Chapter 7 : Sequence-Based Methods for Investigating Intestinal Microbes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Sequence-Based Methods for Investigating Intestinal Microbes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap07-2.gif


This chapter focuses on the use of microbial nucleic acid sequences for the detection, localization, and characterization of microbes in the human intestine, with emphasis on cultivation-resistant pathogens and commensals. Organisms are recovered from diseased tissues by inoculating axenic media and classified based on their ability to grow, using defined substrates at particular temperatures and atmospheres. Having a cultivated microbe is again critical for making antibodies for serological or immunohistochemical detection of infection. Fluorescence in situ hybridization can be used to localize microbes to cells in the intestine by targeting microbial nucleic acid sequences with fluorescently labeled probes and visualizing them with fluorescence microscopy. Leser and colleagues performed an exhaustive study of the bacterial flora of pig intestines using PCR of bacterial 16S rDNA with cloning and sequence analysis. The microbial cause of Whipple’s disease was first revealed by studies showing that this fatal disease could be cured with antibiotics. In 1997, Schoedon and colleagues reported the successful propagation of in human macrophages by using cytokines to deactivate intracellular killing of bacteria. infection causes prolonged diarrhea and is treated with trimethoprim-sulfamethoxazole.

Citation: Fredricks D. 2003. Sequence-Based Methods for Investigating Intestinal Microbes, p 113-119. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch7

Key Concept Ranking

Reverse Transcriptase PCR
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
2. Denholm, R. B.,, P. R. Mills,, and I. A. More. 1981. Electron microscopy in the long-term follow-up of Whipple’s disease. Effect of antibiotics. Am. J. Surg. Pathol. 5:507516.
3. Dobbins, W. O. 3rd, , and J. M. Ruffin. 1967. A light-and electron-microscopic study of bacterial invasion in Whipple’s disease. Am. J. Pathol. 51:225242.
4. Eberhard, M. L.,, A. J. da Silva,, B. G. Lilley,, and N. J. Pieniazek. 1999. Morphologic and molecular characterization of new Cyclospora species from Ethiopian monkeys: C. cercopitheci sp.n., C. colobi sp.n., and C. papionis sp.n. Emerg. Infect. Dis. 5:651658.
5. Eberhard, M. L.,, Y. R. Ortega,, D. E. Hanes,, E. K. Nace,, R. Q. Do,, M. G. Robl,, K. Y. Won,, C. Gavidia,, N. L. Sass,, K. Mansfield,, A. Gozalo,, J. Griffiths,, R. Gilman,, C. R. Sterling,, and M. J. Arrowood. 2000. Attempts to establish experimental Cyclospora cayetanensis infection in laboratory animals. J. Parasitol. 86: 577582.
6. Fredricks, D. N.,, and D. A. Relman. 2001. Localization of Tropheryma whippelii rRNA in tissues from patients with Whipple’s disease. J. Infect. Dis. 183:12291233.
7. Herwaldt, B. L. 2000. Cyclospora cayetanensis: a review, focusing on the outbreaks of cyclosporiasis in the 1990s. Clin. Infect. Dis. 31:10401057.
8. Holdeman, L. V.,, I. J. Good,, and W. E. Moore. 1976. Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. Appl. Environ. Microbiol. 31:359375.
9. Hooper, L. V.,, and J. I. Gordon. 2001. Commensal host-bacterial relationships in the gut. Science 292:11151118.
10. Hooper, L. V.,, and J. I. Gordon. 2001. Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity. Glycobiology 11:1R10R.
11. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881884.
12. Hooper, L. V.,, J. Xu,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96:98339838.
13. Hugenholtz, P.,, B. M. Goebel,, and N. R. Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180:47654774.
14. Leser, T. D.,, J. Z. Amenuvor,, T. K. Jensen,, R. H. Lindecrona,, M. Boye,, and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 68:673690.
15. Lopez, F. A.,, J. Manglicmot,, T. M. Schmidt,, C. Yeh,, H. V. Smith,, and D. A. Relman. 1999. Molecular characterization of Cyclospora-like organisms from baboons. J. Infect. Dis. 179:670676.
16. Maiwald, M.,, and D. Relman. 2001. Whipple’s disease and Tropheryma whippelii: secrets slowly revealed. Clin. Infect. Dis. 32:457463.
17. Olivier, C.,, S. van de Pas,, P. W. Lepp,, K. Yoder,, and D. A. Relman. 2001. Sequence variability in the first internal transcribed spacer region within and among Cyclospora species is consistent with polyparasitism. Int. J. Parasitol. 31: 14751487.
18. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276:734740.
19. Paulley, J. W. 1952. A case of Whipple’s disease. Gastroenterology 22:128133.
20. Petrides, P. E.,, J. Muller-Hocker,, D. N. Fredricks,, and D. A. Relman. 1998. PCR analysis of T. whippelii DNA in a case of Whipple’s disease: effect of antibiotics and correlation with histology. Am. J. Gastroenterol. 93:15791582.
21. Poulsen, L. K.,, G. Ballard,, and D. A. Stahl. 1993. Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59:13541360.
22. Ramzan, N. N., , E. Loftus, Jr.,, L. J. Burgart, , M. Rooney, , K. P. Batts, , R. H. Wiesner, , D. N. Fredricks, , D. A. Relman, , and D. H. Persing. 1997. Diagnosis and monitoring of Whipple disease by polymerase chain reaction. Ann. Intern. Med. 126:520527.
23. Raoult, D.,, M. L. Birg,, B. La Scola,, P. E. Fournier,, M. Enea,, H. Lepidi,, V. Roux,, J. C. Piette,, F. Vandenesch,, D. Vital-Durand,, and T. J. Marrie. 2000. Cultivation of the bacillus of Whipple’s disease. N. Engl. J. Med. 342:620625.
24. Relman, D. A.,, T. M. Schmidt,, A. Gajadhar,, M. Sogin,, J. Cross,, K. Yoder,, O. Sethabutr,, and P. Echeverria. 1996. Molecular phylogenetic analysis of Cyclospora, the human intestinal pathogen, suggests that it is closely related to Eimeria species. J. Infect. Dis. 173:440445.
25. Relman, D. A.,, T. M. Schmidt,, R. P. MacDermott,, and S. Falkow. 1992. Identification of the uncultured bacillus of Whipple’s disease. N. Engl. J. Med. 327:293301.
26. Schoedon, G.,, D. Goldenberger,, R. Forrer,, A. Gunz,, F. Dutly,, M. Hochli,, M. Altwegg,, and A. Schaffner. 1997. Deactivation of macrophages with interleukin-4 is the key to the isolation of Tropheryma whippelii. J. Infect. Dis. 176: 672677.
27. Silva, M. T.,, P. M. Macedo,, and J. F. Moura Nunes. 1985. Ultrastructure of bacilli and the bacillary origin of the macrophagic inclusions in Whipple’s disease. J. Gen. Microbiol. 131(Pt. 5): 10011013.
28. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins,, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65:47994807.
29. Whipple, G. H. 1907. A hitherto undescribed disease characterized anatomically by deposits of fat and fatty acids in the intestinal mesenteric lymphatic tissues. Johns Hopkins Hosp. Bull. 18: 382391.
30. Wilson, K. H.,, R. Blitchington,, R. Frothingham,, and J. A. Wilson. 1991. Phylogeny of the Whipple’s-disease-associated bacterium. Lancet 338:474475.
31. Wilson, K. H.,, and R. B. Blitchington. 1996. Human colonic biota studied by ribosomal DNA sequence analysis. Appl. Environ. Microbiol. 62: 22732278.
32. Zoetendal, E. G.,, A. D. Akkermans,, and W. M. De Vos. 1998. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64:38543859.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error