1887

Chapter 5 : Murine Leishmaniasis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Murine Leishmaniasis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap05-2.gif

Abstract:

In human visceral leishmaniasis (VL), granuloma formation typifies the reactions seen in individuals with subclinical VL; however, acute clinical disease (kala-azar) typically presents as a complete failure in granuloma formation. Thus, mouse models may also provide a setting for the development of therapies aimed at initiating or enhancing granuloma formation. Although the focus of this chapter is the development, structure, and formation of granulomas in murine VL, a brief consideration of the natural history of infection is helpful to understand potential limitations in the models used. Importantly, unlike most intracellular pathogens, spp. may not readily trigger conventional Toll-like receptor activation. Immune responses to infection are often classified as being Th1 or Th2 type, reflecting polarized differentiation of CD4T-cell subsets. One of the most striking observations when examining the maturation of tissue granulomas, clearly evident following infection but by no means unique to this infection, is that granuloma formation is asynchronous. IL-2 and granulocyte-macrophage colony-stimulating factor treatment of infected mice also promotes granuloma assembly, though with various alterations to the histological characteristics. Promotion of the granulomatous response may be beneficial in the murine host and may also indicate possible avenues for the establishment of the tissue response in humans developing VL.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5

Key Concept Ranking

Transforming Growth Factor beta
0.42495215
0.42495215
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Major factors influencing hepatic growth of The graph illustrates a stylized growth curve for infection in mice, established after intravenous inoculation of 10 amastigotes. Parasite burden is measured as Leishman Donovan units (LDU) ( ). Parasites initially replicate in Kupffer cells at approximately equal rates in all strains examined. After day 3, the impact of the Gly → Asp mutation in the Slc11a1 protein becomes apparent. In Slc11a1 mutant strains (e.g., BALB/c, C57BL/6, and C57BL/10), rapid multiplication of amastigotes is also controlled by endogenous oxygen and nitrogen intermediates. Between day 14 and day 28 postinfection, the influence of MHC genes on rate of cure becomes apparent, and at this time, both CD4and CD8T cells cooperate to induce NO-dependent leishmanicidal activity in macrophages. The dotted line parallel to the axis represents the limit of detection.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Defined stages in granuloma "maturation." Photomicrographs showing infected Kupffer cell (A), Kupffer cell fusion with minimal associated inflammation (B), immature granuloma (C), mature granuloma (D), and sterile, involuted granuloma (E). Lower magnification reveals that many stages of granuloma maturation are evident in the same field of view (F). Amastigotes are seen as small dots in the micrographs. For additional details, see text.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Chemokine regulation of hepatic granuloma formation. Infected Kupffer cells rapidly express chemokines (CK), but these fail to induce local recruitment of inflammatory cells in immunodeficient mice (left panels). In the presence of resident hepatic TCRγδor TCRαβT cells, chemokine production, notably of γIP-10 (CXCL10), is sustained and serves to initiate a local inflammatory focus with Kupffer cell fusion (center panel). However, TCRαβT cells are required to mount an organized granulomatous response (right panel).

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Models for asynchronous granuloma development following infection. In panel 1, Kupffer cells (KC) are either heterogeneous or respond in a heterogeneous manner to infection, with qualitative or quantitative differences in chemokine (CK) synthesis. In panel 2, heterogeneity results from the random distribution of resident hepatic T cells, necessary to sustain CK production. In panel 3, the stimulus for inflammation is uniform, but the availability of TCRαβT cells derived from the periphery is limiting.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Cytokine regulation of hepatic granuloma formation. Chemokines attract TCRαβT cells to infected Kupffer cells where they produce cytokines essential for generation of the full granulomatous response. Chemokines also attract monocytes and neutrophils, which may supplement the local cytokine environment. Autocrine and paracrine responses to these cytokines likely occur within the granuloma, which cannot be readily dissected with current methodology.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Enhancing granuloma formation using costimulation-based therapy. The early immature granulomatous response seen in normal mice at day 14 postinfection (A) can be substantially enhanced in both maturity and size by interfering with the negative regulatory function of CTLA-4 (B and C). Extensive epithelioid cell generation, with minimal additional mononuclear cell recruitment, is also a characteristic of sterile granulomas seen following this intervention (C). Reprinted from reference 64 with permission. Copyright 1998. The American Association of Immunologists, Inc.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817879.chap5
1. Abo, T.,, T. Kawamura,, and H. Watanabe. 2000. Physiological responses of extrathymic T cells in the liver. Immunol. Rev. 174:135149.
2. Alexander, C. E.,, P. M. Kaye,, and C. R. Engwerda. 2001. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur. J. Immunol. 31:11991210.
3. Alexander, J.,, A. R. Satoskar,, and D. G. Russell. 1999. Leishmania species: models of intracellular parasitism. J. Cel. Sci. 112(Pt. 18):29933002.
4. Anstead, G. M.,, B. Chandrasekar,, W. Zhao,, J. Yang,, L. E. Perez,, and P. C. Melby. 2001. Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect. Immun. 69:47094718.
5. Antoine, J. C.,, E. Prina,, T. Lang,, and N. Courret. 1998. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol. 6:392401.
6. Atkinson, P. G.,, J. M. Blackwell,, and C. H. Barton. 1997. Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem. J. 325 (Pt. 3):779786.
7. Baker, R.,, P. Chiodini,, and P. M. Kaye,. 1999. Leishmaniasis, p. 212234. In D. Gerrant- James, and A. Zumla (ed.), The Granulomatous Diseases. Cambridge University Press, Cambridge, United Kingdom.
8. Belkaid, Y.,, S. Kamhawi,, G. Modi,, J. Valenzuela,, N. Noben-Trauth,, E. Rowton,, J. Ribeiro,, and D. L. Sacks. 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 188:19411953.
9. Bennett, C. L.,, A. Misslitz,, L. Colledge,, T. Aebischer,, and C. C. Blackburn. 2001. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur. J. Immunol. 31:876883.
10. Blackwell, J. M. 1983. Leishmania donovani infection in heterozygous and recombinant H-2 haplotype mice. Immunogenetics 18:101109.
11. Blackwell, J. M. 1983. Regulation of Leishmania populations within the host. V. Resistance to L. donovani in wild mice. J. Trop. Med. Hyg. 86:1722.
12. Blackwell, J. M.,, T. Goswami,, C. A. Evans,, D. Sibthorpe,, N. Papo,, J. K. White,, S. Searle,, E. N. Miller,, C. S. Peacock,, H. Mohammed,, and M. Ibrahim. 2001. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3:773784.
13. Blackwell, J. M.,, and S. Searle. 1999. Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg). Immunol. Lett. 65:7380.
14. Bradley, D. J. 1977. Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin. Exp. Immunol. 30:130140.
15. Bradley, D. J.,, and J. Kirkley. 1977. Regulation of Leishmania populations within the host. I. The variable course of Leishmania donovani infections in mice. Clin. Exp. Immunol. 30:119129.
16. Bradley, D. J.,, and J. Kirkley. 1972. Variation in susceptibility of mouse strains to Leishmania donovani infection. Trans. R. Soc. Trop. Med. Hyg. 66:527528.
17. Bradley, D. J.,, B. A. Taylor,, J. Blackwell,, E. P. Evans,, and J. Freeman. 1979. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin. Exp. Immunol. 37:714.
18. Caux, C.,, S. Ait-Yahia,, K. Chemin,, O. de Bouteiller,, M. C. Dieu-Nosjean,, B. Homey,, C. Massacrier,, B. Vanbervliet,, A. Zlotnik,, and A. Vicari. 2000. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol. 22:345369.
19. Cho, B. K.,, V. P. Rao,, Q. Ge,, H. N. Eisen,, and J. Chen. 2000. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192:549556.
20. Clarke, S. R.,, and A. Y. Rudensky. 2000. Survival and homeostatic proliferation of naive peripheral CD4+T cells in the absence of self peptide:MHC complexes. J. Immunol. 165:24582464.
21. Cotterell, S. E.,, C. R. Engwerda,, and P. M. Kaye. 2000. Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect. Immun. 68:18401848.
22. Cotterell, S. E.,, C. R. Engwerda,, and P. M. Kaye. 1999. Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur. J. Immunol. 29:203214.
23. Crocker, P. R.,, J. M. Blackwell,, and D. J. Bradley. 1984. Expression of the natural resistance gene lsh in resident liver macrophages. Infect. Immun. 43:10331040.
24. da Silva, R.,, and D. L. Sacks. 1987. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect. Immun. 55:28022806.
25. Da Silva, R. P.,, B. F. Hall,, K. A. Joiner,, and D. L. Sacks. 1989. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J. Immunol. 143:617622.
26. Dalod, M.,, T. P. Salazar-Mather,, L. Malmgaard,, C. Lewis,, C. Asselin-Paturel,, F. Briere,, G. Trinchieri,, and C. A. Biron. 2002. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195:517528.
27. Daneshbod, K. 1972. Visceral leishmaniasis (kala-azar) in Iran: a pathologic and electron microscopic study. Am. J. Clin. Pathol. 57:156166.
28. Dermine, J. F.,, S. Scianimanico,, C. Prive,, A. Descoteaux,, and M. Desjardins. 2000. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell. Microbiol. 2:115126.
29. Desjardins, M.,, and A. Descoteaux. 1998. Survival strategies of Leishmania donovani in mammalian host macrophages. Res. Immunol. 149:689692.
30. Duclos, S.,, and M. Desjardins. 2000. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell. Microbiol. 2:365377.
31. el Hag, I. A.,, F. A. Hashim,, I. A. el Toum,, M. Homeida,, M. el Kalifa,, and A. M. el Hassan. 1994. Liver morphology and function in visceral leishmaniasis (Kala-azar). J. Clin. Pathol. 47:547551.
32. el Hassan, A. M.,, A. M. Kadaru,, E. A. Khalil,, A. Fadl,, and M. M. el Hassan. 1996. The pathology of cutaneous leishmaniasis in the Sudan: a comparison with that in other geographical areas. Ann. Trop. Med. Parasitol. 90:485490.
33. Engwerda, C. R.,, and P. M. Kaye. 2000. Organ-specific immune responses associated with infectious disease. Immunol. Today 21:7378.
34. Engwerda, C. R.,, M. L. Murphy,, S. E. Cotterell,, S. C. Smelt,, and P. M. Kaye. 1998. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur. J. Immunol. 28:669680.
35. Engwerda, C. R.,, S. C. Smelt,, and P. M. Kaye. 1996. An in vivo analysis of cytokine production during Leishmania donovani infection in scid mice. Exp. Parasitol. 84: 195202.
36. Forbes, J. R.,, and P. Gros. 2001. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 9:397403.
37. Gomes, N. A.,, V. Barreto-de-Souza,, M. E. Wilson,, and G. A. DosReis. 1998. Unresponsive CD4+T lymphocytes from Leishmania chagasi-infected mice increase cytokine production and mediate parasite killing after blockade of B7-1/CTLA-4 molecular pathway. J. Infect. Dis. 178:18471851.
38. Gomes, N. A.,, and G. A. DosReis. 2001. The dual role of CTLA-4 in Leishmania infection. Trends Parasitol. 17:487491.
39. Gomes, N. A.,, C. R. Gattass,, V. Barreto-De-Souza,, M. E. Wilson,, and G. A. DosReis. 2000. TGF-beta mediates CTLA-4 suppression of cellular immunity in murine kalaazar. J. Immunol. 164:20012008.
40. Gorak, P. M.,, C. R. Engwerda,, and P. M. Kaye. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28:687695.
41. Goswami, T.,, A. Bhattacharjee,, P. Babal,, S. Searle,, E. Moore,, M. Li,, and J. M. Blackwell. 2001. Natural-resistance-associated macrophage protein 1 is anH+/bivalent cation antiporter. Biochem. J. 354:511519.
42. Gutierrez, Y.,, J. A. Maksem,, and N. E. Reiner. 1984. Pathologic changes in murine leishmaniasis (Leishmania donovani) with special reference to the dynamics of granuloma formation in the liver. Am. J. Pathol. 114:222230.
43. Hammond, K. J.,, S. B. Pelikan,, N. Y. Crowe,, E. Randle-Barrett,, T. Nakayama,, M. Taniguchi,, M. J. Smyth,, I. R. van Driel,, R. Scollay,, A. G. Baxter,, and D. I. Godfrey. 1999. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29: 37683781.
44. Han, X.,, H. Sterling,, Y. Chen,, C. Saginario,, E. J. Brown,, W. A. Frazier,, F. P. Lindberg,, and A. Vignery. 2000. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J. Biol. Chem. 275:3798437992.
45. Kamhawi, S. 2000. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2:17651773.
46. Kane, M. M.,, and D. M. Mosser. 2001. The role of IL-10 in promoting disease progression in leishmaniasis. J. Immunol. 166:11411147.
47. Kaye, P. M. 1987. Acquisition of cell-mediated immunity to Leishmania. I. Primary Tcell activation detected by IL-2 receptor expression. Immunology 61:345349.
48. Kaye, P. M.,, and G. J. Bancroft. 1992. Leishmania donovani infection in scid mice: lack of tissue response and in vivo macrophage activation correlates with failure to trigger natural killer cell-derived gamma interferon production in vitro. Infect. Immun. 60: 43354342.
49. Lane, P. 2000. Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J. Exp. Med. 191:201206.
50. Laurenti, M. D.,, M. N. Sotto,, C. E. Corbett,, V. L. da Matta,, and M. I. Duarte. 1990. Experimental visceral leishmaniasis: sequential events of granuloma formation at subcutaneous inoculation site. Int. J. Exp. Pathol. 71:791797.
51. Leite, V. H.,, and S. L. Croft. 1996. Hepatic extracellular matrix in BALB/c mice infected with Leishmania donovani. Int. J. Exp. Pathol. 77:181190.
52. Lepay, D. A.,, C. F. Nathan,, R. M. Steinman,, H. W. Murray,, and Z. A. Cohn. 1985. Murine Kupffer cells. Mononuclear phagocytes deficient in the generation of reactive oxygen intermediates. J. Exp. Med. 161:10791096.
53. Maloy, K. J.,, and F. Powrie. 2001. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2:816822.
54. Manson-Bahr, P. E. 1955. A primary skin lesion in visceral leishmaniasis. Nature 175: 433434.
55. Mauricio, I. L.,, J. R. Stothard,, and M. A. Miles. 2000. The strange case of Leishmania chagasi. Parasitol. Today 16:188189.
56. Mbow, M. L.,, J. A. Bleyenberg,, L. R. Hall,, and R. G. Titus. 1998. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J. Immunol. 161:55715577.
57. McElrath, M. J.,, H. W. Murray,, and Z. A. Cohn 1988. The dynamics of granuloma formation in experimental visceral leishmaniasis. J. Exp. Med. 167:19271937.
58. Miralles, G. D.,, M. Y. Stoeckle,, D. F. McDermott,, F. D. Finkelman,, and H. W. Murray. 1994. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect. Immun. 62:10581063.
59. Moll, H. 1993. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol. Today 14:383387.
60. Moll, H. 1993. Experimental cutaneous leishmaniasis: Langerhans cells internalize Leishmania major and induce an antigen-specific T-cell response. Adv. Exp. Med. Biol. 329:587592.
61. Moll, H.,, H. Fuchs,, C. Blank,, and M. Rollinghoff. 1993. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol. 23:15951601.
62. Moreno, A.,, M. Marazuela,, M. Yebra,, M. J. Hernandez,, T. Hellin,, C. Montalban,, and J. A. Vargas. 1988. Hepatic fibrin-ring granulomas in visceral leishmaniasis. Gastroenterology 95:11231126.
63. Morris, R. V.,, C. B. Shoemaker,, J. R. David,, G. C. Lanzaro,, and R. G. Titus. 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol. 167:52265230.
64. Murphy, M. L.,, S. E. Cotterell,, P. M. Gorak,, C. R. Engwerda,, and P. M. Kaye. 1998. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J. Immunol. 161:41534160.
65. Murphy, M. L.,, C. R. Engwerda,, P. M. Gorak,, and P. M. Kaye. 1997. B7-2 blockade enhances T cell responses to Leishmania donovani. J. Immunol. 159:44604466.
66. Murphy, M. L.,, U. Wille,, E. N. Villegas,, C. A. Hunter,, and J. P. Farrell. 2001. IL-10 mediates susceptibility to Leishmania donovani infection. Eur. J. Immunol. 31: 28482856.
67. Murray, H. W. 1997. Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J. Infect. Dis. 175:14771479.
68. Murray, H. W. 2000. Mononuclear cell recruitment, granuloma assembly, and response to treatment in experimental visceral leishmaniasis: intracellular adhesion molecule 1- dependent and -independent regulation. Infect. Immun. 68:62946299.
69. Murray, H. W. 2001. Tissue granuloma structure-function in experimental visceral leishmaniasis. Int. J. Exp. Pathol. 82:249267.
70. Murray, H. W.,, J. S. Cervia,, J. Hariprashad,, A. P. Taylor,, M. Y. Stoeckle,, and H. Hockman. 1995. Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J. Clin. Invest. 95:11831192.
71. Murray, H. W.,, and S. Delph-Etienne. 2000. Roles of endogenous gamma interferon and macrophage microbicidal mechanisms in host response to chemotherapy in experimental visceral leishmaniasis. Infect. Immun. 68:288293.
72. Murray, H. W.,, J. Hariprashad,, and R. L. Coffman. 1997. Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J. Exp. Med. 185:867874.
73. Murray, H. W.,, G. D. Miralles,, M. Y. Stoeckle,, and D. F. McDermott. 1993. Role and effect of IL-2 in experimental visceral leishmaniasis. J. Immunol. 151:929938.
74. Murray, H. W.,, C. Montelibano,, R. Peterson,, and J. P. Sypek. 2000. Interleukin-12 regulates the response to chemotherapy in experimental visceral leishmaniasis. J. Infect. Dis. 182:14971502.
75. Murray, H. W.,, and C. F. Nathan. 1999. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J. Exp. Med. 189:741746.
76. Murray, H. W.,, M. J. Oca,, A. M. Granger,, and R. D. Schreiber. 1989. Requirement for T cells and effect of lymphokines in successful chemotherapy for an intracellular infection. Experimental visceral leishmaniasis. J. Clin. Investig. 83:12531257.
77. O'Farrelly, C.,, and I. N. Crispe. 1999. Prometheus through the looking glass: reflections on the hepatic immune system. Immunol. Today 20:394398.
78. Pampiglione, S.,, M. La Placa,, and G. Schlick. 1974. Studies on Mediterranean Leishmaniasis. I. An outbreak of visceral leishmaniasis in Northern Italy. Trans. R. Soc. Trop. Med. Hyg. 68:349359.
79. Pampiglione, S.,, P. E. Manson-Bahr,, F. Giungi,, G. Giunti,, A. Parenti,, and G. Canestri Trotti. 1974. Studies on Mediterranean leishmaniasis. 2. Asymptomatic cases of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 68:447453.
80. Pimenta, P. F.,, S. J. Turco,, M. J. McConville,, P. G. Lawyer,, P. V. Perkins,, and D. L. Sacks. 1992. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 256:18121815.
81. Plant, J. E.,, J. M. Blackwell,, A. D. O'Brien,, D. J. Bradley,, and A. A. Glynn. 1982. Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1? Nature 297:510511.
82. Racoosin, E. L.,, and S. M. Beverley. 1997. Leishmania major: promastigotes induce expression of a subset of chemokine genes in murine macrophages. Exp. Parasitol. 85: 283295.
83. Razek-Desouky, A.,, C. A. Specht,, L. Soong,, and J. M. Vinetz. 2001. Leishmania donovani: expression and characterization of Escherichia coli-expressed recombinant chitinase LdCHT1. Exp. Parasitol. 99:220225.
84. Ridley, D. S.,, and M. J. Ridley. 1983. The evolution of the lesion in cutaneous leishmaniasis. J. Pathol. 141:8396.
85. Roberts, C. W.,, J. R. Shutter,, and S. J. Korsmeyer. 1994. Hox11 controls the genesis of the spleen. Nature 368:747749.
86. Roberts, M.,, J. Alexander,, and J. M. Blackwell. 1989. Influence of Lsh, H-2, and an H-11-linked gene on visceralization and metastasis associated with Leishmania mexicana infection in mice. Infect. Immun. 57:875881.
87. Rogers, P. R.,, J. Song,, I. Gramaglia,, N. Killeen,, and M. Croft. 2001. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15:445455.
88. Sacks, D.,, and S. Kamhawi. 2001. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol. 55:453483.
89. Saginario, C.,, H. Sterling,, C. Beckers,, R. Kobayashi,, M. Solimena,, E. Ullu,, and A. Vignery. 1998. MFR, a putative receptor mediating the fusion of macrophages. Mol. Cell. Biol. 18:62136223.
90. Sato, N.,, W. A. Kuziel,, P. C. Melby,, R. L. Reddick,, V. Kostecki,, W. Zhao,, N. Maeda,, S. K. Ahuja,, and S. S. Ahuja. 1999. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J. Immunol. 163: 55195525.
91. Satoskar, A.,, H. Bluethmann,, and J. Alexander. 1995. Disruption of the murine interleukin- 4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect. Immun. 63:48944899.
92. Satoskar, A. R.,, S. Rodig,, S. R. Telford III,, A. A. Satoskar,, S. K. Ghosh,, F. von Lichtenberg,, and J. R. David. 2000. IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur. J. Immunol. 30:834839.
93. Scott, P.,, and C. A. Hunter. 2002. Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Curr. Opin. Immunol. 14:466470.
94. Seki, S.,, Y. Habu,, T. Kawamura,, K. Takeda,, H. Dobashi,, T. Ohkawa,, and H. Hiraide. 2000. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag+T cells in T helper 1 immune responses. Immunol. Rev. 174:3546.
95. Smelt, S. C.,, S. E. Cotterell,, C. R. Engwerda,, and P. M. Kaye. 2000. B cell-deficient mice are highly resistant to Leishmania donovani infection, but developneutrop hilmediated tissue pathology. J. Immunol. 164:36813688.
96. Smelt, S. C.,, C. R. Engwerda,, M. McCrossen,, and P. M. Kaye. 1997. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J. Immunol. 158: 38133821.
97. Smith, D.,, H. Hansch,, G. Bancroft,, and S. Ehlers. 1997. T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-alpha and interferon-gamma. Immunology 92:413421.
98. Squires, K. E.,, R. D. Schreiber,, M. J. McElrath,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1989. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J. Immunol. 143:42444249.
99. Stern, J. J.,, M. J. Oca,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1988. Role of L3T4+and LyT-2+cells in experimental visceral leishmaniasis. J. Immunol. 140: 39713977.
100. Sullivan, T. J.,, J. J. Letterio,, A. van Elsas,, M. Mamura,, J. van Amelsfort,, S. Sharpe,, B. Metzler,, C. A. Chambers,, and J. P. Allison. 2001. Lack of a role for transforming growth factor-beta in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc. Natl. Acad. Sci. USA 98:25872592.
101. Titus, R. G.,, and J. M. Ribeiro. 1988. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239:13061308.
102. Trobonjaca, Z.,, F. Leithauser,, P. Moller,, R. Schirmbeck,, and J. Reimann. 2001. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J. Immunol. 167:14131422.
103. Tumang, M. C.,, C. Keogh,, L. L. Moldawer,, D. C. Helfgott,, R. Teitelbaum,, J. Hariprashad,, and H. W. Murray. 1994. Role and effect of TNF-alpha in experimental visceral leishmaniasis. J. Immunol. 153:768775.
104. Ulczak, O. M.,, and J. M. Blackwell. 1983. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: the effects of parasite dose, cyclophosphamide and sublethal irradiation. Parasite Immunol. 5:449463.
105. Vernon-Wilson, E. F.,, W. J. Kee,, A. C. Willis,, A. N. Barclay,, D. L. Simmons,, and M. H. Brown. 2000. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur. J. Immunol. 30:21302137.
106. Vidal, S.,, M. L. Tremblay,, G. Govoni,, S. Gauthier,, G. Sebastiani,, D. Malo,, E. Skamene,, M. Olivier,, S. Jothy,, and P. Gros. 1995. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182:655666.
107. Vidal, S. M.,, E. Pinner,, P. Lepage,, S. Gauthier,, and P. Gros. 1996. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J. Immunol. 157: 35593568.
108. Vignery, A. 2000. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int. J. Exp. Pathol. 81:291304.
109. von Stebut, E.,, Y. Belkaid,, T. Jakob,, D. L. Sacks,, and M. C. Udey. 1998. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188:15471552.
110. Vremec, D.,, J. Pooley,, H. Hochrein,, L. Wu,, and K. Shortman. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164: 29782986.
111. Vremec, D.,, M. Zorbas,, R. Scollay,, D. J. Saunders,, C. F. Ardavin,, L. Wu,, and K. Shortman. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176:4758.
112. Weinberg, A. D. 2002. OX40: targeted immunotherapy—implications for tempering autoimmunity and enhancing vaccines. Trends Immunol. 23:102109.
113. Wilson, M. E.,, D. J. Innes,, A. D. Sousa,, and R. D. Pearson. 1987. Early histopathology of experimental infection with Leishmania donovani in hamsters. J. Parasitol. 73:5563.
114. Wilson, M. E.,, and J. A. Streit. 1996. Visceral leishmaniasis. Gastroenterol. Clin. North Am. 25:535551.
115. Wilson, M. E.,, and J. V. Weinstock. 1996. Hepatic granulomas in murine visceral leishmaniasis caused by Leishmania chagasi. Methods 9:248254.
116. Wilson, M. E.,, B. M. Young,, B. L. Davidson,, K. A. Mente,, and S. E. McGowan. 1998. The importance of TGF-beta in murine visceral leishmaniasis. J. Immunol. 161: 61486155.
117. Winkel, K.,, F. Sotzik,, D. Vremec,, P. U. Cameron,, and K. Shortman. 1994. CD4 and CD8 expression by human and mouse thymic dendritic cells. Immunol. Lett. 40:9399.
118. Zijlstra, E. E.,, and A. M. el-Hassan. 2001. Leishmaniasis in Sudan. Visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 95(Suppl.1):S27S58.

Tables

Generic image for table
Table 1

Structure-function relationships of granulomas formed during experimental infection

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error