1887

Chapter 26 : Toxins of : Consensus and Controversy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Toxins of : Consensus and Controversy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap26-2.gif

Abstract:

The bacterial agent of disease, , was presumed to require only two virulence factors: toxincoregulated pili (TCP) to colonize the human intestinal epithelium and cholera toxin (CT) to elicit diarrhea. This chapter covers each of the known cytotoxins of . Biopsies taken from cholera patients indicate that the intestinal epithelium remains intact during the infectious stage, although abnormal distention of the apical intracellular junctions has been observed. In the bone marrow macrophages, CT also inhibits production of nitric oxide (NO) by downregulating the synthesis of inducible nitric oxide synthase (iNOS). A significant role of CtxB in the inhibition of Th1 responses has been verified in vivo by investigators studying oral tolerance and autoimmunity. Treatment of mesenteric lymph node cells with CtxB for 48 h triggers apoptosis of about 75% of the CD8 T-cell population, a reaction that may occur through signaling by c-Myc based on observations with the related protein EtxB. When the immune system does successfully clear the infection, the concurrent dissemination by induction of diarrhea would be a secondary strategy allowing survival of the entire species. Additional controversy concerning the role of Zot in pathogenesis has arisen from the demonstration that Zot is essential for a function unrelated to toxinogenesis.

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26

Key Concept Ranking

Tumor Necrosis Factor alpha
0.43410543
Vibrio cholerae
0.42687032
0.43410543
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

CT blocks innate and adaptive immune responses. As described in the text, CT or the subunit CtxB blocks multiple stages of the immune response during infection. The production of cytokines and NO by antigen-presenting cells downregulates the innate response. Antigen processing and the development of a Th1 adaptive immune response are inhibited. Evidence suggests that CtxB stimulates a Th2-type response.

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Colinear genetic arrangement of bacteriophage f1 and CTX. Figure was drawn using MacVector 7.0 (Oxford Molecular Group, Madison, Wis.) based on the genomic sequences of El Tor N16961 (GenBank accession NC_002505 [ ]) and bacteriophage f1 (GenBank accession NC_001397 [ ]).

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagram of pI-like proteins. NBS is found at residues 8 to 15 in all proteins. Transmembrane domain (TM) and cytoplasmic amphipathic helix (+++) for f1 pI and pXI as in reference 46. Locations of TM for Zot, Pf1, and Pf3 are based on sequence analysis using DAS ( ), with (+++) indicating conservation of charge residues next to TM. Zonulin motif (ZM) of Zot protein represents an octapeptide shared between Zot and the human protein zonulin it is proposed to mimic ( ).

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

HA/P causes rounding and detachment of HEp-2 cells. Phase-images of 70% confluent monolayers of HEp-2 epithelial cells treated for 60 min with phosphate-buffered saline (left) or ammonium sulfate-precipitated supernatant fluids from a HA/P strain (middle) and an isogenic HA/P strain (right). Data previously presented as data not shown ( ).

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Vacuolation of Vero cells treated for 2 h with HlyA-producing culture supernatant fluid in the presence of 100 nM concanamycin. Reproduced from reference 35 with permission.

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Depolymerization of F-actin by RTX toxin. PtK2 cells were either treated for 60 min with phosphate-buffered saline (mock) or incubated with secreting RTX toxin. Cells were fixed and stained with fluorescently labeled phalloidin to visualize polymerized F-actin. Data previously reported as data not shown ( ).

Citation: Fullner K. 2003. Toxins of : Consensus and Controversy, p 481-502. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap26
1. Abbas, A. K.,, and A. H. Lichtman. 2001. Basic Immunology: Functions and Disorders of the Immune System. The W. B. Saunders Company, Philadelphia, Pa.
2. Alm, R. A.,, and P. A. Manning. 1990. Characterization of the hlyB gene and its role in the production of the El Tor haemolysin of Vibrio cholerae O1. Mol. Microbiol. 4:413425.
3. Alm, R. A.,, G. Mayrhofer,, I. Kotlarski,, and P. A. Manning. 1991. Amino-terminal domain of the El Tor haemolysin of Vibrio cholerae O1 is expressed in classical strains and is cytotoxic. Vaccine 9:588594.
4. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:33893402.
5. Aman, A. T.,, S. Fraser,, E. A. Merritt,, C. Rodigherio,, M. Kenny,, M. Ahn,, W. G. Hol,, N. A. Williams,, W. I. Lencer,, and T. R. Hirst. 2001. A mutant cholera toxin B subunit that binds GM1-ganglioside but lacks immunomodulatory or toxic activity. Proc. Natl. Acad. Sci. USA 98:85368541.
6. Barua, D., 1992. History of cholera, p. 1-36. In D. Barua, and W. B. Greenough (ed.), Cholera. Plenum Medical Book Co., New York, N.Y.
7. Basu, A.,, A. K. Mukhopadhyay,, P. Garg,, S. Chakraborty,, T. Ramamurthy,, S. Yamasaki,, Y. Takeda,, and G. B. Nair. 2000. Diversity in the arrangement of the CTX prophages in classical strains of Vibrio cholerae O1. FEMS Microbiol. Lett. 182:3540.
8. Baudry, B.,, A. Fasano,, J. Ketley,, and J. B. Kaper. 1992. Cloning of a gene (zot) encoding a new toxin produced by Vibrio cholerae. Infect. Immun. 60:428434.
9. Benítez, J. A.,, L. García,, A. Silva,, H. García,, R. Fando,, B. Cedré,, A. Pérez,, J. Campos,, B. L. Rodríguez,, J. L. Pérez,, T. Valmaseda,, O. Pérez,, A. Pérez,, M. Ramírez,, T. Ledón,, M. D. Jidy,, M. Lastre,, L. Bravo,, and G. Sierra. 1999. Preliminary assessment of the safety and immunogenicity of a new CTXF-negative, hemagglutinin/protease-defective El Tor strain as a cholera vaccine candidate. Infect. Immun. 67:539545.
10. Benitez, J. A.,, A. J. Silva,, and R. A. Finkelstein. 2001. Environmental signals controlling production of hemagglutinin/protease in Vibrio cholerae. Infect. Immun. 69:65496553.
11. Bina, J.,, and J. J. Mekalanos. 2001. Vibrio cholerae tolC is required for bile resistance and colonization. Infect. Immun. 69:46814685.
12. Booth, B. A.,, M. Boesman-Finkelstein,, and R. A. Finkelstein. 1984. Vibrio cholerae hemagglutinin/protease nicks cholera enterotoxin. Infect. Immun. 45:558560.
13. Burnet, F. M.,, and J. D. Stone. 1947. Desquamation of intestinal epithelium in vitro by V. cholerae filtrates: characterization of mucinase and tissue disintegrating enzymes. Austr. J. Exp. Biol. Med. Sci. 25:219226.
14. Calia, K. E.,, M. K. Waldor,, and S. B. Calderwood. 1998. Use of representational difference analysis to identify genomic differences between pathogenic strains of Vibrio cholerae. Infect. Immun. 66:849852.
15. Camilli, A.,, and J. J. Mekalanos. 1995. Use of recombinase gene fusions to identify Vibrio cholerae genes induced during infection. Mol. Microbiol. 18:671683.
16. Chow, K. H.,, T. K. Ng,, K. Y. Yuen,, and W. C. Yam. 2001. Detection of RTX toxin gene in Vibrio cholerae by PCR. J. Clin. Microbiol. 39:25942597.
17. Coelho, A.,, J. R. C. Andrade,, A. C. P. Vicente,, and V. J. DiRita. 2000. Cytotoxic cell vacuolating activity from Vibrio cholerae hemolysin. Infect. Immun. 68:17001705.
18. Cong, Y.,, A. O. Oliver,, and C. O. Elson. 2001. Effects of cholera toxin on macrophage production of co-stimulatory cytokines. Eur. J. Immunol. 31:6471.
19. Cox, D. S.,, H. Gao,, S. Raje,, K. R. Scott,, and N. D. Eddington. 2001. Enhancing the permeation of marker compounds and enaminone anticonvulsants across Caco-2 monolayers by modulating tight junctions using zonula occludens toxin. Eur. J. Pharm. Biopharm. 52:145150.
20. Cserzo, M.,, E. Wallin,, I. Simon,, G. von Heijne,, and A. Elofsson. 1997. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10:673676.
21. Dalsgaard, A.,, O. Serichantalergs,, A. Forslund,, W. Lin,, J. Mekalanos,, E. Mintz,, T. Shimada,, and J. G. Wells. 2001. Clinical and environmental isolates of Vibrio cholerae serogroup O141 carry the CTX phage and the genes encoding the toxin-coregulated pili. J. Clin. Microbiol. 39:40864092.
22. Davis, B. M.,, E. H. Lawson,, M. Sandkvist,, A. Ali,, S. Sozhamannan,, and M. K. Waldor. 2000. Convergence of the secretory pathways for cholera toxin and the filamentous phage, CTX?. Science 288:333335.
23. Del Giudice, G.,, and R. Rappuoli. 1999. Genetically derived toxoids for use as vaccines and adjuvants. Vaccine 17(Suppl. 2):S44S52.
24. Di Pierro, M.,, R. Lu,, S. Uzzau,, W. Wang,, K. Margaretten,, C. Pazzani,, F. Maimone,, and A. FasanoCannot find year. 2001. Zonula occludens toxin structure-function analysis. Identification of the fragment biologically active on tight junctions and of the zonulin receptor binding domain. J. Biol. Chem. 276:1916019165.
25. Ehara, M.,, S. Shimodori,, F. Kojima,, Y. Ichinose,, T. Hirayama,, M. J. Albert,, K. Supawat,, Y. Honma,, M. Iwanaga,, and K. Amako. 1997. Characterization of filamentous phages of Vibrio cholerae O139 and O1. FEMS Microbiol. Lett. 154:293301.
26. Endemann, H.,, and P. Model. 1995. Location of filamentous phage minor coat proteins in phage and in infected cells. J. Mol. Biol. 250:496506.
27. Faruque, S. M.,, M. M. Rahman,, A. K. Hasan,, G. B. Nair,, J. J. Mekalanos,, and D. A. Sack. 2001. Diminished diarrheal response to Vibrio cholerae strains carrying the replicative form of the CTXF genome instead of CTXF lysogens in adult rabbits. Infect. Immun. 69:60846090.
28. Fasano, A. 2000. Regulation of intercellular tight junctions by zonula occludens toxin and its eukaryotic analogue zonulin. Ann. N.Y. Acad. Sci. 915:214222.
29. Fasano, A.,, B. Baudry,, D. W. Pumplin,, S. S. Wasserman,, B. D. Tall,, J. M. Ketley,, and J. B. Kaper. 1991. Vibrio cholerae produces a second enterotoxin, which affects intestinal tight junctions. Proc. Natl. Acad. Sci. USA 88:52425246.
30. Fasano, A.,, C. Fiorentini,, G. Donelli,, S. Uzzau,, J. B. Kaper,, K. Margaretten,, X. Ding,, S. Guandalini,, L. Comstock,, and S. E. Goldblum. 1995. Zonula occludens toxin modulates tight junctions through protein kinase Cdependent actin reorganization, in vitro. J. Clin. Invest. 96:710720.
31. Fasano, A.,, T. Not,, W. Wang,, S. Uzzau,, I. Berti,, A. Tommasini,, and S. E. Goldblum. 2000. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 355:15181519.
32. Fasano, A.,, and S. Uzzau. 1997. Modulation of intestinal tight junctions by zonula occludens toxin permits enteral administration of insulin and other macromolecules in an animal model. J. Clin. Invest. 99:11581164.
33. Fasano, A.,, S. Uzzau,, C. Fiore,, and K. Margaretten. 1997. The enterotoxic effect of zonula occludens toxin on rabbit small intestine involves the paracellular pathway. Gastroenterology 112:839846.
34. Feng, J. N.,, P. Model,, and M. Russel. 1999. A trans-envelope protein complex needed for filamentous phage assembly and export. Mol. Microbiol. 34:745755.
35. Figueroa-Arredondo, P.,, J. E. Heuser,, N. S. Akopyants,, J. H. Morisaki,, S. Giono-Cerezo,, F. Enriquez-Rincon,, and D. E. Berg. 2001. Cell vacuolation caused by Vibrio cholerae hemolysin. Infect. Immun. 69:16131624.
36. Finkelstein, R. A.,, M. Boesman-Finkelstein,, and P. Holt. 1983. Vibrio cholerae hemagglutinin/lectin/protease hydrolyzes fibronectin and ovomucin: F.M. Burnet revisited. Proc. Natl. Acad. Sci. USA 80:10921095.
37. Fiore, A. E.,, J. M. Michalski,, R. G. Russell,, C. L. Sears,, and J. B. Kaper. 1997. Cloning, characterization, and chromosomal mapping of a phospholipase (lecithinase) produced by Vibrio cholerae. Infect. Immun. 65:31123117.
37a.. Fullner, K. J.,, J. C. Boucher,, M. A. Hanes,, G. K. Haines 3rd,, B. M. Meehan,, C. Walchle,, P. J. Sansonetti,, and J. J. Mekalanos. 2002. The contribution of accessory toxins of Vibrio cholerae O1 El Tor to the proinflammatory response in a murine pulmonary cholera model. J. Exp. Med. 195:14551462.
38. Fullner, K. J.,, W. I. Lencer,, and J. J. Mekalanos. 2001. Vibrio cholerae-induced cellular responses of polarized T84 intestinal epithelial cells dependent of production of cholera toxin and the RTX toxin. Infect. Immun. 69:63106317.
39. Fullner, K. J.,, and J. J. Mekalanos. 1999. Genetic characterization of a new type IV pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect. Immun. 67:13931404.
40. Fullner, K. J.,, and J. J. Mekalanos. 2000. In vivo covalent crosslinking of actin by the RTX toxin of Vibrio cholerae. EMBO J. 19:53155323.
41. Gagliardi, M. C.,, F. Sallusto,, M. Marinaro,, A. Langenkamp,, A. Lanzavecchia,, and M. T. De Magistris. 2000. Cholera toxin induces maturation of human dendritic cells and licenses them for Th2 priming. Eur. J. Immunol. 30:23942403.
42. Gardel, C. L.,, and J. J. Mekalanos. 1994. Regulation of cholera toxin by temperature, pH, and osmolarity. Methods Enzymol. 235:517526.
43. Goldberg, S. L.,, and J. R. Murphy. 1985. Cloning and characterization of the hemolysin determinants from Vibrio cholerae RV79(Hly+), RV79(Hly-), and 569B. J. Bacteriol. 162:3541.
44. Goldberg, S. L.,, and J. R. Murphy. 1984. Molecular cloning of the hemolysin determinant from Vibrio cholerae El Tor. J. Bacteriol. 160:239244.
45. Guy-Caffey, J. K.,, M. P. Rapoza,, K. A. Jolley,, and R. E. Webster. 1992. Membrane localization and topology of a viral assembly protein. J. Bacteriol. 174:24602465.
46. Haigh, N. G.,, and R. E. Webster. 1999. The pI and pXI assembly proteins serve separate and essential roles in filamentous phage assembly. J. Mol. Biol. 293:10171027.
47. Hall, R. H.,, and B. S. Drasar. 1990. Vibrio cholerae HlyA hemolysin is processed by proteolysis. Infect. Immun. 58:33753379.
48. Häse, C. C.,, and R. A. Finkelstein. 1993. Bacterial extracellular zinc-containing metalloproteases. Microbiol. Rev. 57:823837.
49. Häse, C. C.,, and R. A. Finkelstein. 1991. Cloning and nucleotide sequence of the Vibrio cholerae hemagglutinin/protease (HA/protease) gene and construction of an HA/protease-negative strain. J. Bacteriol. 173:33113317.
50. Heidelberg, J. F.,, J. A. Eisen,, W. C. Nelson,, R. A. Clayton,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, L. Umayam,, S. R. Gill,, K. E. Nelson,, T. D. Read,, H. Tettelin,, D. Richardson,, M. D. Ermolaeva,, J. Vamathevan,, S. Bass,, H. Qin,, I. Dragoi,, P. Sellers,, L. McDonald,, T. Utterback,, R. D. Fleishmann,, W. C. Nierman,, O. White,, S. L. Salzberg,, H. O. Smith,, R. R. Colwell,, J. J. Mekalanos,, J. C. Venter,, and C. M. Fraser. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477484.
51. Hill, D. F.,, and G. B. Petersen. 1982. Nucleotide sequence of bacteriophage f1 DNA. J. Virol. 44:3246.
52. Ikema, M.,, and Y. Honma. 1998. A novel filamentous phage, fs-2, of Vibrio cholerae O139. Microbiology 144:19011906.
53. Ikigai, H.,, A. Akatsuka,, H. Tsujiyama,, T. Nakae,, and T. Shimamura. 1996. Mechanism of membrane damage by El Tor hemolysin of Vibrio cholerae O1. Infect. Immun. 64:29682973.
54. Kenner, J. R.,, T. S. Coster,, D. N. Taylor,, A. F. Trofa,, M. Barrera-Oro,, T. Hyman,, J. M. Adams,, D. T. Beattie,, K. P. Killeen,, D. R. Spriggs,, J. J. Mekalanos,, and J. C. Sadoff. 1995. Peru-15, an improved live attenuated oral vaccine candidate for Vibrio cholerae O1. J. Infect. Dis. 172:11261129.
55. Kerneis, S.,, A. Bogdanova,, J. P. Kraehenbuhl,, and E. Pringault. 1997. Conversion by Peyer’s patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949952.
56. Kimsey, H. H.,, and M. K. Waldor. 1998. Vibrio cholerae hemagglutinin/protease inactivates CTX?. Infect. Immun. 66:40254029.
57. Leal-Berumen, I.,, D. P. Snider,, C. Barajas-Lopez,, and J. S. Marshall. 1996. Cholera toxin increases IL-6 synthesis and decreases TNF-? production by rat peritoneal mast cells. J. Immunol. 156:316321.
58. Lee, S. H.,, S. M. Butler,, and A. Camilli. 2001. Selection for in vivo regulators of bacterial virulence. Proc. Natl. Acad. Sci. USA 98:68896894.
59. Lencer, W. I. 2001. Microbes and microbial toxins: paradigms for microbial-mucosal interactions. V. Cholera: invasion of the intestinal epithelial barrier by a stably folded protein toxin. Am. J. Physiol. Gastrointest. Liver Physiol. 280:G781G786.
60. Levine, M. M.,, J. B. Kaper,, D. Herrington,, G. Losonsky,, J. G. Morris,, M. L. Clements,, R. E. Black,, B. Tall,, and R. Hall. 1988. Volunteer studies of deletion mutants of Vibrio cholerae O1 prepared by recombinant techniques. Infect. Immun. 56:161167.
61. Li, M.,, T. Shimada,, J. G. Morris, Jr., A. Sulakvelidze, and S. Sozhamannan. 2002. Evidence for the emergence of non-O1/non-O139 Vibrio cholerae strains with pathogenic potential by exchange of O-antigen biosynthesis regions. Infect. Immun. 70:24412453.
62. Lin, W.,, K. J. Fullner,, R. Clayton,, J. A. Sexton,, M. B. Rogers,, K. E. Calia,, S. B. Calderwood,, C. Fraser,, and J. J. Mekalanos. 1999. Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc. Natl. Acad. Sci. USA 96:10711076.
63. Lu, R.,, W. Wang,, S. Uzzau,, R. Vigorito,, H. R. Zielke,, and A. Fasano. 2000. Affinity purification and partial characterization of the zonulin/zonula occludens toxin (Zot) receptor from human brain. J. Neurochem. 74:320326.
64. Mandell, G. L.,, J. E. Bennett,, and R. Dolin (ed.). 1995. Principles and Practices of Infectious Diseases, vol. 2. Churchill Livingstone, New York, N.Y.
65. Manning, P. A.,, M. H. Brown,, and M. W. Heuzenroeder. 1984. Cloning of the structural gene (hly) for the haemolysin of Vibrio cholerae El Tor strain 017. Gene 31:225231.
66. Marciano, D. K.,, M. Russel,, and S. M. Simon. 1999. An aqueous channel for filamentous phage export. Science 284:15161519.
67. Marciano, D. K.,, M. Russel,, and S. M. Simon. 2001. Assembling filamentous phage occlude pIV channels. Proc. Natl. Acad. Sci. USA 98:93599364.
68. Martin, M.,, D. J. Metzger,, S. M. Michalek,, T. D. Connell,, and M. W. Russell. 2001. Distinct cytokine regulation by cholera toxin and type II heat-labile toxins involves differential regulation of CD40 ligand on CD4(+) T cells. Infect. Immun. 69:44864492.
69. Marvin, D. A. 1998. Filamentous phage structure, infection and assembly. Curr. Opin. Struct. Biol. 8:150158.
70. Mathan, M. M.,, G. Chandy,, and V. I. Mathan. 1995. Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology 109:422430.
71. McCardell, B. A.,, M. H. Kothary,, R. H. Hall,, and V. Sathyamoorthy. 2000. Identification of a CHO cell-elongating factor produced by Vibrio cholerae O1. Microb. Pathog. 29:18.
72. Mekalanos, J. J. 1983. Duplication and amplification of toxin genes in Vibrio cholerae. Cell 35:252263.
73. Mel, S. F.,, K. J. Fullner,, S. Wimer-Mackin,, W. I. Lencer,, and J. J. Mekalanos. 2000. Association of protease activity in Vibrio cholerae vaccine strains with decreases in transcellular epithelial resistance of polarized T84 intestinal cells. Infect. Immun. 67:13931404.
74. Menzl, K.,, E. Maier,, T. Chakraborty,, and R. Benz. 1996. HlyA hemolysin of Vibrio cholerae O1 biotype El Tor. Identification of the hemolytic complex and evidence for the formation of anion-selective ion-permeable channels. Eur. J. Biochem. 240:646654.
75. Millar, D. G.,, and T. R. Hirst. 2001. Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: evidence for antigen persistence in non-acidic recycling endosomal compartments. Cell. Microbiol. 3:311329.
76. Mitic, L. L.,, C. M. Van Itallie,, and J. M. Anderson. 2000. Molecular physiology and pathophysiology of tight junctions. I. Tight junction structure and function: lessons from mutant animals and proteins. Am. J. Physiol. Gastrointest. Liver Physiol. 279:G250G254.
77. Mitra, R.,, P. Figueroa,, A. K. Mukhopadhyay,, T. Shimada,, Y. Takeda,, D. E. Berg,, and G. B. Nair. 2000. Cell vacuolation, a manifestation of the El Tor hemolysin of Vibrio cholerae. Infect. Immun. 68:19281933.
78. Ogierman, M. A.,, A. Fallarino,, T. Riess,, S. G. Williams,, S. R. Attridge,, and P. A. Manning. 1997. Characterization of the Vibrio cholerae El Tor lipase operon lipAB and a protease gene downstream of the hly region. J. Bacteriol. 179:70727080.
79. Overbye, L. J.,, M. Sandkvist,, and M. Bagdasarian. 1993. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene 132:101106.
80. Rakonjac, J.,, and P. Model. 1998. Roles of pIII in filamentous phage assembly. J. Mol. Biol.282:2541.
81. Rodriguez, B. L.,, A. Rojas,, J. Campos,, T. Ledon,, E. Valle,, W. Toledo,, and R. Fando. 2001. Differential interleukin-8 response of intestinal epithelial cell line to reactogenic and nonreactogenic candidate vaccine strains of Vibrio cholerae. Infect. Immun. 69:613616.
82. Russel, M.,, N. A. Linderoth,, and A. Sali. 1997. Filamentous phage assembly: variation on a protein export theme. Gene 192:2332.
83. Saha, P. K.,, H. Koley,, and G. B. Nair. 1996. Purification and characterization of an extracellular secretogenic non-membrane damaging cytotoxin produced by clinical strains of Vibrio cholerae non-O1. Infect. Immun. 64:31013108.
84. Sandkvist, M.,, L. O. Michel,, L. P. Hough,, V. M. Morales,, M. Bagdasarian,, M. Koomey,, V. J. DiRita,, and M. Bagdasarian. 1997. General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae. J. Bacteriol. 179:69947003.
85. Shuangshoti, S.,, and S. Reinprayoon. 1995. Pathologic changes of gut in non-O1 Vibrio cholerae infection. J. Med. Assoc. Thai. 78:204209.
86. Silva, T. M. J.,, M. A. Schuleupner,, C. O. Tacket,, T. S. Steiner,, J. B. Kaper,, R. Edelman,, and R. L. Guerrant. 1996. New evidence for an inflammatory component in diarrhea caused by selected new, live attenuated cholerae vaccines and by El Tor and O139 Vibrio cholerae. Infect. Immun. 64:23622364.
87. Simecka, J. W.,, R. J. Jackson,, H. Kiyono,, and J. R. McGhee. 2000. Mucosally induced immunoglobulin E-associated inflammation in the respiratory tract. Infect. Immun. 68:672679.
88. Simons, K.,, and D. Toomre. 2000. Lipid rafts and signal transduction. Nat. Rev. Mol. Cell. Biol.1:3139.
89. Sincharoenkul, R.,, W. Chaicumpa,, E. Pongponratn,, R. Limpananont,, P. Tapchaisri,, T. Kalambaheti,, and M. Chongsanguan. 1993. Localization of Vibrio cholerae O1 in the intestinal tissue. Asian Pac. J. Allergy Immunol. 11:155165.
90. Singh, D. V.,, M. H. Matte,, G. R. Matte,, S. Jiang,, F. Sabeena,, B. N. Shukla,, S. C. Sanyal,, A. Huq,, and R. R. Colwell. 2001. Molecular analysis of Vibrio cholerae O1, O139, non-O1, and non-O139 strains: clonal relationships between clinical and environmental isolates. Appl. Environ. Microbiol. 67:910921.
91. Skorupski, K.,, and R. K. Taylor. 1997. Control of the ToxR virulence regulon in Vibrio cholerae by environmental stimuli. Mol. Microbiol. 25:10031009.
92. Soriani, M.,, N. A. Williams,, and T. R. Hirst. 2001. Escherichia coli enterotoxin B subunit triggers apoptosis of CD8+ T cells by activating transcription factor c-Myc. Infect. Immun. 69:49234930.
93. Steele-Mortimer, O.,, L. A. Knodler,, and B. B. Finlay. 2000. Poisons, ruffles and rockets: bacterial pathogens and the host cell cytoskeleton. Traffic 1:107118.
94. Stultz, C. M.,, R. Nambudripad,, R. H. Lathrop,, and J. V. White. 1997. Predicting protein structure with probabilistic models. Adv. Mol. Cell Biol. 22B:447506.
95. Stultz, C. M.,, J. V. White,, and T. F. Smith. 1993. Structural analysis based on state-space modeling. Protein Science 2:305314.
96. Sun, J.-B.,, C. Rask,, T. Olsson,, J. Holmgren,, and C. Czerkinsky. 1996. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc. Natl. Acad. Sci. USA 93:71967201.
97. Tacket, C. O.,, G. Losonsky,, J. P. Nataro,, S. J. Cryz,, R. Edelman,, A. Fasano,, J. Michalski,, J. B. Kaper,, and M. M. Levine. 1993. Safety and immunogenicity of live oral cholera vaccine candidate CVD110, a δctxA δzot δace derivative of El Tor Ogawa Vibrio cholerae. J. Infect. Dis. 168:15361540.
98. Tatusova, T. A.,, and T. L. Madden. 1999. BLAST 2 sequences—a new tool for comparing protein and nucleotide sequences. FEMS Microbiol. Lett. 174:247250.
99. Taylor, D. N.,, K. P. Killeen,, D. C. Hack,, J. R. Kenner,, T. S. Coster,, D. T. Beattie,, J. Ezzell,, T. Hyman,, A. Trofa,, M. H. Sjogren,, A. Friedlander,, J. J. Mekalanos,, and J. C. Sadoff. 1994. Development of a live, oral, attenuated vaccine against El Tor cholera. J. Infect. Dis. 170:15181523.
100. Trucksis, M.,, T. L. Conn,, A. Fasano,, and J. B. Kaper. 1997. Production of Vibrio cholerae accessory cholera enterotoxin (Ace) in the yeast Pichia pastoris. Infect. Immun. 65:49844988.
101. Trucksis, M.,, T. L. Conn,, S. S. Wasserman,, and C. L. Sears. 2000. Vibrio cholerae ACE stimulates Ca2+-dependent Cl-/HCO3-secretion in T84 cells in vitro. Am. J. Physiol. Cell. Physiol. 279:C567C577.
102. Trucksis, M.,, J. E. Galen,, J. Michalski,, A. Fasano,, and J. B. Kaper. 1993. Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc. Natl. Acad. Sci. USA 90:52675271.
103. Uzzau, S.,, P. Cappuccinelli,, and A. Fasano. 1999. Expression of Vibrio cholerae zonula occludens toxin and analysis of its subcellular localization. Microb. Pathog. 27:377385.
104. Uzzau, S.,, R. Lu,, W. Wang,, C. Fiore,, and A. Fasano. 2001. Purification and preliminary characterization of the zonula occludens toxin receptor from human (CaCo2) and murine (IEC6) intestinal cell lines. FEMS Microbiol. Lett. 194:15.
105. Waldor, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:19101914.
106. Waldor, M. K.,, E. J. Rubin,, G. D. N. Pearson,, H. Kimsey,, and J. J. Mekalanos. 1997. Regulation, replication and integration functions of the Vibrio cholerae CTX_ are encoded by region RS2. Mol. Microbiol. 24:917926.
107. Walia, K.,, S. Ghosh,, H. Singh,, G. B. Nair,, A. Ghosh,, G. Sahni,, H. Vohra,, and N. K. Ganguly. 1999. Purification and characterization of novel toxin produced by Vibrio cholerae O1. Infect. Immun. 67:52155222.
108. Wang, W.,, S. Uzzau,, S. E. Goldblum,, and A. Fasano. 2000. Human zonulin, a potential modulator of intestinal tight junctions. J. Cell Sci. 113(Part 2):44354440.
109. Welch, R. A. 2001. RTX toxin structure and function: a story of numerous anomalies and few analogies in toxin biology. Curr. Top. Microbiol. Immunol. 257:85111.
110. White, J. V.,, C. M. Stultz,, and T. F. Smith. 1994. Protein classification by stochastic modeling and optimal filtering of amino-acid sequences. Math. Biosci. 119:3575.
111. Williams, N. A.,, T. R. Hirst,, and T. O. Nashar. 1999. Immune modulation by the cholera-like enterotoxins: from adjuvant to therapeutic. Immunol. Today 20:95101.
112. Williams, S. G.,, S. R. Attridge,, and P. A. Manning. 1993. The transcriptional activator HlyU of Vibrio cholerae: nucleotide sequence and role in virulence gene expression. Mol. Microbiol. 9:751760.
113. Williams, S. G.,, and P. A. Manning. 1991. Transcription of the Vibrio cholerae haemolysin gene, hlyA, and cloning of a positive regulatory locus, hlyU. Mol. Microbiol. 5:20312038.
114.World Health Organization. 2001. Cholera, 2000. Wkly Epid. Rec. 76:233240.
115.World Health Organization. 2001. Cholera vaccines: WHO position paper. Wkly. Epid. Rep. 76:117124.
116. Wu, Z.,, D. Milton,, P. Nybom,, A. Sjö ,, and K.-E. Magnusson. 1996. Vibrio cholerae hemagglutinin/protease (HA/protease) causes morphological changes in cultured epithelial cells and perturbs their paracellular barrier function. Microb. Pathog. 21:111123.
117. Wu, Z.,, P. Nybom,, and K.-E. Magnusson. 2000. Distinct effects of the Vibrio cholerae haemagglutinin/protease on the structure and localization of the tight junction-associated proteins occludin and ZO-1. Cell. Microbiol. 2:1118.
118. Wu, Z.,, P. Nybom,, T. Sudqvist,, and K.-E. Magnusson. 1998. Endogenous nitric oxide in MDCK-I cells modulates the Vibrio cholerae haemagglutinin/protease (HA/P)-mediated cytoxicity. Microb. Pathog. 24:321326.
119. Yamamoto, K.,, Y. Ichinose,, H. Shinagawa,, K. Makino,, A. Nakata,, M. Iwanaga,, T. Honda,, and T. Miwatani. 1990. Twostep processing for activation of the cytolysin/hemolysin of Vibrio cholerae O1 biotype El Tor: nucleotide sequence of the structural gene (hlyA) and characterization of the processed products. Infect. Immun. 58:41064116.
120. Yamamoto, S.,, H. Kiyono,, M. Yamamoto,, K. Imaoka,, K. Fujihashi,, F. W. Van Ginkel,, M. Noda,, Y. Takeda,, and J. R. McGhee. 1997. A nontoxic mutant of cholera toxin elicits Th2-type responses for enhanced mucosal immunity. Proc. Natl. Acad. Sci. USA 94:52675272.
121. Yuldasheva, L. N.,, P. G. Merzlyak,, A. O. Zitzer,, C. G. Rodrigues,, S. Bhakdi,, and O. V. Krasilnikov. 2001. Lumen geometry of ion channels formed by Vibrio cholerae El Tor cytolysin elucidated by nonelectrolyte exclusion. Biochim. Biophys. Acta 1512:5363.
122. Yura, M.,, I. Takahashi,, S. Terawaki,, T. Hiroi,, M. N. Kweon,, Y. Yuki,, and H. Kiyono. 2001. Nasal administration of cholera toxin (CT) suppresses clinical signs of experimental autoimmune encephalomyelitis (EAE). Vaccine 20:134139.
123. Zitzer, A.,, R. Bittman,, C. A. Verbicky,, R. K. Erukulla,, S. Bhakdi,, S. Weis,, A. Valeva,, and M. Palmer. 2001. Coupling of cholesterol and cone-shaped lipids in bilayers augments membrane permeabilization by the cholesterol-specific toxins streptolysin O and Vibrio cholerae cytolysin. J. Biol. Chem. 276:1462814633.
124. Zitzer, A.,, J. R. Harris,, S. E. Kemminer,, O. Zitzer,, S. Bhakdi,, J. Muething,, and M. Palmer. 2000. Vibrio cholerae cytolysin: assembly and membrane insertion of the oligomeric pore are tightly linked and are not detectably restricted by membrane fluidity. Biochim. Biophys. Acta 1509:264274.
125. Zitzer, A.,, T. M. Wassenaar,, I. Walev,, and S. Bhakdi. 1997. Potent membranepermeabilizing and cytocidal action of Vibrio cholerae cytolysin on human intestinal cells. Infect. Immun. 65:12931298.
126. Zitzer, A.,, O. Zitzer,, S. Bhakdi,, and M. Palmer. 1999. Oligomerization of Vibrio cholerae cytolysin yields a pentameric pore and has a dual specificity for cholesterol and sphingolipids in the target membrane. J. Biol. Chem. 274:13751380.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error