1887

Chapter 8 : Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817848/9781555812614_Chap08-2.gif

Abstract:

Researchers have traditionally identified pathogenesis-related bacterial genes using molecular fingerprinting techniques such as restriction fragment length polymorphisms (RFLP) and random arbitrarily primed PCR (RAP PCR) to compare virulent and avirulent isolates. A more comprehensive approach to understanding the different pathogenic effects of diverse bacteria on their hosts requires that each gene within the bacterial genome be interrogated simultaneously. The availability of 95 complete genome sequences from 83 different microbial species and the development of microarrays containing representations of genes for many of these pathogens provide both of the prerequisites required for this approach. induces gastric inflammation in all hosts, and such gastritis increases the risk for peptic ulceration, distal gastric adenocarcinoma, and gastric mucosal lymphoproliferative disease. have now been completely sequenced, and genomic comparison has revealed that between 6 and 7% of the genes are strain-specific, reflecting a high level of genetic diversity. Contact between a host and a specific microbial pathogen not only alters bacterial gene expression but also results in dramatic changes in eukaryotic gene expression. Experiments involving exposure of bacteria to conditions that are similar to those encountered in vivo followed by assessment of the transcriptional responses using microarrays will undoubtedly become more common as investigators continue to elucidate bacterial signaling pathways that are involved in pathogenic host-microbial interactions.

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8

Key Concept Ranking

Type IV Secretion System Proteins
0.437977
0.437977
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Identification of differences in bacterial genomic content (A) or gene expression following host-microbial interactions (B). (A) Genomic DNA isolated from a reference and a clinical strain is labeled by incorporating one of two fluorescent nucleotide analogs (Cy3 or Cy5) into the DNA. Differentially labeled DNA samples are then mixed and cohybridized to a whole-genome microbial microarray. Resulting signal intensities from each fluorophore are then compared for each ORF represented on the array, thus allowing one to identify differences in gene content between strains. (B) RNA is isolated from broth-exposed and cocultured bacteria and host cells, reverse transcribed into cDNA, and fluorescently labeled with Cy3 or Cy5. Differentially labeled cDNA samples are then mixed and cohybridized to either a microbial or eukaryotic microarray. Resulting signal intensities from each fluorophore are then compared to identify differences in pathogen and host gene expression that occur following contact.

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Relationship of H. pylori-induced gastric inflammation with variable disease outcomes. OR, odds ratios.

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Hypothetical model by which H. pylori cag+ strains activate multiple pathways following contact with gastric epithelial cells. Following adherence, CagA is internalized and phosphorylated within the host cell by c-Src. Phospho-CagA then binds to and activates the host phosphatase SHP-2 and induces actin polymerization. A CagA-independent consequence of cag-mediated cellular interactions is translocation of an unknown factor (“?”), which then regulates pathways involved in the activation of transcription factors, such as AP-1 and NF-?B, which subsequently stimulate production of IL-8, a proinflammatory cytokine.

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Absence (black) and presence (gray) of ORF in archival and recent H. pylori strain J99 isolates as determined by microarray analysis. DNA from 13 recent isolates was compared with that from archival strain ?99 by hybridization to a whole-genome microarray. Variably present ORFs are shown vertically for each of the isolates.

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817848.chap8
1. Abu Kwaik, Y.,, and L. L. Pederson. 1996. The use of differential display-PCR to isolate and characterize a Legionella pneumophila locus induced during the intracellular infection of macrophages. Mol. Microbiol. 21:543556.
2. Achtman, M.,, T. Azuma,, D. E. Berg,, Y. Ito,, G. Morelli,, Z. J. Pan,, S. Suerbaum,, S. A. Thompson,, A. van der Ende,, and L. J. vanDoorn. 1999. Recombination and clonal groupings within Helicobacter pylori from different geographical regions. Mol. Microbiol. 32:459470.
3. Akopyanz, N.,, N. O. Bukanov,, T. U. Westblom,, S. Kresovich,, and D. E. Berg. 1992. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucleic Acids Res. 20:51375142.
4. Allan, E.,, C. L. Clayton,, A. McLaren,, D. M. Wallace,, and B. W. Wren. 2001. Characterization of the low-pH responses of Helicobacter pylori using genomic DNA arrays. Microbiology 147(Pt. 8):22852292.
5. Alm, R. A.,, L. S. Ling,, D. T. Moir,, B. L. King,, E. D. Brown,, P. C. Doig,, D. R. Smith,, B. Noonan,, B. C. Guild,, B. L. deJonge,, G. Carmel,, P. J. Tummino,, A. Caruso,, M. Uria-Nickelsen,, D. M. Mills,, C. Ives,, R. Gibson,, D. Merberg,, S. D. Mills,, Q. Jiang,, D. E. Taylor,, G. F. Vovis,, and T. J. Trust. 1999. Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397(6715): 176180.
6. Ang, S.,, C. Z. Lee,, K. Peck,, M. Sindici,, U. Matrubutham,, M. A. Gleeson,, and J. T. Wang. 2001. Acid-induced gene expression in Helicobacter pylori: study in genomic scale by microarray. Infect. Immun. 69:16791686.
7. Asahi, M.,, T. Azuma,, S. Ito,, Y. Ito,, H. Suto,, Y. Nagai,, M. Tsubokawa,, Y. Tohyama,, S. Maeda,, M. Omata,, T. Suzuki,, and C. Sasakawa. 2000. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. J. Exp. Med. 191:593602.
8. Bach, S.,, A. Makristathis,, M. Rotter,, and A. M. Hirschl. 2002. Gene expression profiling in AGS cells stimulated with Helicobacter pylori isogenic strains (cagA positive or cagA negative). Infect. Immun. 70:988992.
9. Bjorkholm, B.,, A. Lundin,, A. Sillen,, K. Guillemin,, N. Salama,, C. Rubio,, J. I. Gordon,, P. Falk,, and L. Engstrand. 2001. Comparison of genetic divergence and fitness between two subclones of Helicobacter pylori. Infect. Immun. 69:78327838.
10. Blaser, M. J.,, G. I. Perez-Perez,, H. Kleanthous,, T. L. Cover,, R. M. Peek,, P. H. Chyou,, G. N. Stemmermann,, and A. Nomura. 1995. Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res. 55:21112115.
11. Bodger, K.,, J. I. Wyatt,, and R. V. Heatley. 1997. Gastric mucosal secretion of interleukin-10: relations to histopathology, Helicobacter pylori status, and tumour necrosis factor-alpha secretion. Gut 40:739744.
12. Chiou, C. C.,, C. C. Chan,, D. L. Sheu,, K. T. Chen,, Y. S. Li,, and E. C. Chan. 2001. Helicobacter pylori infection induced alteration of gene expression in human gastric cells. Gut 48: 598604.
13. Cover, T. L.,, C. P. Dooley,, and M. J. Blaser. 1990. Characterization of and human serologic response to proteins in Helicobacter pylori broth culture supernatants with vacuolizing cytotoxin activity. Infect. Immun. 58:603610.
14. Cox, J. M.,, C. L. Clayton,, T. Tomita,, D. M. Wallace,, P. A. Robinson,, and J. E. Crabtree. 2001. cDNA array analysis of cag pathogenicity island-associated Helicobacter pylori epithelial cell response genes. Infect. Immun. 69:69706980.
15. Crabtree, J. E.,, D. Kersulyte,, S. D. Li,, I. J. Lindley,, and D. E. Berg. 1999. Modulation of Helicobacter pylori induced interleukin-8 synthesis in gastric epithelial cells mediated by cag PAI encoded VirD4 homologue. J. Clin. Pathol. 52: 653657.
16. Crabtree, J. E.,, J. D. Taylor,, J. I. Wyatt,, R. V. Heatley,, T. M. Shallcross,, D. S. Tompkins,, and B. J. Rathbone. 1991. Mucosal IgA recognition of Helicobacter pylori 120 kDa protein, peptic ulceration, and gastric pathology. Lancet 338:332335.
17. Crabtree, J. E.,, J. I. Wyatt,, G. M. Sobala,, G. Miller,, D. S. Tompkins,, J. N. Primrose,, and A. G. Morgan. 1993. Systemic and mucosal humoral responses to Helicobacter pylori in gastric cancer. Gut 34:13391343.
18. DeLisa, M. P.,, C. F. Wu,, L. Wang,, J. J. Valdes,, and W. E. Bentley. 2001. DNA microarray-based identification of genes controlled by autoinducer 2-stimulated quorum sensing in Escherichia coli. J. Bacteriol. 183:52395247.
19. Detweiler, C. S.,, D. B. Cunanan,, and S. Falkow. 2001. Host microarray analysis reveals a role for the Salmonella response regulator phoP in human macrophage cell death. Proc. Natl. Acad. Sci. USA 98:58505855.
20. Donahue, J. P.,, D. A. Israel,, V. J. Torres,, A. S. Necheva,, and G. G. Miller. 2002. Inactivation of a Helicobacter pylori DNA methyltransferase alters dnaK operon expresion following host cell adherence. FEMS Microbiol. Lett. 208:295301.
21. Dorrell, N.,, J. A. Mangan,, K. G. Laing,, J. Hinds,, D. Linton,, H. Al-Ghusein,, B. G. Barrell,, J. Parkhill,, N. G. Stoker,, A. V. Karlyshev,, P. D. Butcher,, and B. W. Wren. 2001. Whole genome comparison of Campylobacter jejuni human isolates using a low-cost microarray reveals extensive genetic diversity. Genome Res. 11:17061715.
22. Eckmann, L.,, J. R. Smith,, M. P. Housley,, M. B. Dwinell,, and M. F. Kagnoff. 2000. Analysis by high density cDNA arrays of altered gene expression in human intestinal epithelial cells in response to infection with the invasive enteric bacteria Salmonella. J. Biol. Chem. 275: 1408414094.
23. Enroth, H.,, O. Nyren,, and L. Engstrand. 1999. One stomach—one strain: does Helicobacter pylori strain variation influence disease outcome? Dig. Dis. Sci. 44:102107.
24. Gerhold, D.,, T. Rushmore,, and C. T. Caskey. 1999. DNA chips: promising toys have become powerful tools. Trends Biochem. Sci. 24: 168173.
25. Glocker, E.,, C. Lange,, A. Covacci,, S. Bereswill,, M. Kist,, and H. L. Pahl. 1998. Proteins encoded by the cag pathogenicity island of Helicobacter pylori are required for NF-kappaB activation. Infect. Immun. 66:23462348.
26. Go, M. F.,, V. Kapur,, D. Y. Graham,, and J. M. Musser. 1996. Population genetic analysis of Helicobacter pylori by multilocus enzyme electrophoresis: extensive allelic diversity and recombinational population structure. J. Bacteriol. 178: 39343938.
27. Groisman, E. A. 2001. The pleiotropic two-component regulatory system PhoP-PhoQ. J. Bacteriol. 183:18351842.
28. Haeberle, H. A.,, M. Kubin,, K. B. Bamford,, R. Garofalo,, D. Y. Graham,, F. El-Zaatari,, R. Karttunen,, S. E. Crowe,, V. E. Reyes,, and P. B. Ernst. 1997. Differential stimulation of interleukin-12 (IL-12) and IL-10 by live and killed Helicobacter pylori in vitro and association of IL-12 production with gamma interferon-producing T cells in the human gastric mucosa. Infect. Immun. 65:42294235.
29. Harrington, C. A.,, C. Rosenow,, and J. Retief. 2000. Monitoring gene expression using DNA microarrays. Curr. Opin. Microbiol. 3(3): 285291.
30. Heuermann, D.,, and R. Haas. 1998. A stable shuttle vector system for efficient genetic complementation of Helicobacter pylori strains by transformation and conjugation. Mol. Gen. Genet. 257:519528.
31. Higashi, H.,, R. Tsutsumi,, S. Muto,, T. Sugiyama,, T. Azuma,, M. Asaka,, and M. Hatakeyama. 2002. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295:683686.
32. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291:881884.
33. Israel, D. A.,, N. Salama,, C. N. Arnold,, S. F. Moss,, T. Ando,, H. P. Wirth,, K. T. Tham,, M. Camorlinga,, M. J. Blaser,, S. Falkow, , and R. M. Peek, Jr. 2001. Helicobacter pylori strain-specific differences in genetic content, identified by microarray, influence host inflammatory responses. J. Clin. Invest. 107:611620.
34. Israel, D. A.,, N. Salama,, U. Krishna,, U. M. Rieger,, J. C. Atherton,, S. Falkow, , and R. M. Peek, Jr. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. USA 98:1462514630.
35. Keates, S.,, A. C. Keates,, M. Warny, , R. M. Peek, Jr.,, P. G. Murray, , and C. P. Kelly. 1999. Differential activation of mitogen-activated protein kinases in AGS gastric epithelial cells by cag+ and cag Helicobacter pylori. J. Immunol. 163: 55525559.
36. Kuipers, E. J.,, D. A. Israel,, J. G. Kusters,, M. M. Gerrits,, J. Weel,, A. van Der Ende,, R. W. van Der Hulst,, H. P. Wirth,, J. Hook-Nikanne,, S. A. Thompson,, and M. J. Blaser. 2000. Quasispecies development of Helicobacter pylori observed in paired isolates obtained years apart from the same host. J. Infect. Dis. 181(1): 273282.
37. Kuipers, E. J.,, G. I. Perez-Perez,, S. G. Meuwissen,, and M. J. Blaser. 1995. Helicobacter pylori and atrophic gastritis: importance of the cagA status. J. Natl. Cancer Inst. 87:17771780.
38. Lipshutz, R. J.,, S. P. Fodor,, T. R. Gingeras,, and D. J. Lockhart. 1999. High density synthetic oligonucleotide arrays. Nat. Genet. 21(Suppl. 1):2024.
39. Maeda, S.,, M. Akanuma,, Y. Mitsuno,, Y. Hirata,, K. Ogura,, H. Yoshida,, Y. Shiratori,, and M. Omata. 2001. Distinct mechanism of Helicobacter pylori-mediated NF-kappa B activation between gastric cancer cells and monocytic cells. J. Biol. Chem. 276:4485644864.
40. Maeda, S.,, M. Otsuka,, Y. Hirata,, Y. Mitsuno,, H. Yoshida,, Y. Shiratori,, Y. Masuho,, M. Muramatsu,, N. Seki,, and M. Omata. 2001. cDNA microarray analysis of Helicobacter pylori-mediated alteration of gene expression in gastric cancer cells. Biochem. Biophys. Res. Commun. 284(2):443449.
41. Marshall, B. J.,, and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1: 13111315.
42. Meyer-ter-Vehn, T.,, A. Covacci,, M. Kist,, and H. L. Pahl. 2000. Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J. Biol. Chem. 275:1606416072.
43. Miller, S. I.,, A. M. Kukral,, and J. J. Mekalanos. 1989. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86:50545058.
44. Naumann, M.,, S. Wessler,, C. Bartsch,, B. Wieland,, A. Covacci,, R. Haas,, and T. F. Meyer. 1999. Activation of activator protein 1 and stress response kinases in epithelial cells colonized by Helicobacter pylori encoding the cag pathogenicity island. J. Biol. Chem. 274:3165531662.
45. Neish, A. S.,, A. T. Gewirtz,, H. Zeng,, A. N. Young,, M. E. Hobert,, V. Karmali,, A. S. Rao,, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289:15601563.
46. Nomura, A.,, G. N. Stemmermann,, P. H. Chyou,, I. Kato,, G. I. Pérez-Pérez,, and M. J. Blaser. 1991. Helicobacter pylori infection and gastric carcinoma among Japanese Americans in Hawaii. N. Engl. J. Med. 325:11321136.
47. Odenbreit, S.,, J. Puls,, B. Sedlmaier,, E. Gerland,, W. Fischer,, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science 287: 14971500.
48. Ogura, K.,, S. Maeda,, M. Nakao,, T. Watanabe,, M. Tada,, T. Kyutoku,, H. Yoshida,, Y. Shiratori,, and M. Omata. 2000. Virulence factors of Helicobacter pylori responsible for gastric diseases in Mongolian gerbil. J. Exp. Med. 192: 16011610.
49. Parkhill, J.,, B. W. Wren,, K. Mungall,, J. M. Ketley,, C. Churcher,, D. Basham,, T. Chillingworth,, R. M. Davies,, T. Feltwell,, S. Holroyd,, K. Jagels,, A. V. Karlyshev,, S. Moule,, M. J. Pallen,, C. W. Penn,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, A. H. van Vliet,, S. Whitehead,, and B. G. Barrell. 2000. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403:665668.
50. Parsonnet, J.,, G. D. Friedman,, N. Orentreich,, and H. Vogelman. 1997. Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40(3): 297301.
51. Parsonnet, J.,, G. D. Friedman,, D. P. Vandersteen,, Y. Chang,, J. H. Vogelman,, N. Orentreich,, and R. K. Sibley. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325:11271131.
52. Parsonnet, J.,, S. Hansen,, L. Rodriguez,, A. B. Gelb,, R. A. Warnke,, E. Jellum,, N. Orentreich,, J. H. Vogelman,, and G. D. Friedman. 1994. Helicobacter pylori infection and gastric lymphoma. N. Engl. J. Med. 330:12671271.
53. Peek, R. M., Jr.,, G. G. Miller, , K. T. Tham, , G. I. Perez-Perez, , X. Zhao, , J. C. Atherton, , and M. J. Blaser. 1995. Heightened inflammatory response and cytokine expression in vivo to cagA+ Helicobacter pylori strains. Lab. Invest. 73: 760770.
54. Peek, R. M., Jr.,, S. A. Thompson, , J. P. Donahue, , K. T. Tham, , J. C. Atherton, , M. J. Blaser, , and G. G. Miller. 1998. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc. Assoc. Am. Physic. 110(6):531544.
55. Perez-Perez, G. I.,, V. L. Shepherd,, J. D. Morrow,, and M. J. Blaser. 1995. Activation of human THP-1 cells and rat bone marrow-derived macrophages by Helicobacter pylori lipopolysaccharide. Infect. Immun. 63:11831187.
56. Peterson, W. L. 1991. Helicobacter pylori and peptic ulcer disease. N. Engl. J. Med. 324:10431048.
57. Rosenberger, C. M.,, M. G. Scott,, M. R. Gold,, R. E. Hancock,, and B. B. Finlay. 2000. Salmonella typhimurium infection and lipopolysaccharide stimulation induce similar changes in macrophage gene expression. J. Immunol. 164: 58945904.
58. Rosqvist, R.,, K. E. Magnusson,, and H. Wolf-Watz. 1994. Target cell contact triggers expression and polarized transfer of Yersinia YopE cytotoxin into mammalian cells. EMBO J. 13: 964972.
59. Salama, N.,, K. Guillemin,, T. K. McDaniel,, G. Sherlock,, L. Tompkins,, and S. Falkow. 2000. A whole-genome microarray reveals genetic diversity among Helicobacter pylori strains. Proc. Natl. Acad. Sci. USA 97:1466814673.
60. Segal, E. D.,, J. Cha,, J. Lo,, S. Falkow,, and L. S. Tompkins. 1999. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. USA 96:1455914564.
61. Selbach, M.,, S. Moese,, C. R. Hauck,, T. F. Meyer,, and S. Backert. 2002. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J. Biol. Chem. 277:67756778.
62. Selinger, D. W.,, K. J. Cheung,, R. Mei,, E. M. Johansson,, C. S. Richmond,, F. R. Blattner,, D. J. Lockhart,, and G. M. Church. 2000. RNA expression analysis using a 30 base pair resolution Escherichia coli genome array. Nat. Biotechnol. 18:12621268.
63. Sharma, S. A.,, M. K. Tummuru,, M. J. Blaser,, and L. D. Kerr. 1998. Activation of IL-8 gene expression by Helicobacter pylori is regulated by transcription factor nuclear factor-kappa B in gastric epithelial cells. J. Immunol. 160:24012407.
64. Sharma, S. A.,, M. K. Tummuru,, G. G. Miller,, and M. J. Blaser. 1995. Interleukin-8 response of gastric epithelial cell lines to Helicobacter pylori stimulation in vitro. Infect. Immun. 63: 16811687.
65. Stein, M.,, R. Rappuoli,, and A. Covacci. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97: 12631268.
66. Tao, H.,, C. Bausch,, C. Richmond,, F. R. Blattner,, and T. Conway. 1999. Functional genomics: expression analysis of Escherichia coli growing on minimal and rich media. J. Bacteriol. 181:64256440.
67. Tomb, J. F.,, O. White,, A. R. Kerlavage,, R. A. Clayton,, G. G. Sutton,, R. D. Fleischmann,, K. A. Ketchum,, H. P. Klenk,, S. Gill,, B. A. Dougherty,, K. Nelson,, J. Quackenbush,, L. Zhou,, E. F. Kirkness,, S. Peterson,, B. Loftus,, D. Richardson,, R. Dodson,, H. G. Khalak,, A. Glodek,, K. McKenney,, L. M. Fitzegerald,, N. Lee,, M. D. Adams,, J. C. Venter, et al. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539547.
68. Tummuru, M. K.,, S. A. Sharma,, and M. J. Blaser. 1995. Helicobacter pylori picB, a homologue of the Bordetella pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. Mol. Microbiol. 18:867876.
69. van Doorn, N. E.,, F. Namavar,, J. G. Kusters,, E. P. van Rees,, E. J. Kuipers,, and J. de Graaff. 1998. Genomic DNA fingerprinting of clinical isolates of Helicobacter pylori by REP-PCR and restriction fragment end-labelling. FEMS Microbiol. Lett. 160(1):145150.
70. Wilson, M.,, J. DeRisi,, H. H. Kristensen,, P. Imboden,, S. Rane,, P. O. Brown,, and G. K. Schoolnik. 1999. Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc. Natl. Acad. Sci. USA 96:1283312838.
71. Wong, K. K.,, and M. McClelland. 1994. Stress-inducible gene of Salmonella typhimurium identified by arbitrarily primed PCR of RNA. Proc. Natl. Acad. Sci. USA 91:639643.
72. Yamaoka, Y.,, M. Kita,, T. Kodama,, N. Sawai,, and J. Imanishi. 1996. Helicobacter pylori cagA gene and expression of cytokine messenger RNA in gastric mucosa. Gastroenterology 110: 17441752.
73. Zhang, J. P.,, and S. Normark. 1996. Induction of gene expression in Escherichia coli after pilus-mediated adherence. Science 273:12341236.
74. Zheng, M.,, X. Wang,, L. J. Templeton,, D. R. Smulski,, R. A. LaRossa,, and G. Storz. 2001. DNA microarray-mediated transcriptional profiling of the Escherichia coli response to hydrogen peroxide. J. Bacteriol. 183:45624570.

Tables

Generic image for table
TABLE 1

Summary of published studies using microarray analysis to investigate host-pathogen interactions

Citation: Israel D, Peek R. 2003. Application of Microarray Analysis to the Investigation of Host-Pathogen Interactions, p 121-140. In Hecht G (ed), Microbial Pathogenesis and the Intestinal Epithelial Cell. ASM Press, Washington, DC. doi: 10.1128/9781555817848.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error