K. Adak,, and M. M. Levine. 1999. Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull. W. H. O. 77: 651 666.
61. Kubori, T.,, Y. Matsushima,, D. Nakamura,, J. Uralil,, M. Lara-Tejero,, A. Sukhan,, J. E. Galan,, and S. I. Aizawa. 1998. Supramolecular structure of the Salmonella typhimurium type III protein secretion system. Science 280: 602 605.
62. Kureishi, Y.,, S. Kobayashi,, M. Amano,, K. Kimura,, H. Kanaide,, T. Nakano,, K. Kaibuchi,, and M. Ito. 1997. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J. Biol. Chem. 272: 12257 12260.
63. Kuwae, A.,, S. Yoshida,, K. Tamano,, H. Mimuro,, T. Suzuki,, and C. Sasakawa. 2001. Shigella invasion of macrophage requires the insertion of IpaC into the host plasma membrane. Functional analysis of IpaC. J. Biol. Chem. 276: 32230 32239.
64. Laine, R. O.,, W. Zeile,, F. Kang,, D. L. Purich,, and F. S. Southwick. 1997. Vinculin proteolysis unmasks an ActA homolog for actinbased Shigella motility. J. Cell. Biol. 138: 1255 1264.
65. Lett, M. C.,, C. Sasakawa,, N. Okada,, T. Sakai,, S. Makino,, M. Yamada,, K. Komatsu,, and M. Yoshikawa. 1989. virG, a plasmidcoded virulence gene of Shigella flexneri: identification of the VirG protein and determination of the complete coding sequence. J. Bacteriol. 171: 353 359.
66. Li, A.,, T. Pal,, U. Forsum,, and A. A. Lindberg. 1992. Safety and immunogenicity of the live oral auxotrophic Shigella flexneri SFL124 in volunteers. Vaccine 10: 395 404.
67. Loisel, T. P.,, R. Boujemaa,, D. Pantaloni,, and M. F. Carlier. 1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401: 613 616.
68. Lommel, S.,, S. Benesch,, K. Rottner,, T. Franz,, J. Wehland,, and R. Kuhn. 2001. Actin pedestal formation by enteropathogenic Escherichia coli and intracellular motility of Shigella flexneri are abolished in N-WASP-defective cells. EMBO Rep. 2: 850 857.
69. Makino, S.,, C. Sasakawa,, K. Kamata,, T. Kurata,, and M. Yoshikawa. 1986. A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46: 551 555.
70. Mandic-Mulec, I.,, J. Weiss,, and A. Zychlinsky. 1997. Shigella flexneri is trapped in polymorphonuclear leukocyte vacuoles and efficiently killed. Infect. Immun. 65: 110 115.
71. Marquart, M. E.,, W. L. Picking,, and W. D. Picking. 1996. Soluble invasion plasmid antigen C (IpaC) from Shigella flexneri elicits epithelial cell responses related to pathogen invasion. Infect. Immun. 64: 4182 4187.
72. Mathan, M. M.,, and V. I. Mathan. 1991. Morphology of rectal mucosa of patients with shigellosis. Rev. Infect. Dis. 13: S314 S318.
73. Maurelli, A. T.,, B. Baudry,, H. d’Hauteville,, T. L. Hale,, and P. J. Sansonetti. 1985. Cloning of plasmid DNA sequences involved in invasion of HeLa cells by Shigella flexneri. Infect. Immun. 49: 164 171.
74. Mavris, M.,, A. L. Page,, R. Tournebize,, B. Demers,, P. J. Sansonetti,, and C. Parsot. 2002. Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol. Microbiol. 43: 1543 1553.
75. McCormick, B. A.,, S. I. Miller,, D. Carnes,, and J. L. Madara. 1995. Transepithelial signaling to neutrophils by salmonellae: a novel virulence mechanism for gastroenteritis. Infect. Immun. 63: 2302 2309.
76. McCormick, B. A.,, A. M. Siber,, and A. T. Maurelli. 1998. Requirement of the Shigella flexneri virulence plasmid in the ability to induce trafficking of neutrophils across polarized monolayers of the intestinal epithelium. Infect. Immun. 66: 4237 4243.
77. Menard, R.,, P. Sansonetti,, C. Parsot,, and T. Vasselon. 1994. Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasions of S. flexneri. Cell 79: 515 525.
78. Menard, R.,, P. J. Sansonetti,, and C. Parsot. 1993. Nonpolar mutagenesis of the ipa genes defines IpaB, IpaC, and IpaD as effectors of Shigella flexneri entry into epithelial cells. J. Bacteriol. 175: 5899 5906.
79. Miki, H.,, T. Sasaki,, Y. Takai,, and T. Takenawa. 1998. Induction of filopodium formation by a WASP-related actin-depolymerizing protein N-WASP. Nature 391: 93 96.
80. Mogull, S. A.,, L. J. Runyen-Janecky,, M. Hong,, and S. M. Payne. 2001. dksA is required for intercellular spread of Shigella flexneri via an RpoS-independent mechanism. Infect. Immun. 69: 5742 5751.
81. Mounier, J.,, F. K. Bahrani,, and P. J. Sansonetti. 1997. Secretion of Shigella flexneri Ipa invasins on contact with epithelial cells and subsequent entry of the bacterium into cells are growth stage dependent. Infect. Immun. 65: 774 782.
82. Mounier, J.,, V. Laurent,, A. Hall,, P. Fort,, M. F. Carlier,, P. J. Sansonetti,, and C. Egile. 1999. Rho family GTPases control entry of Shigella flexneri into epithelial cells but not intracellular motility. J. Cell Sci. 112: 2069 2080.
83. Mounier, J.,, T. Vasselon,, R. Hellio,, M. Lesourd,, and P. J. Sansonetti. 1992. Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect. Immun. 60: 237 248.
84. Nahori, M. A.,, P. Renesto,, B. B. Vargaftig,, and M. Chignard. 1992. Activation and damage of cultured airway epithelial cells by human elastase and cathepsin G. Eur. J. Pharmacol. 228: 213 218.
85. Nakata, N.,, C. Sasakawa,, N. Okada,, T. Tobe,, I. Fukuda,, T. Suzuki,, K. Komatsu,, and M. Yoshikawa. 1992. Identification and characterization of virK, a virulence-associated large plasmid gene essential for intercellular spreading of Shigella flexneri. Mol. Microbiol. 6: 2387 2395.
86. Niebuhr, K.,, N. Jouihri,, A. Allaoui,, P. Gounon,, P. J. Sansonetti,, and C. Parsot. 2000. IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol. Microbiol. 38: 8 19.
87. Nobes, C. D.,, and A. Hall. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53 62.
88. Oaks, E. V.,, T. L. Hale,, and S. B. Formal. 1986. Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella spp. Infect. Immun. 53: 57 63.
89. Oberhelman, R. A.,, D. J. Kopecko,, E. Salazar-Lindo,, E. Gotuzzo,, J. M. Buysse,, M. M. Venkatesan,, A. Yi,, C. Fernandez-Prada,, M. Guzman,, R. Leo′n-Baru′a,, and R. Bradley Sack. 1991. Prospective study of systemic and mucosal immune responses in dysenteric patients to specific Shigella invasion plasmid antigens and lipopolysaccharides. Infect. Immun. 59: 2341 2350.
90. Ogura, Y.,, D. K. Bonen,, N. Inohara,, D. L. Nicolae,, F. F. Chen,, R. Ramos,, H. Britton,, T. Moran,, R. Karaliuskas,, R. H. Duerr,, J. P. Achkar,, S. R. Brant,, T. M. Bayless,, B. S. Kirschner,, S. B. Hanauer,, G. Nunez,, and J. H. Cho. 2001. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411: 603 606.
91. Page, A. L.,, H. Ohayon,, P. J. Sansonetti,, and C. Parsot. 1999. The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell. Microbiol. 1: 183 193.
92. Page, A. L.,, P. J. Sansonetti,, and C. Parsot. 2002. Spa15 of Shigella flexneri, a third type of chaperone in the type III secretion pathway. Mol. Microbiol. 43: 1533 1542.
93. Parsot, C.,, R. Menard,, P. Gounon,, and P. J. Sansonetti. 1995. Enhanced secretion through the Shigella flexneri Mxi-Spa translocon leads to assembly of extracellular proteins into macromolecular structures. Mol. Microbiol. 16: 291 300.
94. Parsot, C.,, and P. J. Sansonetti. 1996. Invasion and the pathogenesis of Shigella infections. Curr. Top. Microbiol. Immunol. 209: 25 42.
95. Perdomo, J. J.,, P. Gounon,, and P. J. Sansonetti. 1994. Polymorphonuclear leukocyte transmigration promotes invasion of colonic epithelial monolayer by Shigella flexneri. J. Clin. Invest. 93: 633 643.
96. Perdomo, O. J.,, J. M. Cavaillon,, M. Huerre,, H. Ohayon,, P. Gounon,, and P. J. Sansonetti. 1994. Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J. Exp. Med. 180: 1307 1319.
96a. Phalipon, A.,, A. Cardona,, J. P. Kraehenbuhl,, L. Edelman,, P. J. Sansonetti,, and B. Corthesy. 2002. Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo. Immunity 17: 107 115.
97. Phalipon, A.,, M. Kaufmann,, P. Michetti,, J. M. Cavaillon,, M. Huerre,, P. Sansonetti,, and J. P. Kraehenbuhl. 1995. Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J. Exp. Med. 182: 769 778.
98. Philpott, D. J.,, S. E. Girardin,, and P. J. Sansonetti. 2001. Innate immune responses of epithelial cells following infection with bacterial pathogens. Curr. Opin. Immunol. 13: 410 416.
99. Philpott, D. J.,, S. Yamaoka,, A. Israel,, and P. J. Sansonetti. 2000. Invasive Shigella flexneri activates NF-kappa B through a lipopolysaccharide-dependent innate intracellular response and leads to IL-8 expression in epithelial cells. J. Immunol. 165: 903 914.
100. Picking, W. L.,, L. Coye,, J. C. Osiecki,, A. Barnoski Serfis,, E. Schaper,, and W. D. Picking. 2001. Identification of functional regions within invasion plasmid antigen C (IpaC) of Shigella flexneri. Mol. Microbiol. 39: 100 111.
101. Prevost, M. C.,, M. Lesourd,, M. Arpin,, F. Vernel,, J. Mounier,, R. Hellio,, and P. J. Sansonetti. 1992. Unipolar reorganization of F-actin layer at bacterial division and bundling of actin filaments by plastin correlate with movement of Shigella flexneri within HeLa cells. Infect. Immun. 60: 4088 4099.
102. Radnedge, L.,, M. A. Davis,, B. Youngren,, and S. J. Austin. 1997. Plasmid maintenance functions of the large virulence plasmid of Shigella flexneri. J. Bacteriol. 179: 3670 3675.
103. Rajakumar, K.,, B. H. Jost,, C. Sasakawa,, N. Okada,, M. Yoshikawa,, and B. Adler. 1994. Nucleotide sequence of the rhamnose biosynthetic operon of Shigella flexneri 2a and role of lipopolysaccharide in virulence. J. Bacteriol. 176: 2362 2373.
104. Raqib, R.,, A. A. Lindberg,, B. Wretlind,, P. K. Bardhan,, U. Andersson,, and J. Andersson. 1995. Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infect. Immun. 63: 289 296.
105. Raqib, R.,, A. Ljungdahl,, A. A. Lindberg,, U. Andersson,, and J. Andersson. 1996. Local entrapment of interferon gamma in the recovery from Shigella dysenteriae type 1 infection. Gut 38: 328 336.
106. Raqib, R.,, A. Ljungdahl,, A. A. Lindberg,, B. Wretlind,, U. Andersson,, and J. Andersson. 1996. Dissociation between cytokine mRNA expression and protein production in shigellosis. Eur. J. Immunol. 26: 1130 1138.
107. Raqib, R.,, B. Wretlind,, J. Andersson,, and A. A. Lindberg. 1995. Cytokine secretion in acute shigellosis is correlated to disease activity and directed more to stool than to plasma. J. Infect. Dis. 171: 376 384.
108. Rathman, M.,, N. Jouirhi,, A. Allaoui,, P. Sansonetti,, C. Parsot,, and G. Tran Van Nhieu. 2000. The development of a FACSbased strategy for the isolation of Shigella flexneri mutants that are deficient in intercellular spread. Mol. Microbiol. 35: 974 990.
109. Raupach, B.,, J. Mecsus,, U. Heczko,, S. Flakow,, and B. B. Finlay. 1999. Bacterial epithelial cell cross talk. Curr. Top. Microbiol. Immunol. 236: 137 161.
110. Renesto, P.,, J. Mounier,, and P. J. Sansonetti. 1996. Induction of adherence and degranulation of polymorphonuclear leukocytes: a new expression of the invasive phenotype of Shigella flexneri. Infect. Immun. 64: 719 723.
111. Robbins, J. R.,, D. Monack,, S. J. McCallun,, A. Vegas,, E. Pham,, M. B. Goldberg,, and J. A. Theriot. 2001. The making of a gradient: IcsA (VirG) polarity in Shigella flexneri. Mol. Microbiol. 41: 861 872.
112. Rohatgi, R.,, L. Ma,, H. Miki,, M. Lopez,, T. Kirchhausen,, T. Takenawa,, and M. W. Kirschner. 1999. The interaction between NWASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97: 221 231.
113. Samandari, T.,, K. L. Kotloff,, G. A. Losonsky,, W. D. Picking,, P. J. Sansonetti,, M. M. Levine,, and M. B. Sztein. 2000. Production of IFN-gamma and IL-10 to Shigella invasins by mononuclear cells from volunteers orally inoc ulated with a Shiga toxin-deleted Shigella dysenteriae type 1 strain. J. Immunol. 164: 2221 2232.
114. Sandlin, R. C.,, M. B. Goldberg,, and A. T. Maurelli. 1996. Effect of O side-chain length and composition on the virulence of Shigella flexneri 2a. Mol. Microbiol. 22: 63 73.
115. Sandlin, R. C.,, K. A. Lampel,, S. P. Keasler,, M. B. Goldberg,, A. L. Stolzer,, and A. T. Maurelli. 1995. Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect. Immun. 63: 229 237.
116. Sandlin, R. C.,, and A. T. Maurelli. 1999. Establishment of unipolar localization of IcsA in Shigella flexneri 2a is not dependent on virulence plasmid determinants. Infect. Immun. 67: 350 356.
117. Sansonetti, P.,, and A. Phalipon. 1996. Shigellosis: from molecular pathogenesis of infection to protective immunity and vaccine development. Res. Immunol. 147: 595 602.
118. Sansonetti, P. J. 1993. Molecular mechanisms of cell and tissue invasion by Shigella flexneri. Infect. Agents Dis. 2: 201 206.
119. Sansonetti, P. J. 1998. Pathogenesis of shigellosis: from molecular and cellular biology of epithelial cell invasion to tissue inflammation and vaccine development. Jpn. J. Med. Sci. Biol. 51: S69 S80.
120. Sansonetti, P. J.,, J. Arondel,, J. M. Cavaillon,, and M. Huerre. 1995. Role of interleukin-1 in the pathogenesis of experimental shigellosis. J. Clin. Invest. 96: 884 892.
121. Sansonetti, P. J.,, J. Arondel,, M. Huerre,, A. Harada,, and K. Katsushima. 1999. Interleukin-8 controls bacterial transepithelial translocation at the cost of epithelial destruction in experimental shigellosis. Infect. Immun. 67: 1471 1480.
122. Sansonetti, P. J.,, H. d’Hauteville,, C. Ecobichon,, and C. Pourcel. 1983. Molecular comparison of virulence plasmids in Shigella and enteroinvasive Escherichia coli. Ann. Microbiol. ( Paris) 67: 295 318.
123. Sansonetti, P. J.,, D. J. Kopecko,, and S. B. Formal. 1982. Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect. Immun. 35: 852 860.
124. Sansonetti, P. J.,, J. Mounier,, M. C. Prevost,, and R. M. Mege. 1994. Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell 76: 829 839.
125. Sansonetti, P. J.,, and A. Phalipon. 1999. M cells as ports of entry for enteroinvasive pathogens: mechanisms of interaction, consequences for the disease process. Semin. Immunol. 11: 193 203.
126. Sansonetti, P. J.,, A. Phalipon,, J. Arondel,, K. Thirumalai,, S. Banerjee,, S. Akira,, K. Takeda,, and A. Zychlinsky. 2000. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12: 581 590.
127. Sansonetti, P. J.,, G. Tran Van Nhieu,, and C. Egile. 1999. Rupture of the intestinal epithelial barrier and mucosal invasion by Shigella flexneri. Clin. Infect. Dis. 28: 466 475.
128. Sasakawa, C.,, K. Kamata,, T. Sakai,, S. Makino,, M. Yamada,, N. Okada,, and M. Yoshikawa. 1988. Virulence-associated genetic regions comprising 31 kilobases of the 230-kilobase plasmid in Shigella flexneri 2a. J. Bacteriol. 170: 2480 2484.
129. Sasakawa, C.,, K. Komatsu,, T. Tobe,, T. Suzuki,, and M. Yoshikawa. 1993. Eight genes in region 5 that form an operon are essential for invasion of epithelial cells by Shigella flexneri 2a. J. Bacteriol. 175: 2334 2346.
130. Sasakawa, C.,, S. Makino,, K. Kamata,, and M. Yoshikawa. 1986. Isolation, characterization, and mapping of Tn5 insertions into the 140-megadalton invasion plasmid defective in the mouse Sereny test in Shigella flexneri 2a. Infect. Immun. 54: 32 36.
131. Schuch, R.,, and A. T. Maurelli. 1999. The Mxi-Spa type III secretory pathway of Shigella flexneri requires an outer membrane lipoprotein, MxiM, for invasin translocation. Infect. Immun. 67: 1982 1991.
132. Schuch, R.,, and A. T. Maurelli. 2001. MxiM and MxiJ, base elements of the Mxi-Spa type III secretion system of Shigella, interact with and stabilize the MxiD secretin in the cell envelope. J. Bacteriol. 183: 6991 6998.
133. Schuch, R.,, and A. T. Maurelli. 2001. Spa33, a cell surface-associated subunit of the Mxi-Spa type III secretory pathway of Shigella flexneri, regulates Ipa protein traffic. Infect. Immun. 69: 2180 2189.
134. Schuch, R.,, R. C. Sandlin,, and A. T. Maurelli. 1999. A system for identifying post-invasion functions of invasion genes: requirements for the Mxi-Spa type III secretion pathway of Shigella flexneri in intercellular dissemination. Mol. Microbiol. 34: 675 689.
135. Shibata, T.,, F. Takeshima,, F. Chen,, F. W. Alt,, and S. B. Snapper. 2002. Cdc42 facilitates invasion but not the actin-based motility of Shigella. Curr. Biol. 12: 341 345.
136. Skoudy, A.,, G. T. Nhieu,, N. Mantis,, M. Arpin,, J. Mounier,, P. Gounon,, and P. Sansonetti. 1999. A functional role for ezrin during Shigella flexneri entry into epithelial cells. J. Cell Sci. 112: 2059 2068.
137. Snapper, S. B.,, F. Takeshima,, I. Anton,, C. H. Liu,, S. M. Thomas,, D. Nguyen,, D. Dudley,, H. Fraser,, D. Purcih,, M. Lopez-Ilasaca,, C. Klein,, L. Davidson,, R. Bronson,, R. C. Mulligan,, F. Southwick,, R. Geha,, M. B. Goldberg,, F. S. Rosen,, J. H. Hartwig,, and F. W. Alt. 2001. N-WASP deficiency reveals distinct pathways for cell surface projections and microbiol actin-based motility. Nat. Cell Biol. 3: 897 904.
138. Steinhauer, J.,, R. Agha,, T. Pham,, A. W. Varga,, and M. B. Goldberg. 1999. The unipolar Shigella surface protein IcsA is targeted directly to the bacterial old pole: IcsP cleavage of IcsA occurs over the entire bacterial surface. Mol. Microbiol. 32: 367 377.
139. Suzuki, T.,, H. Mimuro,, H. Miki,, T. Takenawa,, T. Sasaki,, H. Nakanishi,, Y. Takai,, and C. Sasakawa. 2000. Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J. Exp. Med. 191: 1905 1920.
140. Suzuki, T.,, S. Saga,, and C. Sasakawa. 1996. Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J. Biol. Chem. 271: 21878 21885.
141. Suzuki, T.,, and C. Sasakawa. 2001. Molecular basis of the intracellular spreading of Shigella. Infect. Immun. 69: 5959 5966.
142. Suzuki, T.,, and C. Sasakawa. 1998. NWASP is an important protein for the actinbased motility of Shigella flexneri in the infected epithelial cells. Jpn. J. Med. Sci. Biol. 51: S63 S68.
143. Takahashi, K.,, T. Sasaki,, A. Mammoto,, K. Takaishi,, T. Kameyama,, S. Tsukita,, and Y. Takai. 1997. Direct interaction of the Rho GDP dissociation inhibitor with ezrin/radixin/moesin initiaties the activation of the Rho small G protein. J. Biol. Chem. 272: 23371 23375.
144. Takeuchi, O.,, K. Hoshino,, T., Kawai,, H. Sanjo,, H. Takada,, T. Ogawa,, K. Takeda,, and S. Akira. 1999. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11: 443 451.
145. Tamano, K.,, S. Aizawa,, E. Katayama,, T. Nonaka,, S. Imajoh-Ohmi,, A. Kuwae,, S. Nagai,, and C. Sasakawa. 2002. Supramolecular structure of the Shigella type III secretion machinery: the needle part is changeable in length and essential for delivery of effectors. EMBO J. 19: 3876 3887.
146. Taylor, D. N.,, A. C. Trofa,, J. Sadoff,, C. Chu,, D. Bryla,, J. Shiloach,, D. Cohen,, S. Ashkenazi,, Y. Lerman,, W. Egan,, R. Schneerson,, and J. B. Robbins. 1993. Synthesis, characterization, and clinical evaluation of conjugate vaccines composed of the O-specific polysaccharides of Shigella dysenteriae type 1, Shigella flexneri type 2a, and Shigella sonnei ( Plesiomonas shigelloides) bound to bacterial toxoids. Infect. Immun. 61: 3678 3687.
147. Tobe, T.,, M. Yoshikawa,, T. Mizuno,, and C. Sasakawa. 1993. Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J. Bacteriol. 175: 6142 6149.
148. Toyotome, T.,, T. Suzuki,, A. Kuwae,, T. Nonaka,, H. Fukuda,, S. Imajoh-Ohmi,, T. Toyofuku,, M. Hori,, and C. Sasakawa. 2001. Shigella protein IpaH(9.8) is secreted from bacteria within mammalian cells and transported to the nucleus. J. Biol. Chem. 276: 32071 32079.
149. Trans, N.,, A. B. Berfis,, J. C. Osiecki,, W. L. Picking,, L. Coye,, R. Davis,, and W. D. Picking. 2000. Interaction of Shigella flexneri IpaC with model membranes correlates with effects on cultured cells. Infect. Immun. 68: 3710 3715.
150. Tran Van Nhieu, G., A Ben-Ze’ev, and P. J. Sansonetti. 1997. Modulation of bacterial entry into epithelial cells by association between vinculin and the Shigella IpaA invasin. EMBO J. 16: 2717 2729.
151. Tran Van Nhieu, G.,, R. Bourdet-Sicard,, G. Dumenil,, A. Blocker,, and P. J. Sansonetti. 2000. Bacterial signals and cell responses during Shigella entry into epithelial cells. Cell. Microbiol. 2: 187 193.
152. Tran Van Nhieu, G.,, E. Caron,, A. Hall,, and P. J. Sansonetti. 1999. IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J. 18: 3249 3262.
153. Van Aelst, L.,, and C. D’Souza-Schorey. 1997. Rho GTPases and signaling networks. Genes Dev. 11: 2295 2322.
154. Vasselon, T.,, J. Mounier,, R. Hellio,, and P. J. Sansonetti. 1992. Movement along actin filaments of the perijunctional area and de novo polymerization of cellular actin are required for Shigella flexneri colonization of epithelial Caco-2 cell monolayers. Infect. Immun. 60: 1031 1040.
155. Wang, S.,, M. Miura,, Y. K. Jung,, H. Zhu,, E. Li,, and J. Yuan. 1998. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92: 501 509.
156. Watarai, M.,, S. Funato,, and C. Sasakawa. 1996. Interaction of Ipa proteins of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J. Exp. Med. 183: 991 999.
157. Watarai, M.,, Y. Kamata,, S. Kozaki,, and C. Sasakawa. 1997. Rho, a small GTP-binding protein, is essential for Shigella invasion of epithelial cells, J. Exp. Med. 185: 281 292.
158. Watarai, M.,, T. Tobe,, M. Yoshikawa,, and C. Sasakawa. 1995. Contact of Shigella with host cells triggers release of Ipa invasins and is an essential function of invasiveness. EMBO J. 14: 2461 2470.
159. Wattiau, P.,, B. Bernier,, P. Deslee,, T. Michiels,, and G. R. Cornelis. 1994. Individual chaperones required for Yop secretion by Yersinia. Proc. Natl. Acad. Sci. USA 91: 10493 10497.
160. Wattiau, P.,, S. Woestyn,, and G. R. Cornelis. 1996. Customized secretion chaperones in pathogenic bacteria. Mol. Microbiol. 20: 255 262.
161. Way, S. S.,, A. C. Borczuk,, R. Dominitz,, and M. B. Goldberg. 1998. An essential role for gamma interferon in innate resistance to Shigella flexneri infection. Infect. Immun. 66: 1342 1348.
162. Way, S. S.,, A. C. Borczuk,, and M. B. Goldberg. 1999. Adaptive immune response to Shigella flexneri 2a cydC in immunocompetent mice and mice lacking immunoglobulin A. Infect. Immun. 67: 2001 2004.
163. Way, S. S.,, A. C. Borczuk,, and M. B. Goldberg. 1999. Thymic independence of adaptive immunity to the intracellular pathogen Shigella flexneri serotype 2a. Infect. Immun. 67: 3970 3979.
164. Welch, M. D. 1999. The world according to Arp: regulation of actin nucleation by the Arp2/3 complex. Trends Cell. Biol. 9: 423 427.
165. Zhang, Z.,, L. Jin,, G. Champion,, K. B. Seydel,, and S. L. J. Stanley. 2001. Shigella infection in a SCID mouse-human intestinal xenograft model: role for neutrophils in containing bacterial dissemination in human intestine. Infect. Immun. 69: 3240 3247.
166. Zychlinsky, A.,, J. J. Perdomo,, and P. J. Sansonetti. 1994. Molecular and cellular mechanisms of tissue invasion by Shigella flexneri. Ann. N. Y. Acad. Sci. 730: 197 208.
167. Zychlinksy, A.,, M. C. Provost,, and P. J. Sansonetti. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature 358: 167 169.
168. Zychlinksy, A.,, K. Thirumalai,, J. Arondel,, J. R. Cantey,, A. O. Aliprantis,, and P. J. Sansonetti. 1996. In vivo apoptosis in Shigella flexneri infections. Infect. Immun. 64: 5357 5365.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error