Chapter 8 : Human Leprosy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Human Leprosy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap08-2.gif


In humans, leprosy is fascinating for its great variability in the clinical course of the disease. Paucibacillary (PB) disease is mildest form of leprosy is classified as indeterminate disease and requires an experienced leprologist to even make the diagnosis, as bacilli are rarely seen. Identification of the various cellular components and their subsets in the leprosy lesion has greatly advanced our understanding of the pathogenesis of leprosy. In marked contrast, lepromatous leprosy (LL) lesions produced the TH2 cytokine mRNA for IL-4, and IL-10 was more prominent in LL than TT lesions The polar nature of the type of leprosy lesions chosen for a study by Modlin's group allowed evaluation of other local cytokines produced and demonstrated proinflammatory TNFα, IL-1B, IL-6, and IL-12 in the TT lesions, while anti-inflammatory IL-10 and IL-4 were found in LL. Preliminary studies failed to show a deleterious effect of granulysin for in an axenic system, but this work is being continued. The granulomas formed in wild-type mice in response to infection consisted of only small, focal collections of mononuclear cells; in contrast, the granulomas formed in iNOS KO mice contained large, dense, organized collections of epithelioid cells and lymphocytes which infiltrated the perineurium and destroyed muscle bundles. The cellular infiltrate, however, consisted of epithelioid Mø and scattered lymphocytes that were not assembled into organized granulomas. The opportunity remains for researchers to investigate immunoregulation in a fascinating, human, nonfatal infectious disease.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8

Key Concept Ranking

Tumor Necrosis Factor alpha
Human Infectious Diseases
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The immunopathological spectrum of leprosy. Upon exposure to most persons will not develop disease. Susceptible individuals may develop an indeterminate lesion, which may spontaneously heal or progress into the leprosy spectrum. The Ridley-Jopling classification combines clinical, immunological, and histopathological evidence and recognizes five forms of leprosy: tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), borderline lepromatous (BL), and lepromatous (LL) leprosy. The WHO classification is designed to fit two distinct multidrug therapy regimens and comprises two broad categories: paucibacillary (PB) disease, which includes TT and BT, and multibacillary (MB) disease, which includes BB, BL, and LL. Toward the PB end of the spectrum, the lesions display characteristics of well-developed CMI and possess few acid-fast bacilli (AFB), features of a TH1-type immune response. Toward the MB end of the spectrum, the immune response exhibits a TH2-type profile with a poorly developed CMI and numerous AFB. The borderline area of the spectrum is highly unstable and represents poorly understood immunoregulatory responses; BT and BB patients are prone to disfiguring reversal reactions, while BL (and LL) patients are subject to painful ENL reactions.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Murine models for leprosy. Upon infection with immunocompetent mice such as the C57BL/6 strain develop only mild lesions and allow limited growth of the bacilli, properties similar to the indeterminate form of leprosy. Certain immunodeficient strains, however, exhibit growth, histological, and immunological characteristics along the leprosy spectrum. iNOS KO mice develop features of BT disease, while GKO mice show characteristics of BB disease. Athymic nude mice display an LL leprosy-type profile. Additional study of these and other KO models may allow dissection of immunoregulation in leprosy and the mechanisms underlying reactional episodes.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abel, L.,, F. O. Sanchez,, J. Oberti,, N. V. Thuc,, L. V. Hoa,, V. D. Lap,, E. Skamene,, P. H. Lagrange,, and E. Schurr. 1998. Susceptibility to leprosy is linked to the human NRAMP1 gene. J. Infect. Dis. 177:133145.
2. Adams, L. B.,, M. C. Dinauer,, D. E. Morgenstern,, and J. L. Krahenbuhl. 1997. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuberc. Lung Dis. 78:237246.
3. Adams, L. B.,, S. G. Franzblau,, Z. Vavrin,, J. B. Hibbs, Jr.,, and J. L. Krahenbuhl. 1991. L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J. Immunol. 147:16421646.
4. Adams, L. B.,, Y. Fukutomi,, and J. L. Krahenbuhl. 1993. Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect. Immun. 61:41734181.
5. Adams, L. B.,, T. P. Gillis,, D. H. Hwang,, and J. L. Krahenbuhl. 1997. Effects of essential fatty acid deficiency on prostaglandin E2 production and cell-mediated immunity in a mouse model of leprosy. Infect. Immun. 65:11521157.
6. Adams, L. B.,, C. K. Job,, and J. L. Krahenbuhl. 2000. Role of inducible nitric oxide synthase in resistance to Mycobacterium leprae infection in mice. Infect. Immun. 68:54625465.
7. Adams, L. B.,, C. M. Mason,, J. K. Kolls,, D. Scollard,, J. L. Krahenbuhl,, and S. Nelson. 1995. Exacerbation of acute and chronic murine tuberculosis by administration of a TNF receptor-expressing adenovirus. J. Infect. Dis. 171:400405.
8. Adams, L. B.,, D. M. Scollard,, N. A. Ray,, A. M. Cooper,, A. A. Frank,, I. M. Orme,, and J. L. Krahenbuhl. 2002. The study of Mycobacterium leprae infection in interferon-y gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J. Infect. Dis. 185:S1S8.
9. Alcais, A.,, F. O. Sanchez,, N. V. Thuc,, V. D. Lap,, J. Oberti,, P. H. Lagrange,, E. Schurr,, and L. Abel. 2000. Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J. Infect. Dis. 181:302308.
10. Anthony, L. S. D.,, D. Chatterjee,, P. J. Brennan,, and F. E. Nano. 1994. Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunol. Med. Microbiol. 8:299306.
11. Astarie-Dequeker, C.,, E.-N. N'Diaye,, V. Le Cabec,, M. G. Rittig,, J. Prandi,, and I. Mariconneau-Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67:469477.
12. Barnes, P. F.,, D. Chatterjee,, J. S. Abrams,, S. Lu,, E. Wang,, M. Yamamura,, P. J. Brennan,, and R. L. Modlin. 1992. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan: relationship to chemical structure. J. Immunol. 149:541.
13. Bekker, L. G.,, P. Haslett,, G. Maartens,, L. Steyn,, and G. Kaplan. 2000. Thalidomideinduced antigen specific immune stimulation in patients with human immunodeficiency virus type 1 and tuberculosis. J. Infect. Dis. 181:954965.
14. Blackwell, J. M. 2001. Modern genetics and leprosy susceptibility. Lepr. Rev. 72:352356.
15. Brennan, P. J.,, and V. D. Vissa. 2001. Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr. Rev. 72:415428.
16. Brightbill, H. D.,, D. H. Libraty,, S. R. Krutzik,, R. B. Yang,, J. T. Belisle,, J. R. Bleharski,, M. Maitland,, M. V. Norgard,, S. E. Plevy,, S. T. Smale,, P. J. Brennan,, B. R. Bloom,, P. J. Godowski,, and R. L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285:732736.
17. Bryk, R.,, C. D. Lima,, H. Erdjument-Bromage,, P. Tempst,, and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295:10731077.
18. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNeil,, S. J. Turco,, J.-C. Sibille,, M. Snapper,, P. Aisen,, and B. R. Bloom. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86:24532457.
19. Chatterjee, D.,, A. D. Roberts,, K. Lowell,, P. J. Brennan,, and I. M. Orme. 1992. Structural basis for the capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 60:1249.
20. Chehl, S.,, C. K. Job,, and R. C. Hastings. 1985. Transmission of leprosy in nude mice. Am. J. Trop. Med. Hyg. 34:11611166.
21. Chehl, S.,, J. Ruby,, C. K. Job,, and R. C. Hastings. 1983. The growth of Mycobacterium leprae in nude mice. Lepr. Rev. 54:283304.
22. Chiplunkar, S.,, G. De Libero,, and S. H. Kaufmann. 1986. Mycobacterium leprae-specific Lyt-2+T lymphocytes with cytolytic activity. Infect. Immun. 54:793797.
23. Chiplunkar, S. V.,, M. V. Deshmukh,, P. D. Samson,, R. Butlin,, W. S. Bhatki,, R. G. Chulawalla,, M. G. Deo,, and S. G. Gangal. 1990. Natural killer-cell-mediated and antibody-dependent cellular cytotoxicity in leprosy. Int. J. Lepr. 58:334341.
24. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, J. R. Thomson,, R. P. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Color,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409:10071011.
25. Colston, M. J.,, and G. R. Hilson. 1976. Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature 262:736741.
26. Converse, P.,, T. H. Ottenhoff,, S. Work-Teklemariam,, G. E. Hancock,, M. Dietz,, M. Becx-Bleumink,, A. Wondimu,, R. Kiessling,, Z. A. Cohn,, and G. Kaplan. 1990. Intradermal recombinant interleukin 2 enhances peripheral blood T-cell responses to mitogen and antigens in patients with lepromatous leprosy. Scand. J. Immunol. 32:8391.
27. Cooper, A. M.,, L. B. Adams,, D. K. Dalton,, R. Appelberg,, and S. Ehlers. 2002. IFN-γ and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 10:221226.
28. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon-γ gene disrupted mice. J. Exp. Med. 178:22432247.
29. Cooper, C. L.,, C. Mueller,, T.-A. Sinchaisri,, C. Pirmez,, J. Chan,, G. Kaplan,, S. M. M. Young,, I. L. Weissman,, B. R. Bloom,, T. H. Rea,, and R. L. Modlin. 1989. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. J. Exp. Med. 169:15651581.
30. Damasco, M. H.,, E. N. Sarno,, A. S. Lobao,, F. B. Alvarenga,, J. A. Porto,, F. Rosankaimer,, and G. Kaplan. 1992. Effect of cutaneous cell-mediated immune response to rIFN gamma on Mycobacterium leprae viability in the lesions of lepromatous leprosy. Braz. J. Med. Biol. Res. 25:457465.
31. Dawson, P. J.,, M. J. Colston,, and A. H. Fieldsteel. 1983. Infection of the congenitally athymic rat with Mycobacterium leprae. Int. J. Lepr. 51:336346.
32. Demangel, C.,, and W. J. Britton. 2000. Interaction of dendritic cells with mycobacteria: where the action starts. Immunol. Cell Biol. 78:318324.
33. de Vries, R. P. P.,, and T. H. M. Ottenhoff,. 1994. Immunogenetics of leprosy, p. 113121. In R. C. Hastings (ed.), Leprosy, 2nd ed. Churchill Livingston, London, United Kingdom.
34. Fenton, M. J.,, M. W. Vermeulen,, S. Kim,, M. Burdick,, R. M. Strieter,, and H. Kornfeld. 1997. Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis. Infect. Immun. 65:51495156.
35. Filley, E.,, and G. A. W. Rook. 1991. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun. 59:25672572.
36. Goswami, T.,, A. Bhattacharjee,, P. Babal,, S. Searle,, E. Moore,, M. Li,, and J. M. Blackwell. 2001. Natural-resistance-associated macrophage protein 1 is anH+/bivalent cation antiporter. Biochem. J. 354:511519.
37. Gu, L.,, and J. L. Krahenbuhl. 1995. Lysis effect of IL-2 LAK cells against Mycobacterium leprae-infected macrophages. Chin. J. Microbiol. Immunol. 8:234237.
38. Hackam, D. J.,, O. D. Rotstein,, W. Zhang,, S. Gruenheid,, P. Gros,, and S. Grinstein. 1998. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 (Nramp1) impairs phagosomal acidification. J. Exp. Med. 188:351364.
39. Hagge, D.,, S. O. Robinson,, D. Scollard,, G. McCormick,, and D. L. Williams. 2002. A new model for studying the effects of Mycobacterium leprae on Schwann cell and neuron interactions. J. Infect. Dis., 186:12831296.
40. Hancock, G. E.,, A. Molloy,, B. K. Ab,, R. Kiessling,, M. Becx-Bleumink,, Z. A. Cohn,, and G. Kaplan. 1991. In vivo administration of low-dose human interleukin-2 induces lymphokine-activated killer cells for enhanced cytolysis in vitro. Cell. Immunol. 132:277284.
41. Haslett, P. A.,, J. D. Klausner,, S. Makonkawkeyoon,, A. Moreira,, P. Metatratip,, B. Boyle,, W. Kunachiwa,, N. Maneekarn,, P. Vongchan,, L. G. Corral,, T. Elbeik,, Z. Shen,, and G. Kaplan. 1999. Thalidomide stimulates T cell responses and interleukin 12 production in HIV infected patients. AIDS Res. Hum. Retroviruses 15:11691179.
42. Hatagima, A.,, D. V. A. Opromolla,, S. Ura,, J. F. Feitosa,, B. Beiguelman,, and H. Krieger. 2001. No evidence of linkage between Mitsuda reaction and the NRAMP1 locus. Int. J. Lepr. 69:99102.
43. Holzer, T. J.,, K. E. Nelson,, R. G. Crispen,, and B. R. Anderson. 1986. Mycobacterium leprae fails to stimulate phagocytic cell superoxide anion generation. Infect. Immun. 51:514520.
44. Humphres, R. C.,, R. H. Gelber,, and J. L. Krahenbuhl. 1982. Suppressed natural killer cell activity during episodes of erythema nodosum leprosum in lepromatous leprosy. Clin. Exp. Immunol. 49:500508.
45. Imkamp, F. M. 1985. Standardized schemes for steroid treatment in ENL and reversal reactions. Int. J. Lepr. 53:313317.
46. Jacobs, J. M.,, V. P. Shetty,, and N. H. Antia. 1987. Myelin changes in leprous neuropathy. Acta Neuropathol. 74:7580.
47. Jacobson, R. R.,, and J. L. Krahenbuhl. 1999. Leprosy. Lancet 353:655660.
48. Job, C. K. 1971. Pathology of peripheral nerve lesions in lepromatous leprosy—a light and electron microscopic study. Int. J. Lepr. 39:251268.
49. Job , C. K. 1989. Nerve damage in leprosy. Int. J. Lepr. 57:532539.
50. Job, C. K.,, and S. M. Chandi (ed.). 2001. Differential Diagnosis of Leprosy. A Guide Book for Histopathologists, 1st ed. Sasakawa Memorial Health Foundation, Tokyo, Japan.
51. Job, C. K.,, E. B. Harris,, J. L. Allen,, and R. C. Hastings. 1986. Thorns in armadillo ears and noses and their role in the transmission of leprosy. Arch. Pathol. Lab. Med. 110:10251028.
52. Job, C. K.,, R. M. Sanchez,, and R. C. Hastings. 1985. Manifestations of experimental leprosy in the armadillo. Am. J. Trop. Med. Hyg. 34:151161.
53. Kaleab, B.,, T. Ottenoff,, P. Converse,, E. Halapi,, G. Tadesse,, M. Rottenberg,, and R. Kiessling. 1990. Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur. J. Immunol. 20:26512659.
54. Kaplan, G.,, R. Kiessling,, S. Teklemariam,, G. Hancock,, G. Sheftel,, C. K. Job,, P. Converse,, T. H. Ottenhoff,, M. Becx-Bleumink,, M. Dietz,, and Z. A. Cohn. 1989. The reconstitution of cell-mediated immunity in the cutaneous lesions of lepromatous leprosy by recombinant interleukin 2. J. Exp. Med. 169:893907.
55. Kaplan, G.,, A. D. Luster,, G. Hancock,, and Z. A. Cohn. 1987. The expression of a yinterferon- induced protein (IP-10) in delayed immune responses in human skin. J. Exp. Med. 166:1098.
56. Kaplan, G.,, G. Walsh,, L. S. Guido,, P. Meyn,, R. A. Burkhardt,, R. M. Abalos,, J. Barker,, P. A. Frindt,, T. T. Fajardo,, R. Celona,, and Z. A. Cohn. 1992. Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing. J. Exp. Med. 175:17171728.
57. Kaufmann, S. H. E. 1988. CD8+T lymphocytes in intracellular antimicrobial infections. Immunol. Today 9:168174.
58. Kaufmann, S. H. E.,, and D. Kabelitz. 1991. Gamma/delta T lymphocytes and heat shock proteins. Curr. Top. Microbiol. Immunol. 167:191.
59. Khanolkar-Young, S.,, N. Rayment,, P. M. Brickell,, D. R. Katz,, S. Vinayakumar,, M. J. Colston,, and D. N. Lockwood. 1995. Tumour necrosis factor-alpha (TNF-alpha) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions. Clin. Exp. Immunol. 99:196202.
60. Khanolkar-Young, S.,, D. Snowdon,, and D. N. J. Lockwood. 1998. Immunocytochemical localization of inducible nitric oxide synthase and transforming growth factor-beta (TGF-β) in leprosy lesions. Clin. Exp. Immunol. 113:438442.
61. Kindler, V.,, I. Sappino,, G. Grau,, P. Piguet,, and P. Vassalli. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56:731740.
62. Kirchheimer, W. F.,, and E. E. Storrs. 1971. An attempt to establish the armadillo (Dasypus novemcinctus, Linn) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int. J. Lepr. 39:693702.
63. Klatser, P. R.,, A. M. Janson,, J. E. R. Thole,, S. Buhrer,, C. Bos,, H. Soebono,, and R. R. P. de Vries. 1997. Humoral and cellular immune reactivity to recombinant M. leprae antigens in HLA-typed leprosy patients and healthy controls. Int. J. Lepr. 65:178189.
64. Krahenbuhl, J. L.,, and L. B. Adams,. 1999. Mycobacterium leprae as an opportunistic pathogen, p. 7590. In L. J. Paradise (ed.), Opportunistic Intracellular Bacteria and Immunity. Plenum Press, New York, N.Y.
65. Krahenbuhl, J. L.,, and L. B. Adams. 2000. Exploitation of gene knockout mice models to study the pathogenesis of leprosy. Lepr. Rev. 71:S170S175.
66. Little, D.,, S. Khanolkar-Young,, A. Coulthart,, S. Suneetha,, and D. N. J. Lockwood. 2001. Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin- 12, and inducible nitric oxide synthase expression in leprosy type 1 (reversal) reactions before and during prednisolone treatment. Infect. Immun. 69:34133417.
67. MacMicking, J. D.,, R. J. North,, R. LaCourse,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94:52435248.
68. Mak, T. W.,, J. M. Penninger,, and P. S. Ohashi. 2001. Knockout mice: a paradigm shift in modern immunology. Natl. Rev. Immunol. 1:1119.
69. Manandhar, R.,, N. Shrestha,, C. R. Butlin,, and P. W. Roche. 2002. High levels of inflammatory cytokines are associated with poor clinical response to steroid treatment and recurrent episodes of type 1 reactions in leprosy. Clin. Exp. Immunol. 128:333338.
70. Marques, M. A.,, V. L. Antonio,, E. N. Sarno,, P. J. Brennan,, and M. C. Pessolani. 2001. Binding of alpha2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells. J. Med. Microbiol. 50:2328.
71. Means, T. K.,, S. Wang,, E. Lein,, A. Yoshimura,, D. T. Golenbock,, and M. J. Fenton. 1999. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163:39203927.
72. Meisner, S. J.,, S. Mucklow,, G. Warner,, S. O. Sow,, C. Lienhardt,, and A. V. S. Hill. 2001. Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in West Africans. Am. J. Trop. Med. Hyg. 65:733735.
73. Mittal, A.,, R. S. Mishra,, and I. Nath. 1989. Accessory cell heterogeneity in lepromatous leprosy; dendritic cells and not monocytes support T cell responses. Clin. Exp. Immunol. 76:233239.
74. Modlin, R. L.,, J. F. Gebhard,, C. R. Taylor,, and T. H. Rea. 1983. In situcharacterization of T lymphocyte subsets in the reactional states of leprosy. Clin. Exp. Immunol. 53:1724.
75. Modlin, R. L.,, F. M. Hofman,, C. R. Taylor,, and T. H. Rea. 1983. T lymphocyte subsets in the skin lesions of patients with leprosy. J. Am. Acad. Dermatol. 8:182189.
76. Modlin, R. L.,, J. Melancon-Kaplan,, S. M. M. Young,, C. Pirmez,, H. Kino,, J. Convit,, T. H. Rea,, and B. R. Bloom. 1988. Learning from lesions: patterns of tissue inflammation in leprosy. Proc. Natl. Acad. Sci. USA 85:12131217.
77. Modlin, R. L.,, C. Pirmez,, F. M. Hofman,, V. Torigian,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and M. B. Brenner. 1989. Lymphocytes bearing antigen-specific gamma delta T-cell receptors accumulate in human infectious disease lesions. Nature 339:544548.
78. Mohan, V. P.,, C. A. Scanga,, K. Yu,, H. M. Scott,, K. E. Tanaka,, E. Tsang,, M. C. Tsai,, J. L. Flynn,, and J. Chan. 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69:18471855.
79. Moraes, M. O.,, N. C. Duppre,, P. N. Suffys,, A. R. Santos,, A. S. Almeida,, J. A. Nery,, E. P. Sampaio,, and E. N. Sarno. 2001. Tumor necrosis factor-alpha promoter polymorphism TNF2 is associated with a stronger delayed-type hypersensitivity reaction in the skin of borderline tuberculoid leprosy patients. Immunogenetics 53:4547.
80. Moraes, M. O.,, E. N. Sarno,, A. S. Almeida,, B. C. Saraiva,, J. A. Nery,, R. C. Martins,, and E. P. Sampaio. 1999. Cytokine mRNA expression in leprosy: a possible role for interferon-gamma and interleukin-12 in reactions (RR and ENL). Scand. J. Immunol. 50:541549.
81. Moreira, A. L.,, E. P. Sampaio,, A. Zmuidzinas,, P. Frindt,, K. A. Smith,, and G. Kaplan. 1993. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J. Exp. Med. 177:16751680.
82. Nakata, N.,, M. Matsuoka,, Y. Kashiwabara,, N. Okada,, and C. Sasakawa. 1997. Nucleotide sequence of the Mycobacterium leprae katG region. J. Bacteriol. 179:30533057.
83. Narayanan, R. B.,, S. Laal,, L. K. Bhutani,, A. K. Sharma,, and I. Nath. 1984. Differences in predominant T-cell phenotypes and distributional pattern in reactional lesions of tuberculoid and lepromatous leprosy. Clin. Exp. Immunol. 55:623628.
84. Nathan, C.,, K. Squires,, W. Griffo,, W. Levis,, M. Varghese,, C. K. Job,, A. R. Nusrat,, S. Sherwin,, S. Rappoport,, E. Sanchez,, R. A. Burkhardt,, and G. Kaplan. 1990. Widespread intradermal accumulation of mononuclear leukocytes in lepromatous leprosy patients treated systemically with recombinant interferon gamma. J. Exp. Med. 172:15091512.
85. Ng, V.,, G. Zanazzi,, R. Timpl,, J. Talts,, J. L. Salzer,, P. J. Brennan,, and A. Rambukkana. 2000. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103:511529.
86. Nicholson, S.,, M. G. Bonecini-Almeida,, J. R. Lapa e Silva,, C. Nathan,, Q.-W. Xie,, R. Mumford,, J. R. Weidner,, J. Calaycay,, J. Geng,, N. Boechat,, C. Linhares,, W. Rom,, and J. L. Ho. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183:22932302.
87. Nigou, J.,, C. Zelle-Rieser,, M. Gilleron,, M. Thurnher,, and G. Puzo. 2001. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166:74777485.
88. Noss, E. H.,, R. K. Pai,, T. J. Sellati,, J. D. Radolf,, J. Belisle,, D. T. Golenbock,, W. H. Boom,, and C. V. Harding. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167:910918.
89. Ochoa, M. T.,, S. Stenger,, P. A. Sieling,, S. Thoma-Uszynski,, S. Sabet,, S. Cho,, A. M. Krensky,, M. Rollinghoff,, E. Nunes Sarno,, A. E. Burdick,, T. H. Rea,, and R. I. Modlin. 2001. T-cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7:174179.
90. Ottenhoff, T. H. M.,, T. de Boer,, C. E. Verhagen,, F. A. W. Verreck,, and J. P. van Dissel. 2000. Human deficiencies in type 1 cytokine receptors reveal the essential role of type 1 cytokines in immunity to intracellular bacteria. Microb. Infect. 2:15591566.
91. Porcelli, S.,, M. B. Brenner,, J. L. Greenstein,, S. P. Balk,, C. Terhorst,, and P. A. Bleicher. 1989. Recognition of cluster of differentiation 1 antigens by human CD4- CD8- cytolytic T lymphocytes. Nature 341:447450.
92. Porcelli, S.,, C. T. Morita,, and M. B. Brenner. 1992. CD1b restricts the response of human CD4-8- T lymphocytes to a microbial antigen. Nature 360:593597.
93. Prigozy, T. I.,, P. A. Sieling,, D. Clemens,, P. L. Stewart,, S. M. Behar,, S. A. Porcelli,, M. B. Brenner,, R. L. Modlin,, and M. Kronenberg. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6:187197.
94. Ramasesh, N.,, L. B. Adams,, S. G. Franzblau,, and J. L. Krahenbuhl. 1991. Effects of activated macrophages on Mycobacterium leprae. Infect. Immun. 59:28642869.
95. Rambukkana, A.,, J. L. Salzer,, P. D. Yurchenco,, and E. I. Tuomanen. 1997. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin alpha 2 chain. Cell 88:811821.
96. Rambukkana, A.,, H. Yamada,, G. Zanazzi,, T. Mathus,, J. L. Salzer,, P. D. Yurchenco,, K. P. Campbell,, and V. A. Fischetti. 1998. Role of alpha 2-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282:20762079.
97. Rambukkana, A.,, G. Zanazzi,, N. Tapinos,, and J. L. Salzer. 2002. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 296:927931.
98. Rees, R. J. W.,, M. F. R. Waters,, A. G. M. Weddell,, and E. Palmer. 1967. Experimental lepromatous leprosy. Nature 215:599602.
99. Ridley, D. S.,, and W. H. Jopling. 1966. Classification of leprosy according to immunity— a five-group system. Int. J. Lepr. 34:255273.
100. Roger, M.,, G. Levee,, S. Chanteau,, B. Gicquel,, and E. Schurr. 1997. No evidence for linkage between leprosy susceptibility and the human natural resistance-associated macrophage protein 1 (NRAMP1) gene in French Polynesia. Int. J. Lepr. 65:197202.
101. Rosat, J. P.,, E. P. Grant,, E. M. Beckman,, C. C. Dascher,, P. A. Sieling,, D. Frederique,, R. L. Modlin,, S. A. Porcelli,, S. T. Furlong,, and M. B. Brenner. 1999. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+αβ T-cell pool. J. Immunol. 162:366371.
102. Roy, S.,, A. Frodsham,, B. Saha,, S. K. Hazra,, C. G. N. Mascie-Taylor,, and A. V. S. Hill. 1999. Association of vitamin D receptor genotype with leprosy type. J. Infect. Dis. 179:187191.
103. Roy, S.,, W. McGuire,, C. G. N. Mascie-Taylor,, S. Hazra,, A. V. S. Hill,, and D. Kwiatkowski. 1997. Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy. J. Infect. Dis. 176:530532.
104. Salgame, P.,, J. S. Abrams,, C. Clayberger,, H. Goldstein,, J. Convit,, R. L. Modlin,, and B. R. Bloom. 1991. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279282.
105. Sampaio, E. P.,, A. L. Moreira,, E. N. Sarno,, A. M. Malta,, and G. Kaplan. 1992. Prolonged treatment with recombinant interferon gamma induces erythema nodosum leprosum in lepromatous leprosy patients. J. Exp. Med. 175:17291737.
106. Sampaio, E. P.,, E. N. Sarno,, R. Galilly,, Z. A. Cohr,, and G. Kaplan. 1991. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J. Exp. Med. 173:699703.
107. Santos, A. R.,, A. S. Almeida,, P. N. Suffys,, M. O. Moraes,, V. F. Filho,, H. J. Mattos,, J. A. Nery,, P. H. Cabello,, E. P. Sampaio,, and E. N. Sarno. 2000. Tumor necrosis factor promoter polymorphism (TNF2) seems to protect against development of severe forms of leprosy in a pilot study in Brazilian patients. Int. J. Lepr. 68:325327.
108. Santos, D. O.,, S. L. Santos,, D. Esquenazi,, J. A. Nery,, M. Defruyt,, K. Lorre,, and H. van Heuverswyn. 2001. Evaluation of B7-1 (CD80) and B7-2 (CD86) costimulatory molecules and dendritic cells on the immune response in leprosy. Nihon Hansenbyo Gakkai Zasshi 70:1524.
109. Schauf, V.,, S. Ryan,, D. Scollard,, O. Jonasson,, A. Brown,, K. Nelson,, T. Smith,, and V. Vithayasai. 1985. Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand. Tissue Antigens 26:243247.
110. Scheinman, R. I.,, P. C. Coggswell,, A. K. Lofquist,, and A. S. J. Baldwin. 1995. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270:283286.
111. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150:29202930.
112. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phagocytosis of Mycobacterium leprae by human monocyte derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and interferon gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J. Immunol. 147:1983.
113. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J. Exp. Med. 174:10311038.
114. Schon, T.,, N. Gebre,, T. Sundqvist,, H. S. Habetmariam,, T. Engeda,, and S. Britton. 1999. Increased levels of nitric oxide metabolites in urine from leprosy patients in reversal reacation. Lepr. Rev. 70:5255.
115. Schon, T.,, R. H. Hernandez-Pando,, Y. Negesse,, R. Leekassa,, T. Sundzvist,, and S. Britton. 2001. Expression of inducible nitric oxide synthase and nitrotyrosine in borderline leprosy lesions. Br. J. Dermatol. 145:809815.
116. Schon, T.,, R. Leekassa,, N. Gebre,, T. Sundqvist,, E. Bizuneh,, and S. Britton. 2000. High dose prednisolone treatment of leprosy patients undergoing reactions is associated with a rapid decrease in urinary nitric oxide metabolites and clinical improvement. Lepr. Rev. 71:355362.
117. Scollard, D. M.,, G. McCormick,, and J. Allen. 1999. Localization of Mycobacterium leprae to endothelial cells of epineural and perineural blood vessels and lymphatics. Am. J. Pathol. 154:16111620.
118. Shannon, E.,, A. Aseffa,, G. Pankey,, F. Sandoval,, and B. Lutz. 2000. Thalidomide's ability to augment the synthesis of IL-2 in vitro in HIV-infected patients is associated with the percentage of CD4+cells in their blood. Immunopharmacology 46:175179.
119. Shaw, M. A.,, S. Atkinson,, H. Dockrell,, R. Hussain,, Z. Lins Lainson,, J. Shaw,, F. Ramos,, F. Silveira,, S. Q. Mehdi,, F. Kaukab,, and J. M. Blackwell. 1993. An RFLP map for 2q33-q37 from multicase mycobacterial and leishmanial disease families: no evidence for an Lsh/Ity/Bcg gene homologue influencing susceptibility to leprosy. Ann. Hum. Genet. 57:251271.
120. Shepard, C. C. 1960. The experimental disease that follows the injection of human leprosy bacilli into footpads of mice. J. Exp. Med. 112:445454.
121. Shepard, C. C.,, and D. H. McRae. 1968. A method for counting acid-fast bacteria. Int. J. Lepr. 36:7882.
122. Sheskin, J. 1965. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther. 6:303306.
123. Shetty, V. P. 1993. Animal model to study the mechanism of nerve damage in leprosy; a preliminary report. Int. J. Lepr. 61:7075.
124. Shetty, V. P.,, P. S. Matharu,, and H. A. Noshir. 1999. Sciatic nerve of normal and T200×5R Swiss white mice fails to support multiplication of intraneurally injected M. leprae. Int. J. Lepr. 67:446452.
125. Shi, L.,, R. P. Kraut,, R. Aebersold,, and A. H. Greenberg. 1992. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175:553566.
126. Sibley, L. D.,, S. G. Franzblau,, and J. L. Krahenbuhl. 1987. Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect. Immun. 55:680685.
127. Sibley, L. D.,, and J. L. Krahenbuhl. 1987. Mycobacterium leprae-burdened macrophages are refractory to activation by gamma-interferon. Infect. Immun. 55:446450.
128. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Defective activation of granuloma macrophages from Mycobacterium leprae-infected nude mice. J. Leukoc. Biol. 43:6066.
129. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect. Immun. 56:19121919.
130. Siddiqui, M. R.,, S. Meisner,, K. Tosh,, K. Balakrishnan,, S. Ghei,, S. E. Fisher,, M. Golding,, N. Panangadan,, S. Narayan,, T. Sitaraman,, U. Sengupta,, R. Pitchappan,, and A. V. S. Hill. 2001.Amajor susceptibility locus for leprosy in India maps to chromosome 10p13. Nat. Genet. 27:439441.
131. Sieling, P. A.,, D. Chatterjee,, S. A. Porcelli,, T. I. Prigozy,, R. J. Mazzaccaro,, T. Soriano,, B. R. Bloom,, M. B. Brenner,, M. Kronenberg,, P. J. Brennan,, and R. L. Modlin. 1995. CD-1-restricted T cell recognition of microbial lipoglycan antigens. Science 269:227230.
132. Sieling, P. A.,, D. Jullien,, M. Dahlem,, T. F. Tedder,, T. H. Rea,, R. L. Modlin,, and S. A. Procelli. 1999. CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J. Immunol. 162:18511858.
133. Sieling, P. A.,, M.-T. Ochoa,, D. Jullien,, D. S. Leslie,, S. Sabet,, J.-P. Rosat,, A. E. Burdick,, T. H. Rea,, M. B. Brenner,, S. A. Porcelli,, and R. A. Modlin. 2000. Evidence for human CD4+T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J. Immunol. 164:47904796.
134. Sieling, P. A.,, X. H. Wang,, M. K. Gately,, J. L. Oliveros,, T. McHugh,, P. F. Barnes,, S. F. Wolf,, L. Golkar,, M. Yamamura,, and Y. Yogi. 1994. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J. Immunol. 153:36393647.
135. SivaSai, K. S.,, H. K. Prasad,, R. S. Misra,, V. Ramesh,, D. Wilfred,, and I. Nath. 1993. Effect of recombinant interferon gamma administration on lesional monocytes/macrophages in lepromatous leprosy patients. Int. J. Lepr. 61:259269.
136. Soebono, H.,, M. J. Giphart,, G. M. T. Schreuder,, P. R. Klatser,, and R. R. P. de Vries. 1997. Associations between HLA-DRB1 alleles and leprosy in an Indonesian population. Int. J. Lepr. 65:190196.
137. Spierings, E.,, T. de Boer,, B. Wieles,, L. B. Adams,, E. Marani,, and T. H. Ottenhoff. 2001. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4+Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J. Immunol. 166:58835888.
138. Spierings, E.,, T. De Boer,, L. Zulianello,, and T. H. Ottenhoff. 2000. The role of Schwann cells, T cells and Mycobacterium leprae in the immunopathogenesis of nerve damage in leprosy. Lepr. Rev. 71:S121S129.
139. Sreenivasan, P.,, R. S. Misra,, D. Wilfred,, and I. Nath. 1998. Lepromatous leprosy patients show T helper 1-like cytokine profile with differential expression of interleukin- 10 during type 1 and 2 reactions. Immunology 95:529536.
140. Steinhoff, U.,, and S. H. Kaufmann. 1988. Specific lysis by CD8+T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur. J. Immunol. 18:969972.
141. Steinhoff, W.,, A. Wand-Wurttenberger,, A. Bremerich,, and S. H. Kaufmann. 1991. Mycobacterium leprae renders Schwann cells and mononuclear phagocytes susceptible or resistant to killer cells. Infect. Immun. 59:684688.
142. Stenger, S.,, D. A. Hanson,, R. Teitlebaum,, P. Dewan,, K. R. Niazi,, C. J. Froelich,, T. Ganz,, S. Thoma-Uszynski,, A. Melian,, C. Bogdan,, S. A. Porcelli,, B. R. Bloom,, A. M. Krensky,, and R. L. Modlin. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282:121125.
143. Stenger, S.,, R. J. Mazzaccaro,, K. Uyemura,, S. Cho,, P. F. Barnes,, J. P. Rosat,, A. Sette,, M. B. Brenner,, S. A. Procelli,, B. R. Bloom,, and R. L. Modlin. 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:16841687.
144. Thangaraj, H. S.,, F. I. Lamb,, E. O. Davis,, P. J. Jenner,, L. H. Jeyakumar,, and M. J. Colston. 1990. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect. Immun. 58:19371942.
145. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. T. Ochoa,, M. Engele,, P. A. Sieling,, P. F. Barnes,, M. Rollinghoff,, P. L. Bolcskei,, M. Wagner,, S. Akira,, M. V. Norgard,, J. T. Belisle,, P. J. Godowski,, B. R. Bloom,, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291:15441547.
146. Truman, R. W.,, and J. L. Krahenbuhl. 2001. Viable M. leprae as a research reagent. Int. J. Lepr. 69:112.
147. Underhill, D. M.,, A. Onzinsky,, K. D. Smith,, and A. Aderem. 1999. Toll-like receptor- 2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96:1445914463.
148. Verhagen, C. E.,, E. A. Wierenga,, A. A. Buffing,, M. A. Chand,, W. R. Faber,, and P. K. Das. 1997. Reversal reaction in borderline leprosy is associated with a polarized shift to type 1-like Mycobacterium leprae T cell reactivity in lesional skin: a follow-up study. J. Immunol. 159:44744483.
149. Visentainer, J. E.,, L. T. Tsuneto,, M. F. Serra,, P. R. Peixoto,, and M. L. Petzl-Erler. 1997. Association of leprosy with HLA-DR2 in a southern Brazilian population. Braz. J. Med. Biol. Res. 30:5159.
150. Wang, L.-M.,, A. Kimura,, M. Satoh,, and S. Mineshita. 1999. HLA linked with leprosy in Southern China; HLA-linked resistance alleles to leprosy. Int. J. Lepr. 67:403408.
151. Weinberg, J. B. 1998. Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol. Med. 4:557591.
152. Wengenack, N. L.,, M. P. Jensen,, F. Rusnak,, and M. K. Stern. 1999. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem. Biophys. Res. Commun. 256:485487.
153. Wheeler, P. R.,, and D. Gregory. 1980. Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J. Gen. Microbiol. 121:457464.
154. Yamamura, M.,, K. Uyemura,, R. J. Deans,, K. Weinberg,, T. H. Rea,, B. R. Bloom,, and R. L. Modlin. 1991. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254:277279.
155. Yamamura, M.,, X. H. Wang,, J. D. Ohmen,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and R. L. Modlin. 1992. Cytokine patterns of immunologically mediated tissue damage. J. Immunol. 149:14701475.
156. Yu, K.,, C. Mitchell,, Y. Xing,, R. S. Magliozzo,, B. R. Bloom,, and J. Chan. 1999. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuberc. Lung Dis. 79:191198.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error