1887

Chapter 5 : Murine Leishmaniasis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Murine Leishmaniasis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap05-2.gif

Abstract:

In human visceral leishmaniasis (VL), granuloma formation typifies the reactions seen in individuals with subclinical VL; however, acute clinical disease (kala-azar) typically presents as a complete failure in granuloma formation. Thus, mouse models may also provide a setting for the development of therapies aimed at initiating or enhancing granuloma formation. Although the focus of this chapter is the development, structure, and formation of granulomas in murine VL, a brief consideration of the natural history of infection is helpful to understand potential limitations in the models used. Importantly, unlike most intracellular pathogens, spp. may not readily trigger conventional Toll-like receptor activation. Immune responses to infection are often classified as being Th1 or Th2 type, reflecting polarized differentiation of CD4T-cell subsets. One of the most striking observations when examining the maturation of tissue granulomas, clearly evident following infection but by no means unique to this infection, is that granuloma formation is asynchronous. IL-2 and granulocyte-macrophage colony-stimulating factor treatment of infected mice also promotes granuloma assembly, though with various alterations to the histological characteristics. Promotion of the granulomatous response may be beneficial in the murine host and may also indicate possible avenues for the establishment of the tissue response in humans developing VL.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5

Key Concept Ranking

Transforming Growth Factor beta
0.42495215
0.42495215
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Major factors influencing hepatic growth of The graph illustrates a stylized growth curve for infection in mice, established after intravenous inoculation of 10 amastigotes. Parasite burden is measured as Leishman Donovan units (LDU) ( ). Parasites initially replicate in Kupffer cells at approximately equal rates in all strains examined. After day 3, the impact of the Gly → Asp mutation in the Slc11a1 protein becomes apparent. In Slc11a1 mutant strains (e.g., BALB/c, C57BL/6, and C57BL/10), rapid multiplication of amastigotes is also controlled by endogenous oxygen and nitrogen intermediates. Between day 14 and day 28 postinfection, the influence of MHC genes on rate of cure becomes apparent, and at this time, both CD4and CD8T cells cooperate to induce NO-dependent leishmanicidal activity in macrophages. The dotted line parallel to the axis represents the limit of detection.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Defined stages in granuloma "maturation." Photomicrographs showing infected Kupffer cell (A), Kupffer cell fusion with minimal associated inflammation (B), immature granuloma (C), mature granuloma (D), and sterile, involuted granuloma (E). Lower magnification reveals that many stages of granuloma maturation are evident in the same field of view (F). Amastigotes are seen as small dots in the micrographs. For additional details, see text.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Chemokine regulation of hepatic granuloma formation. Infected Kupffer cells rapidly express chemokines (CK), but these fail to induce local recruitment of inflammatory cells in immunodeficient mice (left panels). In the presence of resident hepatic TCRγδor TCRαβT cells, chemokine production, notably of γIP-10 (CXCL10), is sustained and serves to initiate a local inflammatory focus with Kupffer cell fusion (center panel). However, TCRαβT cells are required to mount an organized granulomatous response (right panel).

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Models for asynchronous granuloma development following infection. In panel 1, Kupffer cells (KC) are either heterogeneous or respond in a heterogeneous manner to infection, with qualitative or quantitative differences in chemokine (CK) synthesis. In panel 2, heterogeneity results from the random distribution of resident hepatic T cells, necessary to sustain CK production. In panel 3, the stimulus for inflammation is uniform, but the availability of TCRαβT cells derived from the periphery is limiting.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Cytokine regulation of hepatic granuloma formation. Chemokines attract TCRαβT cells to infected Kupffer cells where they produce cytokines essential for generation of the full granulomatous response. Chemokines also attract monocytes and neutrophils, which may supplement the local cytokine environment. Autocrine and paracrine responses to these cytokines likely occur within the granuloma, which cannot be readily dissected with current methodology.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Enhancing granuloma formation using costimulation-based therapy. The early immature granulomatous response seen in normal mice at day 14 postinfection (A) can be substantially enhanced in both maturity and size by interfering with the negative regulatory function of CTLA-4 (B and C). Extensive epithelioid cell generation, with minimal additional mononuclear cell recruitment, is also a characteristic of sterile granulomas seen following this intervention (C). Reprinted from reference 64 with permission. Copyright 1998. The American Association of Immunologists, Inc.

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817879.chap5
1. Abo, T.,, T. Kawamura,, and H. Watanabe. 2000. Physiological responses of extrathymic T cells in the liver. Immunol. Rev. 174: 135 149.
2. Alexander, C. E.,, P. M. Kaye,, and C. R. Engwerda. 2001. CD95 is required for the early control of parasite burden in the liver of Leishmania donovani-infected mice. Eur. J. Immunol. 31: 1199 1210.
3. Alexander, J.,, A. R. Satoskar,, and D. G. Russell. 1999. Leishmania species: models of intracellular parasitism. J. Cel. Sci. 112(Pt. 18): 2993 3002.
4. Anstead, G. M.,, B. Chandrasekar,, W. Zhao,, J. Yang,, L. E. Perez,, and P. C. Melby. 2001. Malnutrition alters the innate immune response and increases early visceralization following Leishmania donovani infection. Infect. Immun. 69: 4709 4718.
5. Antoine, J. C.,, E. Prina,, T. Lang,, and N. Courret. 1998. The biogenesis and properties of the parasitophorous vacuoles that harbour Leishmania in murine macrophages. Trends Microbiol. 6: 392 401.
6. Atkinson, P. G.,, J. M. Blackwell,, and C. H. Barton. 1997. Nramp1 locus encodes a 65 kDa interferon-gamma-inducible protein in murine macrophages. Biochem. J. 325 (Pt. 3): 779 786.
7. Baker, R.,, P. Chiodini,, and P. M. Kaye,. 1999. Leishmaniasis, p. 212 234. In D. Gerrant- James, and A. Zumla (ed.), The Granulomatous Diseases. Cambridge University Press, Cambridge, United Kingdom.
8. Belkaid, Y.,, S. Kamhawi,, G. Modi,, J. Valenzuela,, N. Noben-Trauth,, E. Rowton,, J. Ribeiro,, and D. L. Sacks. 1998. Development of a natural model of cutaneous leishmaniasis: powerful effects of vector saliva and saliva preexposure on the long-term outcome of Leishmania major infection in the mouse ear dermis. J. Exp. Med. 188: 1941 1953.
9. Bennett, C. L.,, A. Misslitz,, L. Colledge,, T. Aebischer,, and C. C. Blackburn. 2001. Silent infection of bone marrow-derived dendritic cells by Leishmania mexicana amastigotes. Eur. J. Immunol. 31: 876 883.
10. Blackwell, J. M. 1983. Leishmania donovani infection in heterozygous and recombinant H-2 haplotype mice. Immunogenetics 18: 101 109.
11. Blackwell, J. M. 1983. Regulation of Leishmania populations within the host. V. Resistance to L. donovani in wild mice. J. Trop. Med. Hyg. 86: 17 22.
12. Blackwell, J. M.,, T. Goswami,, C. A. Evans,, D. Sibthorpe,, N. Papo,, J. K. White,, S. Searle,, E. N. Miller,, C. S. Peacock,, H. Mohammed,, and M. Ibrahim. 2001. SLC11A1 (formerly NRAMP1) and disease resistance. Cell. Microbiol. 3: 773 784.
13. Blackwell, J. M.,, and S. Searle. 1999. Genetic regulation of macrophage activation: understanding the function of Nramp1 (=Ity/Lsh/Bcg). Immunol. Lett. 65: 73 80.
14. Bradley, D. J. 1977. Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clin. Exp. Immunol. 30: 130 140.
15. Bradley, D. J.,, and J. Kirkley. 1977. Regulation of Leishmania populations within the host. I. The variable course of Leishmania donovani infections in mice. Clin. Exp. Immunol. 30: 119 129.
16. Bradley, D. J.,, and J. Kirkley. 1972. Variation in susceptibility of mouse strains to Leishmania donovani infection. Trans. R. Soc. Trop. Med. Hyg. 66: 527 528.
17. Bradley, D. J.,, B. A. Taylor,, J. Blackwell,, E. P. Evans,, and J. Freeman. 1979. Regulation of Leishmania populations within the host. III. Mapping of the locus controlling susceptibility to visceral leishmaniasis in the mouse. Clin. Exp. Immunol. 37: 7 14.
18. Caux, C.,, S. Ait-Yahia,, K. Chemin,, O. de Bouteiller,, M. C. Dieu-Nosjean,, B. Homey,, C. Massacrier,, B. Vanbervliet,, A. Zlotnik,, and A. Vicari. 2000. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin. Immunopathol. 22: 345 369.
19. Cho, B. K.,, V. P. Rao,, Q. Ge,, H. N. Eisen,, and J. Chen. 2000. Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J. Exp. Med. 192: 549 556.
20. Clarke, S. R.,, and A. Y. Rudensky. 2000. Survival and homeostatic proliferation of naive peripheral CD4 +T cells in the absence of self peptide:MHC complexes. J. Immunol. 165: 2458 2464.
21. Cotterell, S. E.,, C. R. Engwerda,, and P. M. Kaye. 2000. Enhanced hematopoietic activity accompanies parasite expansion in the spleen and bone marrow of mice infected with Leishmania donovani. Infect. Immun. 68: 1840 1848.
22. Cotterell, S. E.,, C. R. Engwerda,, and P. M. Kaye. 1999. Leishmania donovani infection initiates T cell-independent chemokine responses, which are subsequently amplified in a T cell-dependent manner. Eur. J. Immunol. 29: 203 214.
23. Crocker, P. R.,, J. M. Blackwell,, and D. J. Bradley. 1984. Expression of the natural resistance gene lsh in resident liver macrophages. Infect. Immun. 43: 1033 1040.
24. da Silva, R.,, and D. L. Sacks. 1987. Metacyclogenesis is a major determinant of Leishmania promastigote virulence and attenuation. Infect. Immun. 55: 2802 2806.
25. Da Silva, R. P.,, B. F. Hall,, K. A. Joiner,, and D. L. Sacks. 1989. CR1, the C3b receptor, mediates binding of infective Leishmania major metacyclic promastigotes to human macrophages. J. Immunol. 143: 617 622.
26. Dalod, M.,, T. P. Salazar-Mather,, L. Malmgaard,, C. Lewis,, C. Asselin-Paturel,, F. Briere,, G. Trinchieri,, and C. A. Biron. 2002. Interferon alpha/beta and interleukin 12 responses to viral infections: pathways regulating dendritic cell cytokine expression in vivo. J. Exp. Med. 195: 517 528.
27. Daneshbod, K. 1972. Visceral leishmaniasis (kala-azar) in Iran: a pathologic and electron microscopic study. Am. J. Clin. Pathol. 57: 156 166.
28. Dermine, J. F.,, S. Scianimanico,, C. Prive,, A. Descoteaux,, and M. Desjardins. 2000. Leishmania promastigotes require lipophosphoglycan to actively modulate the fusion properties of phagosomes at an early step of phagocytosis. Cell. Microbiol. 2: 115 126.
29. Desjardins, M.,, and A. Descoteaux. 1998. Survival strategies of Leishmania donovani in mammalian host macrophages. Res. Immunol. 149: 689 692.
30. Duclos, S.,, and M. Desjardins. 2000. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell. Microbiol. 2: 365 377.
31. el Hag, I. A.,, F. A. Hashim,, I. A. el Toum,, M. Homeida,, M. el Kalifa,, and A. M. el Hassan. 1994. Liver morphology and function in visceral leishmaniasis (Kala-azar). J. Clin. Pathol. 47: 547 551.
32. el Hassan, A. M.,, A. M. Kadaru,, E. A. Khalil,, A. Fadl,, and M. M. el Hassan. 1996. The pathology of cutaneous leishmaniasis in the Sudan: a comparison with that in other geographical areas. Ann. Trop. Med. Parasitol. 90: 485 490.
33. Engwerda, C. R.,, and P. M. Kaye. 2000. Organ-specific immune responses associated with infectious disease. Immunol. Today 21: 73 78.
34. Engwerda, C. R.,, M. L. Murphy,, S. E. Cotterell,, S. C. Smelt,, and P. M. Kaye. 1998. Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. Eur. J. Immunol. 28: 669 680.
35. Engwerda, C. R.,, S. C. Smelt,, and P. M. Kaye. 1996. An in vivo analysis of cytokine production during Leishmania donovani infection in scid mice. Exp. Parasitol. 84: 195 202.
36. Forbes, J. R.,, and P. Gros. 2001. Divalent-metal transport by NRAMP proteins at the interface of host-pathogen interactions. Trends Microbiol. 9: 397 403.
37. Gomes, N. A.,, V. Barreto-de-Souza,, M. E. Wilson,, and G. A. DosReis. 1998. Unresponsive CD4 +T lymphocytes from Leishmania chagasi-infected mice increase cytokine production and mediate parasite killing after blockade of B7-1/CTLA-4 molecular pathway. J. Infect. Dis. 178: 1847 1851.
38. Gomes, N. A.,, and G. A. DosReis. 2001. The dual role of CTLA-4 in Leishmania infection. Trends Parasitol. 17: 487 491.
39. Gomes, N. A.,, C. R. Gattass,, V. Barreto-De-Souza,, M. E. Wilson,, and G. A. DosReis. 2000. TGF-beta mediates CTLA-4 suppression of cellular immunity in murine kalaazar. J. Immunol. 164: 2001 2008.
40. Gorak, P. M.,, C. R. Engwerda,, and P. M. Kaye. 1998. Dendritic cells, but not macrophages, produce IL-12 immediately following Leishmania donovani infection. Eur. J. Immunol. 28: 687 695.
41. Goswami, T.,, A. Bhattacharjee,, P. Babal,, S. Searle,, E. Moore,, M. Li,, and J. M. Blackwell. 2001. Natural-resistance-associated macrophage protein 1 is anH +/bivalent cation antiporter. Biochem. J. 354: 511 519.
42. Gutierrez, Y.,, J. A. Maksem,, and N. E. Reiner. 1984. Pathologic changes in murine leishmaniasis (Leishmania donovani) with special reference to the dynamics of granuloma formation in the liver. Am. J. Pathol. 114: 222 230.
43. Hammond, K. J.,, S. B. Pelikan,, N. Y. Crowe,, E. Randle-Barrett,, T. Nakayama,, M. Taniguchi,, M. J. Smyth,, I. R. van Driel,, R. Scollay,, A. G. Baxter,, and D. I. Godfrey. 1999. NKT cells are phenotypically and functionally diverse. Eur. J. Immunol. 29: 3768 3781.
44. Han, X.,, H. Sterling,, Y. Chen,, C. Saginario,, E. J. Brown,, W. A. Frazier,, F. P. Lindberg,, and A. Vignery. 2000. CD47, a ligand for the macrophage fusion receptor, participates in macrophage multinucleation. J. Biol. Chem. 275: 37984 37992.
45. Kamhawi, S. 2000. The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. Microbes Infect. 2: 1765 1773.
46. Kane, M. M.,, and D. M. Mosser. 2001. The role of IL-10 in promoting disease progression in leishmaniasis. J. Immunol. 166: 1141 1147.
47. Kaye, P. M. 1987. Acquisition of cell-mediated immunity to Leishmania. I. Primary Tcell activation detected by IL-2 receptor expression. Immunology 61: 345 349.
48. Kaye, P. M.,, and G. J. Bancroft. 1992. Leishmania donovani infection in scid mice: lack of tissue response and in vivo macrophage activation correlates with failure to trigger natural killer cell-derived gamma interferon production in vitro. Infect. Immun. 60: 4335 4342.
49. Lane, P. 2000. Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J. Exp. Med. 191: 201 206.
50. Laurenti, M. D.,, M. N. Sotto,, C. E. Corbett,, V. L. da Matta,, and M. I. Duarte. 1990. Experimental visceral leishmaniasis: sequential events of granuloma formation at subcutaneous inoculation site. Int. J. Exp. Pathol. 71: 791 797.
51. Leite, V. H.,, and S. L. Croft. 1996. Hepatic extracellular matrix in BALB/c mice infected with Leishmania donovani. Int. J. Exp. Pathol. 77: 181 190.
52. Lepay, D. A.,, C. F. Nathan,, R. M. Steinman,, H. W. Murray,, and Z. A. Cohn. 1985. Murine Kupffer cells. Mononuclear phagocytes deficient in the generation of reactive oxygen intermediates. J. Exp. Med. 161: 1079 1096.
53. Maloy, K. J.,, and F. Powrie. 2001. Regulatory T cells in the control of immune pathology. Nat. Immunol. 2: 816 822.
54. Manson-Bahr, P. E. 1955. A primary skin lesion in visceral leishmaniasis. Nature 175: 433 434.
55. Mauricio, I. L.,, J. R. Stothard,, and M. A. Miles. 2000. The strange case of Leishmania chagasi. Parasitol. Today 16: 188 189.
56. Mbow, M. L.,, J. A. Bleyenberg,, L. R. Hall,, and R. G. Titus. 1998. Phlebotomus papatasi sand fly salivary gland lysate down-regulates a Th1, but up-regulates a Th2, response in mice infected with Leishmania major. J. Immunol. 161: 5571 5577.
57. McElrath, M. J.,, H. W. Murray,, and Z. A. Cohn 1988. The dynamics of granuloma formation in experimental visceral leishmaniasis. J. Exp. Med. 167: 1927 1937.
58. Miralles, G. D.,, M. Y. Stoeckle,, D. F. McDermott,, F. D. Finkelman,, and H. W. Murray. 1994. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis. Infect. Immun. 62: 1058 1063.
59. Moll, H. 1993. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol. Today 14: 383 387.
60. Moll, H. 1993. Experimental cutaneous leishmaniasis: Langerhans cells internalize Leishmania major and induce an antigen-specific T-cell response. Adv. Exp. Med. Biol. 329: 587 592.
61. Moll, H.,, H. Fuchs,, C. Blank,, and M. Rollinghoff. 1993. Langerhans cells transport Leishmania major from the infected skin to the draining lymph node for presentation to antigen-specific T cells. Eur. J. Immunol. 23: 1595 1601.
62. Moreno, A.,, M. Marazuela,, M. Yebra,, M. J. Hernandez,, T. Hellin,, C. Montalban,, and J. A. Vargas. 1988. Hepatic fibrin-ring granulomas in visceral leishmaniasis. Gastroenterology 95: 1123 1126.
63. Morris, R. V.,, C. B. Shoemaker,, J. R. David,, G. C. Lanzaro,, and R. G. Titus. 2001. Sandfly maxadilan exacerbates infection with Leishmania major and vaccinating against it protects against L. major infection. J. Immunol. 167: 5226 5230.
64. Murphy, M. L.,, S. E. Cotterell,, P. M. Gorak,, C. R. Engwerda,, and P. M. Kaye. 1998. Blockade of CTLA-4 enhances host resistance to the intracellular pathogen, Leishmania donovani. J. Immunol. 161: 4153 4160.
65. Murphy, M. L.,, C. R. Engwerda,, P. M. Gorak,, and P. M. Kaye. 1997. B7-2 blockade enhances T cell responses to Leishmania donovani. J. Immunol. 159: 4460 4466.
66. Murphy, M. L.,, U. Wille,, E. N. Villegas,, C. A. Hunter,, and J. P. Farrell. 2001. IL-10 mediates susceptibility to Leishmania donovani infection. Eur. J. Immunol. 31: 2848 2856.
67. Murray, H. W. 1997. Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. J. Infect. Dis. 175: 1477 1479.
68. Murray, H. W. 2000. Mononuclear cell recruitment, granuloma assembly, and response to treatment in experimental visceral leishmaniasis: intracellular adhesion molecule 1- dependent and -independent regulation. Infect. Immun. 68: 6294 6299.
69. Murray, H. W. 2001. Tissue granuloma structure-function in experimental visceral leishmaniasis. Int. J. Exp. Pathol. 82: 249 267.
70. Murray, H. W.,, J. S. Cervia,, J. Hariprashad,, A. P. Taylor,, M. Y. Stoeckle,, and H. Hockman. 1995. Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J. Clin. Invest. 95: 1183 1192.
71. Murray, H. W.,, and S. Delph-Etienne. 2000. Roles of endogenous gamma interferon and macrophage microbicidal mechanisms in host response to chemotherapy in experimental visceral leishmaniasis. Infect. Immun. 68: 288 293.
72. Murray, H. W.,, J. Hariprashad,, and R. L. Coffman. 1997. Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J. Exp. Med. 185: 867 874.
73. Murray, H. W.,, G. D. Miralles,, M. Y. Stoeckle,, and D. F. McDermott. 1993. Role and effect of IL-2 in experimental visceral leishmaniasis. J. Immunol. 151: 929 938.
74. Murray, H. W.,, C. Montelibano,, R. Peterson,, and J. P. Sypek. 2000. Interleukin-12 regulates the response to chemotherapy in experimental visceral leishmaniasis. J. Infect. Dis. 182: 1497 1502.
75. Murray, H. W.,, and C. F. Nathan. 1999. Macrophage microbicidal mechanisms in vivo: reactive nitrogen versus oxygen intermediates in the killing of intracellular visceral Leishmania donovani. J. Exp. Med. 189: 741 746.
76. Murray, H. W.,, M. J. Oca,, A. M. Granger,, and R. D. Schreiber. 1989. Requirement for T cells and effect of lymphokines in successful chemotherapy for an intracellular infection. Experimental visceral leishmaniasis. J. Clin. Investig. 83: 1253 1257.
77. O'Farrelly, C.,, and I. N. Crispe. 1999. Prometheus through the looking glass: reflections on the hepatic immune system. Immunol. Today 20: 394 398.
78. Pampiglione, S.,, M. La Placa,, and G. Schlick. 1974. Studies on Mediterranean Leishmaniasis. I. An outbreak of visceral leishmaniasis in Northern Italy. Trans. R. Soc. Trop. Med. Hyg. 68: 349 359.
79. Pampiglione, S.,, P. E. Manson-Bahr,, F. Giungi,, G. Giunti,, A. Parenti,, and G. Canestri Trotti. 1974. Studies on Mediterranean leishmaniasis. 2. Asymptomatic cases of visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 68: 447 453.
80. Pimenta, P. F.,, S. J. Turco,, M. J. McConville,, P. G. Lawyer,, P. V. Perkins,, and D. L. Sacks. 1992. Stage-specific adhesion of Leishmania promastigotes to the sandfly midgut. Science 256: 1812 1815.
81. Plant, J. E.,, J. M. Blackwell,, A. D. O'Brien,, D. J. Bradley,, and A. A. Glynn. 1982. Are the Lsh and Ity disease resistance genes at one locus on mouse chromosome 1? Nature 297: 510 511.
82. Racoosin, E. L.,, and S. M. Beverley. 1997. Leishmania major: promastigotes induce expression of a subset of chemokine genes in murine macrophages. Exp. Parasitol. 85: 283 295.
83. Razek-Desouky, A.,, C. A. Specht,, L. Soong,, and J. M. Vinetz. 2001. Leishmania donovani: expression and characterization of Escherichia coli-expressed recombinant chitinase LdCHT1. Exp. Parasitol. 99: 220 225.
84. Ridley, D. S.,, and M. J. Ridley. 1983. The evolution of the lesion in cutaneous leishmaniasis. J. Pathol. 141: 83 96.
85. Roberts, C. W.,, J. R. Shutter,, and S. J. Korsmeyer. 1994. Hox11 controls the genesis of the spleen. Nature 368: 747 749.
86. Roberts, M.,, J. Alexander,, and J. M. Blackwell. 1989. Influence of Lsh, H-2, and an H-11-linked gene on visceralization and metastasis associated with Leishmania mexicana infection in mice. Infect. Immun. 57: 875 881.
87. Rogers, P. R.,, J. Song,, I. Gramaglia,, N. Killeen,, and M. Croft. 2001. OX40 promotes Bcl-xL and Bcl-2 expression and is essential for long-term survival of CD4 T cells. Immunity 15: 445 455.
88. Sacks, D.,, and S. Kamhawi. 2001. Molecular aspects of parasite-vector and vector-host interactions in leishmaniasis. Annu. Rev. Microbiol. 55: 453 483.
89. Saginario, C.,, H. Sterling,, C. Beckers,, R. Kobayashi,, M. Solimena,, E. Ullu,, and A. Vignery. 1998. MFR, a putative receptor mediating the fusion of macrophages. Mol. Cell. Biol. 18: 6213 6223.
90. Sato, N.,, W. A. Kuziel,, P. C. Melby,, R. L. Reddick,, V. Kostecki,, W. Zhao,, N. Maeda,, S. K. Ahuja,, and S. S. Ahuja. 1999. Defects in the generation of IFN-gamma are overcome to control infection with Leishmania donovani in CC chemokine receptor (CCR) 5-, macrophage inflammatory protein-1 alpha-, or CCR2-deficient mice. J. Immunol. 163: 5519 5525.
91. Satoskar, A.,, H. Bluethmann,, and J. Alexander. 1995. Disruption of the murine interleukin- 4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect. Immun. 63: 4894 4899.
92. Satoskar, A. R.,, S. Rodig,, S. R. Telford III,, A. A. Satoskar,, S. K. Ghosh,, F. von Lichtenberg,, and J. R. David. 2000. IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur. J. Immunol. 30: 834 839.
93. Scott, P.,, and C. A. Hunter. 2002. Dendritic cells and immunity to leishmaniasis and toxoplasmosis. Curr. Opin. Immunol. 14: 466 470.
94. Seki, S.,, Y. Habu,, T. Kawamura,, K. Takeda,, H. Dobashi,, T. Ohkawa,, and H. Hiraide. 2000. The liver as a crucial organ in the first line of host defense: the roles of Kupffer cells, natural killer (NK) cells and NK1.1 Ag +T cells in T helper 1 immune responses. Immunol. Rev. 174: 35 46.
95. Smelt, S. C.,, S. E. Cotterell,, C. R. Engwerda,, and P. M. Kaye. 2000. B cell-deficient mice are highly resistant to Leishmania donovani infection, but developneutrop hilmediated tissue pathology. J. Immunol. 164: 3681 3688.
96. Smelt, S. C.,, C. R. Engwerda,, M. McCrossen,, and P. M. Kaye. 1997. Destruction of follicular dendritic cells during chronic visceral leishmaniasis. J. Immunol. 158: 3813 3821.
97. Smith, D.,, H. Hansch,, G. Bancroft,, and S. Ehlers. 1997. T-cell-independent granuloma formation in response to Mycobacterium avium: role of tumour necrosis factor-alpha and interferon-gamma. Immunology 92: 413 421.
98. Squires, K. E.,, R. D. Schreiber,, M. J. McElrath,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1989. Experimental visceral leishmaniasis: role of endogenous IFN-gamma in host defense and tissue granulomatous response. J. Immunol. 143: 4244 4249.
99. Stern, J. J.,, M. J. Oca,, B. Y. Rubin,, S. L. Anderson,, and H. W. Murray. 1988. Role of L3T4 +and LyT-2 +cells in experimental visceral leishmaniasis. J. Immunol. 140: 3971 3977.
100. Sullivan, T. J.,, J. J. Letterio,, A. van Elsas,, M. Mamura,, J. van Amelsfort,, S. Sharpe,, B. Metzler,, C. A. Chambers,, and J. P. Allison. 2001. Lack of a role for transforming growth factor-beta in cytotoxic T lymphocyte antigen-4-mediated inhibition of T cell activation. Proc. Natl. Acad. Sci. USA 98: 2587 2592.
101. Titus, R. G.,, and J. M. Ribeiro. 1988. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science 239: 1306 1308.
102. Trobonjaca, Z.,, F. Leithauser,, P. Moller,, R. Schirmbeck,, and J. Reimann. 2001. Activating immunity in the liver. I. Liver dendritic cells (but not hepatocytes) are potent activators of IFN-gamma release by liver NKT cells. J. Immunol. 167: 1413 1422.
103. Tumang, M. C.,, C. Keogh,, L. L. Moldawer,, D. C. Helfgott,, R. Teitelbaum,, J. Hariprashad,, and H. W. Murray. 1994. Role and effect of TNF-alpha in experimental visceral leishmaniasis. J. Immunol. 153: 768 775.
104. Ulczak, O. M.,, and J. M. Blackwell. 1983. Immunoregulation of genetically controlled acquired responses to Leishmania donovani infection in mice: the effects of parasite dose, cyclophosphamide and sublethal irradiation. Parasite Immunol. 5: 449 463.
105. Vernon-Wilson, E. F.,, W. J. Kee,, A. C. Willis,, A. N. Barclay,, D. L. Simmons,, and M. H. Brown. 2000. CD47 is a ligand for rat macrophage membrane signal regulatory protein SIRP (OX41) and human SIRPalpha 1. Eur. J. Immunol. 30: 2130 2137.
106. Vidal, S.,, M. L. Tremblay,, G. Govoni,, S. Gauthier,, G. Sebastiani,, D. Malo,, E. Skamene,, M. Olivier,, S. Jothy,, and P. Gros. 1995. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182: 655 666.
107. Vidal, S. M.,, E. Pinner,, P. Lepage,, S. Gauthier,, and P. Gros. 1996. Natural resistance to intracellular infections: Nramp1 encodes a membrane phosphoglycoprotein absent in macrophages from susceptible (Nramp1 D169) mouse strains. J. Immunol. 157: 3559 3568.
108. Vignery, A. 2000. Osteoclasts and giant cells: macrophage-macrophage fusion mechanism. Int. J. Exp. Pathol. 81: 291 304.
109. von Stebut, E.,, Y. Belkaid,, T. Jakob,, D. L. Sacks,, and M. C. Udey. 1998. Uptake of Leishmania major amastigotes results in activation and interleukin 12 release from murine skin-derived dendritic cells: implications for the initiation of anti-Leishmania immunity. J. Exp. Med. 188: 1547 1552.
110. Vremec, D.,, J. Pooley,, H. Hochrein,, L. Wu,, and K. Shortman. 2000. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J. Immunol. 164: 2978 2986.
111. Vremec, D.,, M. Zorbas,, R. Scollay,, D. J. Saunders,, C. F. Ardavin,, L. Wu,, and K. Shortman. 1992. The surface phenotype of dendritic cells purified from mouse thymus and spleen: investigation of the CD8 expression by a subpopulation of dendritic cells. J. Exp. Med. 176: 47 58.
112. Weinberg, A. D. 2002. OX40: targeted immunotherapy—implications for tempering autoimmunity and enhancing vaccines. Trends Immunol. 23: 102 109.
113. Wilson, M. E.,, D. J. Innes,, A. D. Sousa,, and R. D. Pearson. 1987. Early histopathology of experimental infection with Leishmania donovani in hamsters. J. Parasitol. 73: 55 63.
114. Wilson, M. E.,, and J. A. Streit. 1996. Visceral leishmaniasis. Gastroenterol. Clin. North Am. 25: 535 551.
115. Wilson, M. E.,, and J. V. Weinstock. 1996. Hepatic granulomas in murine visceral leishmaniasis caused by Leishmania chagasi. Methods 9: 248 254.
116. Wilson, M. E.,, B. M. Young,, B. L. Davidson,, K. A. Mente,, and S. E. McGowan. 1998. The importance of TGF-beta in murine visceral leishmaniasis. J. Immunol. 161: 6148 6155.
117. Winkel, K.,, F. Sotzik,, D. Vremec,, P. U. Cameron,, and K. Shortman. 1994. CD4 and CD8 expression by human and mouse thymic dendritic cells. Immunol. Lett. 40: 93 99.
118. Zijlstra, E. E.,, and A. M. el-Hassan. 2001. Leishmaniasis in Sudan. Visceral leishmaniasis. Trans. R. Soc. Trop. Med. Hyg. 95(Suppl.1): S27 S58.

Tables

Generic image for table
Table 1

Structure-function relationships of granulomas formed during experimental infection

Citation: Kaye P, Engwerda C. 2003. Murine Leishmaniasis, p 117-146. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error