1887

Chapter 8 : Human Leprosy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Human Leprosy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817879/9781555812607_Chap08-2.gif

Abstract:

In humans, leprosy is fascinating for its great variability in the clinical course of the disease. Paucibacillary (PB) disease is mildest form of leprosy is classified as indeterminate disease and requires an experienced leprologist to even make the diagnosis, as bacilli are rarely seen. Identification of the various cellular components and their subsets in the leprosy lesion has greatly advanced our understanding of the pathogenesis of leprosy. In marked contrast, lepromatous leprosy (LL) lesions produced the TH2 cytokine mRNA for IL-4, and IL-10 was more prominent in LL than TT lesions The polar nature of the type of leprosy lesions chosen for a study by Modlin's group allowed evaluation of other local cytokines produced and demonstrated proinflammatory TNFα, IL-1B, IL-6, and IL-12 in the TT lesions, while anti-inflammatory IL-10 and IL-4 were found in LL. Preliminary studies failed to show a deleterious effect of granulysin for in an axenic system, but this work is being continued. The granulomas formed in wild-type mice in response to infection consisted of only small, focal collections of mononuclear cells; in contrast, the granulomas formed in iNOS KO mice contained large, dense, organized collections of epithelioid cells and lymphocytes which infiltrated the perineurium and destroyed muscle bundles. The cellular infiltrate, however, consisted of epithelioid Mø and scattered lymphocytes that were not assembled into organized granulomas. The opportunity remains for researchers to investigate immunoregulation in a fascinating, human, nonfatal infectious disease.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8

Key Concept Ranking

Tumor Necrosis Factor alpha
0.44520584
Human Infectious Diseases
0.43773964
0.44520584
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

The immunopathological spectrum of leprosy. Upon exposure to most persons will not develop disease. Susceptible individuals may develop an indeterminate lesion, which may spontaneously heal or progress into the leprosy spectrum. The Ridley-Jopling classification combines clinical, immunological, and histopathological evidence and recognizes five forms of leprosy: tuberculoid (TT), borderline tuberculoid (BT), mid-borderline (BB), borderline lepromatous (BL), and lepromatous (LL) leprosy. The WHO classification is designed to fit two distinct multidrug therapy regimens and comprises two broad categories: paucibacillary (PB) disease, which includes TT and BT, and multibacillary (MB) disease, which includes BB, BL, and LL. Toward the PB end of the spectrum, the lesions display characteristics of well-developed CMI and possess few acid-fast bacilli (AFB), features of a TH1-type immune response. Toward the MB end of the spectrum, the immune response exhibits a TH2-type profile with a poorly developed CMI and numerous AFB. The borderline area of the spectrum is highly unstable and represents poorly understood immunoregulatory responses; BT and BB patients are prone to disfiguring reversal reactions, while BL (and LL) patients are subject to painful ENL reactions.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Murine models for leprosy. Upon infection with immunocompetent mice such as the C57BL/6 strain develop only mild lesions and allow limited growth of the bacilli, properties similar to the indeterminate form of leprosy. Certain immunodeficient strains, however, exhibit growth, histological, and immunological characteristics along the leprosy spectrum. iNOS KO mice develop features of BT disease, while GKO mice show characteristics of BB disease. Athymic nude mice display an LL leprosy-type profile. Additional study of these and other KO models may allow dissection of immunoregulation in leprosy and the mechanisms underlying reactional episodes.

Citation: Adams L, Krahenbuhl J. 2003. Human Leprosy, p 207-244. In Boros D (ed), Granulomatous Infections and Inflammations. ASM Press, Washington, DC. doi: 10.1128/9781555817879.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817879.chap8
1. Abel, L.,, F. O. Sanchez,, J. Oberti,, N. V. Thuc,, L. V. Hoa,, V. D. Lap,, E. Skamene,, P. H. Lagrange,, and E. Schurr. 1998. Susceptibility to leprosy is linked to the human NRAMP1 gene. J. Infect. Dis. 177: 133 145.
2. Adams, L. B.,, M. C. Dinauer,, D. E. Morgenstern,, and J. L. Krahenbuhl. 1997. Comparison of the roles of reactive oxygen and nitrogen intermediates in the host response to Mycobacterium tuberculosis using transgenic mice. Tuberc. Lung Dis. 78: 237 246.
3. Adams, L. B.,, S. G. Franzblau,, Z. Vavrin,, J. B. Hibbs, Jr.,, and J. L. Krahenbuhl. 1991. L-arginine-dependent macrophage effector functions inhibit metabolic activity of Mycobacterium leprae. J. Immunol. 147: 1642 1646.
4. Adams, L. B.,, Y. Fukutomi,, and J. L. Krahenbuhl. 1993. Regulation of murine macrophage effector functions by lipoarabinomannan from mycobacterial strains with different degrees of virulence. Infect. Immun. 61: 4173 4181.
5. Adams, L. B.,, T. P. Gillis,, D. H. Hwang,, and J. L. Krahenbuhl. 1997. Effects of essential fatty acid deficiency on prostaglandin E2 production and cell-mediated immunity in a mouse model of leprosy. Infect. Immun. 65: 1152 1157.
6. Adams, L. B.,, C. K. Job,, and J. L. Krahenbuhl. 2000. Role of inducible nitric oxide synthase in resistance to Mycobacterium leprae infection in mice. Infect. Immun. 68: 5462 5465.
7. Adams, L. B.,, C. M. Mason,, J. K. Kolls,, D. Scollard,, J. L. Krahenbuhl,, and S. Nelson. 1995. Exacerbation of acute and chronic murine tuberculosis by administration of a TNF receptor-expressing adenovirus. J. Infect. Dis. 171: 400 405.
8. Adams, L. B.,, D. M. Scollard,, N. A. Ray,, A. M. Cooper,, A. A. Frank,, I. M. Orme,, and J. L. Krahenbuhl. 2002. The study of Mycobacterium leprae infection in interferon-y gene-disrupted mice as a model to explore the immunopathologic spectrum of leprosy. J. Infect. Dis. 185: S1 S8.
9. Alcais, A.,, F. O. Sanchez,, N. V. Thuc,, V. D. Lap,, J. Oberti,, P. H. Lagrange,, E. Schurr,, and L. Abel. 2000. Granulomatous reaction to intradermal injection of lepromin (Mitsuda reaction) is linked to the human NRAMP1 gene in Vietnamese leprosy sibships. J. Infect. Dis. 181: 302 308.
10. Anthony, L. S. D.,, D. Chatterjee,, P. J. Brennan,, and F. E. Nano. 1994. Lipoarabinomannan from Mycobacterium tuberculosis modulates the generation of reactive nitrogen intermediates by gamma interferon-activated macrophages. FEMS Immunol. Med. Microbiol. 8: 299 306.
11. Astarie-Dequeker, C.,, E.-N. N'Diaye,, V. Le Cabec,, M. G. Rittig,, J. Prandi,, and I. Mariconneau-Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67: 469 477.
12. Barnes, P. F.,, D. Chatterjee,, J. S. Abrams,, S. Lu,, E. Wang,, M. Yamamura,, P. J. Brennan,, and R. L. Modlin. 1992. Cytokine production induced by Mycobacterium tuberculosis lipoarabinomannan: relationship to chemical structure. J. Immunol. 149: 541.
13. Bekker, L. G.,, P. Haslett,, G. Maartens,, L. Steyn,, and G. Kaplan. 2000. Thalidomideinduced antigen specific immune stimulation in patients with human immunodeficiency virus type 1 and tuberculosis. J. Infect. Dis. 181: 954 965.
14. Blackwell, J. M. 2001. Modern genetics and leprosy susceptibility. Lepr. Rev. 72: 352 356.
15. Brennan, P. J.,, and V. D. Vissa. 2001. Genomic evidence for the retention of the essential mycobacterial cell wall in the otherwise defective Mycobacterium leprae. Lepr. Rev. 72: 415 428.
16. Brightbill, H. D.,, D. H. Libraty,, S. R. Krutzik,, R. B. Yang,, J. T. Belisle,, J. R. Bleharski,, M. Maitland,, M. V. Norgard,, S. E. Plevy,, S. T. Smale,, P. J. Brennan,, B. R. Bloom,, P. J. Godowski,, and R. L. Modlin. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732 736.
17. Bryk, R.,, C. D. Lima,, H. Erdjument-Bromage,, P. Tempst,, and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073 1077.
18. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNeil,, S. J. Turco,, J.-C. Sibille,, M. Snapper,, P. Aisen,, and B. R. Bloom. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86: 2453 2457.
19. Chatterjee, D.,, A. D. Roberts,, K. Lowell,, P. J. Brennan,, and I. M. Orme. 1992. Structural basis for the capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 60: 1249.
20. Chehl, S.,, C. K. Job,, and R. C. Hastings. 1985. Transmission of leprosy in nude mice. Am. J. Trop. Med. Hyg. 34: 1161 1166.
21. Chehl, S.,, J. Ruby,, C. K. Job,, and R. C. Hastings. 1983. The growth of Mycobacterium leprae in nude mice. Lepr. Rev. 54: 283 304.
22. Chiplunkar, S.,, G. De Libero,, and S. H. Kaufmann. 1986. Mycobacterium leprae-specific Lyt-2 +T lymphocytes with cytolytic activity. Infect. Immun. 54: 793 797.
23. Chiplunkar, S. V.,, M. V. Deshmukh,, P. D. Samson,, R. Butlin,, W. S. Bhatki,, R. G. Chulawalla,, M. G. Deo,, and S. G. Gangal. 1990. Natural killer-cell-mediated and antibody-dependent cellular cytotoxicity in leprosy. Int. J. Lepr. 58: 334 341.
24. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, J. R. Thomson,, R. P. Wheeler,, N. Honore,, T. Garnier,, C. Churcher,, D. Harris,, K. Mungall,, D. Basham,, D. Brown,, T. Chillingworth,, R. Color,, R. M. Davies,, K. Devlin,, S. Duthoy,, T. Feltwell,, A. Fraser,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, C. Lacroix,, J. Maclean,, S. Moule,, L. Murphy,, K. Oliver,, M. A. Quail,, M. A. Rajandream,, K. M. Rutherford,, S. Rutter,, K. Seeger,, S. Simon,, M. Simmonds,, J. Skelton,, R. Squares,, S. Squares,, K. Stevens,, K. Taylor,, S. Whitehead,, J. R. Woodward,, and B. G. Barrell. 2001. Massive gene decay in the leprosy bacillus. Nature 409: 1007 1011.
25. Colston, M. J.,, and G. R. Hilson. 1976. Growth of Mycobacterium leprae and M. marinum in congenitally athymic (nude) mice. Nature 262: 736 741.
26. Converse, P.,, T. H. Ottenhoff,, S. Work-Teklemariam,, G. E. Hancock,, M. Dietz,, M. Becx-Bleumink,, A. Wondimu,, R. Kiessling,, Z. A. Cohn,, and G. Kaplan. 1990. Intradermal recombinant interleukin 2 enhances peripheral blood T-cell responses to mitogen and antigens in patients with lepromatous leprosy. Scand. J. Immunol. 32: 83 91.
27. Cooper, A. M.,, L. B. Adams,, D. K. Dalton,, R. Appelberg,, and S. Ehlers. 2002. IFN-γ and NO in mycobacterial disease: new jobs for old hands. Trends Microbiol. 10: 221 226.
28. Cooper, A. M.,, D. K. Dalton,, T. A. Stewart,, J. P. Griffin,, D. G. Russell,, and I. M. Orme. 1993. Disseminated tuberculosis in interferon-γ gene disrupted mice. J. Exp. Med. 178: 2243 2247.
29. Cooper, C. L.,, C. Mueller,, T.-A. Sinchaisri,, C. Pirmez,, J. Chan,, G. Kaplan,, S. M. M. Young,, I. L. Weissman,, B. R. Bloom,, T. H. Rea,, and R. L. Modlin. 1989. Analysis of naturally occurring delayed-type hypersensitivity reactions in leprosy by in situ hybridization. J. Exp. Med. 169: 1565 1581.
30. Damasco, M. H.,, E. N. Sarno,, A. S. Lobao,, F. B. Alvarenga,, J. A. Porto,, F. Rosankaimer,, and G. Kaplan. 1992. Effect of cutaneous cell-mediated immune response to rIFN gamma on Mycobacterium leprae viability in the lesions of lepromatous leprosy. Braz. J. Med. Biol. Res. 25: 457 465.
31. Dawson, P. J.,, M. J. Colston,, and A. H. Fieldsteel. 1983. Infection of the congenitally athymic rat with Mycobacterium leprae. Int. J. Lepr. 51: 336 346.
32. Demangel, C.,, and W. J. Britton. 2000. Interaction of dendritic cells with mycobacteria: where the action starts. Immunol. Cell Biol. 78: 318 324.
33. de Vries, R. P. P.,, and T. H. M. Ottenhoff,. 1994. Immunogenetics of leprosy, p. 113 121. In R. C. Hastings (ed.), Leprosy, 2nd ed. Churchill Livingston, London, United Kingdom.
34. Fenton, M. J.,, M. W. Vermeulen,, S. Kim,, M. Burdick,, R. M. Strieter,, and H. Kornfeld. 1997. Induction of gamma interferon production in human alveolar macrophages by Mycobacterium tuberculosis. Infect. Immun. 65: 5149 5156.
35. Filley, E.,, and G. A. W. Rook. 1991. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun. 59: 2567 2572.
36. Goswami, T.,, A. Bhattacharjee,, P. Babal,, S. Searle,, E. Moore,, M. Li,, and J. M. Blackwell. 2001. Natural-resistance-associated macrophage protein 1 is anH +/bivalent cation antiporter. Biochem. J. 354: 511 519.
37. Gu, L.,, and J. L. Krahenbuhl. 1995. Lysis effect of IL-2 LAK cells against Mycobacterium leprae-infected macrophages. Chin. J. Microbiol. Immunol. 8: 234 237.
38. Hackam, D. J.,, O. D. Rotstein,, W. Zhang,, S. Gruenheid,, P. Gros,, and S. Grinstein. 1998. Host resistance to intracellular infection: mutation of natural resistance-associated macrophage protein 1 ( Nramp1) impairs phagosomal acidification. J. Exp. Med. 188: 351 364.
39. Hagge, D.,, S. O. Robinson,, D. Scollard,, G. McCormick,, and D. L. Williams. 2002. A new model for studying the effects of Mycobacterium leprae on Schwann cell and neuron interactions. J. Infect. Dis., 186: 1283 1296.
40. Hancock, G. E.,, A. Molloy,, B. K. Ab,, R. Kiessling,, M. Becx-Bleumink,, Z. A. Cohn,, and G. Kaplan. 1991. In vivo administration of low-dose human interleukin-2 induces lymphokine-activated killer cells for enhanced cytolysis in vitro. Cell. Immunol. 132: 277 284.
41. Haslett, P. A.,, J. D. Klausner,, S. Makonkawkeyoon,, A. Moreira,, P. Metatratip,, B. Boyle,, W. Kunachiwa,, N. Maneekarn,, P. Vongchan,, L. G. Corral,, T. Elbeik,, Z. Shen,, and G. Kaplan. 1999. Thalidomide stimulates T cell responses and interleukin 12 production in HIV infected patients. AIDS Res. Hum. Retroviruses 15: 1169 1179.
42. Hatagima, A.,, D. V. A. Opromolla,, S. Ura,, J. F. Feitosa,, B. Beiguelman,, and H. Krieger. 2001. No evidence of linkage between Mitsuda reaction and the NRAMP1 locus. Int. J. Lepr. 69: 99 102.
43. Holzer, T. J.,, K. E. Nelson,, R. G. Crispen,, and B. R. Anderson. 1986. Mycobacterium leprae fails to stimulate phagocytic cell superoxide anion generation. Infect. Immun. 51: 514 520.
44. Humphres, R. C.,, R. H. Gelber,, and J. L. Krahenbuhl. 1982. Suppressed natural killer cell activity during episodes of erythema nodosum leprosum in lepromatous leprosy. Clin. Exp. Immunol. 49: 500 508.
45. Imkamp, F. M. 1985. Standardized schemes for steroid treatment in ENL and reversal reactions. Int. J. Lepr. 53: 313 317.
46. Jacobs, J. M.,, V. P. Shetty,, and N. H. Antia. 1987. Myelin changes in leprous neuropathy. Acta Neuropathol. 74: 75 80.
47. Jacobson, R. R.,, and J. L. Krahenbuhl. 1999. Leprosy. Lancet 353: 655 660.
48. Job, C. K. 1971. Pathology of peripheral nerve lesions in lepromatous leprosy—a light and electron microscopic study. Int. J. Lepr. 39: 251 268.
49. Job , C. K. 1989. Nerve damage in leprosy. Int. J. Lepr. 57: 532 539.
50. Job, C. K.,, and S. M. Chandi (ed.). 2001. Differential Diagnosis of Leprosy. A Guide Book for Histopathologists, 1st ed. Sasakawa Memorial Health Foundation, Tokyo, Japan.
51. Job, C. K.,, E. B. Harris,, J. L. Allen,, and R. C. Hastings. 1986. Thorns in armadillo ears and noses and their role in the transmission of leprosy. Arch. Pathol. Lab. Med. 110: 1025 1028.
52. Job, C. K.,, R. M. Sanchez,, and R. C. Hastings. 1985. Manifestations of experimental leprosy in the armadillo. Am. J. Trop. Med. Hyg. 34: 151 161.
53. Kaleab, B.,, T. Ottenoff,, P. Converse,, E. Halapi,, G. Tadesse,, M. Rottenberg,, and R. Kiessling. 1990. Mycobacterial-induced cytotoxic T cells as well as nonspecific killer cells derived from healthy individuals and leprosy patients. Eur. J. Immunol. 20: 2651 2659.
54. Kaplan, G.,, R. Kiessling,, S. Teklemariam,, G. Hancock,, G. Sheftel,, C. K. Job,, P. Converse,, T. H. Ottenhoff,, M. Becx-Bleumink,, M. Dietz,, and Z. A. Cohn. 1989. The reconstitution of cell-mediated immunity in the cutaneous lesions of lepromatous leprosy by recombinant interleukin 2. J. Exp. Med. 169: 893 907.
55. Kaplan, G.,, A. D. Luster,, G. Hancock,, and Z. A. Cohn. 1987. The expression of a yinterferon- induced protein (IP-10) in delayed immune responses in human skin. J. Exp. Med. 166: 1098.
56. Kaplan, G.,, G. Walsh,, L. S. Guido,, P. Meyn,, R. A. Burkhardt,, R. M. Abalos,, J. Barker,, P. A. Frindt,, T. T. Fajardo,, R. Celona,, and Z. A. Cohn. 1992. Novel responses of human skin to intradermal recombinant granulocyte/macrophage-colony-stimulating factor: Langerhans cell recruitment, keratinocyte growth, and enhanced wound healing. J. Exp. Med. 175: 1717 1728.
57. Kaufmann, S. H. E. 1988. CD8 +T lymphocytes in intracellular antimicrobial infections. Immunol. Today 9: 168 174.
58. Kaufmann, S. H. E.,, and D. Kabelitz. 1991. Gamma/delta T lymphocytes and heat shock proteins. Curr. Top. Microbiol. Immunol. 167: 191.
59. Khanolkar-Young, S.,, N. Rayment,, P. M. Brickell,, D. R. Katz,, S. Vinayakumar,, M. J. Colston,, and D. N. Lockwood. 1995. Tumour necrosis factor-alpha (TNF-alpha) synthesis is associated with the skin and peripheral nerve pathology of leprosy reversal reactions. Clin. Exp. Immunol. 99: 196 202.
60. Khanolkar-Young, S.,, D. Snowdon,, and D. N. J. Lockwood. 1998. Immunocytochemical localization of inducible nitric oxide synthase and transforming growth factor-beta (TGF-β) in leprosy lesions. Clin. Exp. Immunol. 113: 438 442.
61. Kindler, V.,, I. Sappino,, G. Grau,, P. Piguet,, and P. Vassalli. 1989. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 56: 731 740.
62. Kirchheimer, W. F.,, and E. E. Storrs. 1971. An attempt to establish the armadillo ( Dasypus novemcinctus, Linn) as a model for the study of leprosy. I. Report of lepromatoid leprosy in an experimentally infected armadillo. Int. J. Lepr. 39: 693 702.
63. Klatser, P. R.,, A. M. Janson,, J. E. R. Thole,, S. Buhrer,, C. Bos,, H. Soebono,, and R. R. P. de Vries. 1997. Humoral and cellular immune reactivity to recombinant M. leprae antigens in HLA-typed leprosy patients and healthy controls. Int. J. Lepr. 65: 178 189.
64. Krahenbuhl, J. L.,, and L. B. Adams,. 1999. Mycobacterium leprae as an opportunistic pathogen, p. 75 90. In L. J. Paradise (ed.), Opportunistic Intracellular Bacteria and Immunity. Plenum Press, New York, N.Y.
65. Krahenbuhl, J. L.,, and L. B. Adams. 2000. Exploitation of gene knockout mice models to study the pathogenesis of leprosy. Lepr. Rev. 71: S170 S175.
66. Little, D.,, S. Khanolkar-Young,, A. Coulthart,, S. Suneetha,, and D. N. J. Lockwood. 2001. Immunohistochemical analysis of cellular infiltrate and gamma interferon, interleukin- 12, and inducible nitric oxide synthase expression in leprosy type 1 (reversal) reactions before and during prednisolone treatment. Infect. Immun. 69: 3413 3417.
67. MacMicking, J. D.,, R. J. North,, R. LaCourse,, J. S. Mudgett,, S. K. Shah,, and C. F. Nathan. 1997. Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc. Natl. Acad. Sci. USA 94: 5243 5248.
68. Mak, T. W.,, J. M. Penninger,, and P. S. Ohashi. 2001. Knockout mice: a paradigm shift in modern immunology. Natl. Rev. Immunol. 1: 11 19.
69. Manandhar, R.,, N. Shrestha,, C. R. Butlin,, and P. W. Roche. 2002. High levels of inflammatory cytokines are associated with poor clinical response to steroid treatment and recurrent episodes of type 1 reactions in leprosy. Clin. Exp. Immunol. 128: 333 338.
70. Marques, M. A.,, V. L. Antonio,, E. N. Sarno,, P. J. Brennan,, and M. C. Pessolani. 2001. Binding of alpha2-laminins by pathogenic and non-pathogenic mycobacteria and adherence to Schwann cells. J. Med. Microbiol. 50: 23 28.
71. Means, T. K.,, S. Wang,, E. Lein,, A. Yoshimura,, D. T. Golenbock,, and M. J. Fenton. 1999. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163: 3920 3927.
72. Meisner, S. J.,, S. Mucklow,, G. Warner,, S. O. Sow,, C. Lienhardt,, and A. V. S. Hill. 2001. Association of NRAMP1 polymorphism with leprosy type but not susceptibility to leprosy per se in West Africans. Am. J. Trop. Med. Hyg. 65: 733 735.
73. Mittal, A.,, R. S. Mishra,, and I. Nath. 1989. Accessory cell heterogeneity in lepromatous leprosy; dendritic cells and not monocytes support T cell responses. Clin. Exp. Immunol. 76: 233 239.
74. Modlin, R. L.,, J. F. Gebhard,, C. R. Taylor,, and T. H. Rea. 1983. In situcharacterization of T lymphocyte subsets in the reactional states of leprosy. Clin. Exp. Immunol. 53: 17 24.
75. Modlin, R. L.,, F. M. Hofman,, C. R. Taylor,, and T. H. Rea. 1983. T lymphocyte subsets in the skin lesions of patients with leprosy. J. Am. Acad. Dermatol. 8: 182 189.
76. Modlin, R. L.,, J. Melancon-Kaplan,, S. M. M. Young,, C. Pirmez,, H. Kino,, J. Convit,, T. H. Rea,, and B. R. Bloom. 1988. Learning from lesions: patterns of tissue inflammation in leprosy. Proc. Natl. Acad. Sci. USA 85: 1213 1217.
77. Modlin, R. L.,, C. Pirmez,, F. M. Hofman,, V. Torigian,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and M. B. Brenner. 1989. Lymphocytes bearing antigen-specific gamma delta T-cell receptors accumulate in human infectious disease lesions. Nature 339: 544 548.
78. Mohan, V. P.,, C. A. Scanga,, K. Yu,, H. M. Scott,, K. E. Tanaka,, E. Tsang,, M. C. Tsai,, J. L. Flynn,, and J. Chan. 2001. Effects of tumor necrosis factor alpha on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69: 1847 1855.
79. Moraes, M. O.,, N. C. Duppre,, P. N. Suffys,, A. R. Santos,, A. S. Almeida,, J. A. Nery,, E. P. Sampaio,, and E. N. Sarno. 2001. Tumor necrosis factor-alpha promoter polymorphism TNF2 is associated with a stronger delayed-type hypersensitivity reaction in the skin of borderline tuberculoid leprosy patients. Immunogenetics 53: 45 47.
80. Moraes, M. O.,, E. N. Sarno,, A. S. Almeida,, B. C. Saraiva,, J. A. Nery,, R. C. Martins,, and E. P. Sampaio. 1999. Cytokine mRNA expression in leprosy: a possible role for interferon-gamma and interleukin-12 in reactions (RR and ENL). Scand. J. Immunol. 50: 541 549.
81. Moreira, A. L.,, E. P. Sampaio,, A. Zmuidzinas,, P. Frindt,, K. A. Smith,, and G. Kaplan. 1993. Thalidomide exerts its inhibitory action on tumor necrosis factor alpha by enhancing mRNA degradation. J. Exp. Med. 177: 1675 1680.
82. Nakata, N.,, M. Matsuoka,, Y. Kashiwabara,, N. Okada,, and C. Sasakawa. 1997. Nucleotide sequence of the Mycobacterium leprae katG region. J. Bacteriol. 179: 3053 3057.
83. Narayanan, R. B.,, S. Laal,, L. K. Bhutani,, A. K. Sharma,, and I. Nath. 1984. Differences in predominant T-cell phenotypes and distributional pattern in reactional lesions of tuberculoid and lepromatous leprosy. Clin. Exp. Immunol. 55: 623 628.
84. Nathan, C.,, K. Squires,, W. Griffo,, W. Levis,, M. Varghese,, C. K. Job,, A. R. Nusrat,, S. Sherwin,, S. Rappoport,, E. Sanchez,, R. A. Burkhardt,, and G. Kaplan. 1990. Widespread intradermal accumulation of mononuclear leukocytes in lepromatous leprosy patients treated systemically with recombinant interferon gamma. J. Exp. Med. 172: 1509 1512.
85. Ng, V.,, G. Zanazzi,, R. Timpl,, J. Talts,, J. L. Salzer,, P. J. Brennan,, and A. Rambukkana. 2000. Role of the cell wall phenolic glycolipid-1 in the peripheral nerve predilection of Mycobacterium leprae. Cell 103: 511 529.
86. Nicholson, S.,, M. G. Bonecini-Almeida,, J. R. Lapa e Silva,, C. Nathan,, Q.-W. Xie,, R. Mumford,, J. R. Weidner,, J. Calaycay,, J. Geng,, N. Boechat,, C. Linhares,, W. Rom,, and J. L. Ho. 1996. Inducible nitric oxide synthase in pulmonary alveolar macrophages from patients with tuberculosis. J. Exp. Med. 183: 2293 2302.
87. Nigou, J.,, C. Zelle-Rieser,, M. Gilleron,, M. Thurnher,, and G. Puzo. 2001. Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166: 7477 7485.
88. Noss, E. H.,, R. K. Pai,, T. J. Sellati,, J. D. Radolf,, J. Belisle,, D. T. Golenbock,, W. H. Boom,, and C. V. Harding. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167: 910 918.
89. Ochoa, M. T.,, S. Stenger,, P. A. Sieling,, S. Thoma-Uszynski,, S. Sabet,, S. Cho,, A. M. Krensky,, M. Rollinghoff,, E. Nunes Sarno,, A. E. Burdick,, T. H. Rea,, and R. I. Modlin. 2001. T-cell release of granulysin contributes to host defense in leprosy. Nat. Med. 7: 174 179.
90. Ottenhoff, T. H. M.,, T. de Boer,, C. E. Verhagen,, F. A. W. Verreck,, and J. P. van Dissel. 2000. Human deficiencies in type 1 cytokine receptors reveal the essential role of type 1 cytokines in immunity to intracellular bacteria. Microb. Infect. 2: 1559 1566.
91. Porcelli, S.,, M. B. Brenner,, J. L. Greenstein,, S. P. Balk,, C. Terhorst,, and P. A. Bleicher. 1989. Recognition of cluster of differentiation 1 antigens by human CD4 - CD8 - cytolytic T lymphocytes. Nature 341: 447 450.
92. Porcelli, S.,, C. T. Morita,, and M. B. Brenner. 1992. CD1b restricts the response of human CD4 -8 - T lymphocytes to a microbial antigen. Nature 360: 593 597.
93. Prigozy, T. I.,, P. A. Sieling,, D. Clemens,, P. L. Stewart,, S. M. Behar,, S. A. Porcelli,, M. B. Brenner,, R. L. Modlin,, and M. Kronenberg. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6: 187 197.
94. Ramasesh, N.,, L. B. Adams,, S. G. Franzblau,, and J. L. Krahenbuhl. 1991. Effects of activated macrophages on Mycobacterium leprae. Infect. Immun. 59: 2864 2869.
95. Rambukkana, A.,, J. L. Salzer,, P. D. Yurchenco,, and E. I. Tuomanen. 1997. Neural targeting of Mycobacterium leprae mediated by the G domain of the laminin alpha 2 chain. Cell 88: 811 821.
96. Rambukkana, A.,, H. Yamada,, G. Zanazzi,, T. Mathus,, J. L. Salzer,, P. D. Yurchenco,, K. P. Campbell,, and V. A. Fischetti. 1998. Role of alpha 2-dystroglycan as a Schwann cell receptor for Mycobacterium leprae. Science 282: 2076 2079.
97. Rambukkana, A.,, G. Zanazzi,, N. Tapinos,, and J. L. Salzer. 2002. Contact-dependent demyelination by Mycobacterium leprae in the absence of immune cells. Science 296: 927 931.
98. Rees, R. J. W.,, M. F. R. Waters,, A. G. M. Weddell,, and E. Palmer. 1967. Experimental lepromatous leprosy. Nature 215: 599 602.
99. Ridley, D. S.,, and W. H. Jopling. 1966. Classification of leprosy according to immunity— a five-group system. Int. J. Lepr. 34: 255 273.
100. Roger, M.,, G. Levee,, S. Chanteau,, B. Gicquel,, and E. Schurr. 1997. No evidence for linkage between leprosy susceptibility and the human natural resistance-associated macrophage protein 1 ( NRAMP1) gene in French Polynesia. Int. J. Lepr. 65: 197 202.
101. Rosat, J. P.,, E. P. Grant,, E. M. Beckman,, C. C. Dascher,, P. A. Sieling,, D. Frederique,, R. L. Modlin,, S. A. Porcelli,, S. T. Furlong,, and M. B. Brenner. 1999. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+αβ T-cell pool. J. Immunol. 162: 366 371.
102. Roy, S.,, A. Frodsham,, B. Saha,, S. K. Hazra,, C. G. N. Mascie-Taylor,, and A. V. S. Hill. 1999. Association of vitamin D receptor genotype with leprosy type. J. Infect. Dis. 179: 187 191.
103. Roy, S.,, W. McGuire,, C. G. N. Mascie-Taylor,, S. Hazra,, A. V. S. Hill,, and D. Kwiatkowski. 1997. Tumor necrosis factor promoter polymorphism and susceptibility to lepromatous leprosy. J. Infect. Dis. 176: 530 532.
104. Salgame, P.,, J. S. Abrams,, C. Clayberger,, H. Goldstein,, J. Convit,, R. L. Modlin,, and B. R. Bloom. 1991. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254: 279 282.
105. Sampaio, E. P.,, A. L. Moreira,, E. N. Sarno,, A. M. Malta,, and G. Kaplan. 1992. Prolonged treatment with recombinant interferon gamma induces erythema nodosum leprosum in lepromatous leprosy patients. J. Exp. Med. 175: 1729 1737.
106. Sampaio, E. P.,, E. N. Sarno,, R. Galilly,, Z. A. Cohr,, and G. Kaplan. 1991. Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J. Exp. Med. 173: 699 703.
107. Santos, A. R.,, A. S. Almeida,, P. N. Suffys,, M. O. Moraes,, V. F. Filho,, H. J. Mattos,, J. A. Nery,, P. H. Cabello,, E. P. Sampaio,, and E. N. Sarno. 2000. Tumor necrosis factor promoter polymorphism (TNF2) seems to protect against development of severe forms of leprosy in a pilot study in Brazilian patients. Int. J. Lepr. 68: 325 327.
108. Santos, D. O.,, S. L. Santos,, D. Esquenazi,, J. A. Nery,, M. Defruyt,, K. Lorre,, and H. van Heuverswyn. 2001. Evaluation of B7-1 (CD80) and B7-2 (CD86) costimulatory molecules and dendritic cells on the immune response in leprosy. Nihon Hansenbyo Gakkai Zasshi 70: 15 24.
109. Schauf, V.,, S. Ryan,, D. Scollard,, O. Jonasson,, A. Brown,, K. Nelson,, T. Smith,, and V. Vithayasai. 1985. Leprosy associated with HLA-DR2 and DQw1 in the population of northern Thailand. Tissue Antigens 26: 243 247.
110. Scheinman, R. I.,, P. C. Coggswell,, A. K. Lofquist,, and A. S. J. Baldwin. 1995. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 270: 283 286.
111. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150: 2920 2930.
112. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phagocytosis of Mycobacterium leprae by human monocyte derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and interferon gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J. Immunol. 147: 1983.
113. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J. Exp. Med. 174: 1031 1038.
114. Schon, T.,, N. Gebre,, T. Sundqvist,, H. S. Habetmariam,, T. Engeda,, and S. Britton. 1999. Increased levels of nitric oxide metabolites in urine from leprosy patients in reversal reacation. Lepr. Rev. 70: 52 55.
115. Schon, T.,, R. H. Hernandez-Pando,, Y. Negesse,, R. Leekassa,, T. Sundzvist,, and S. Britton. 2001. Expression of inducible nitric oxide synthase and nitrotyrosine in borderline leprosy lesions. Br. J. Dermatol. 145: 809 815.
116. Schon, T.,, R. Leekassa,, N. Gebre,, T. Sundqvist,, E. Bizuneh,, and S. Britton. 2000. High dose prednisolone treatment of leprosy patients undergoing reactions is associated with a rapid decrease in urinary nitric oxide metabolites and clinical improvement. Lepr. Rev. 71: 355 362.
117. Scollard, D. M.,, G. McCormick,, and J. Allen. 1999. Localization of Mycobacterium leprae to endothelial cells of epineural and perineural blood vessels and lymphatics. Am. J. Pathol. 154: 1611 1620.
118. Shannon, E.,, A. Aseffa,, G. Pankey,, F. Sandoval,, and B. Lutz. 2000. Thalidomide's ability to augment the synthesis of IL-2 in vitro in HIV-infected patients is associated with the percentage of CD4 +cells in their blood. Immunopharmacology 46: 175 179.
119. Shaw, M. A.,, S. Atkinson,, H. Dockrell,, R. Hussain,, Z. Lins Lainson,, J. Shaw,, F. Ramos,, F. Silveira,, S. Q. Mehdi,, F. Kaukab,, and J. M. Blackwell. 1993. An RFLP map for 2q33-q37 from multicase mycobacterial and leishmanial disease families: no evidence for an Lsh/Ity/Bcg gene homologue influencing susceptibility to leprosy. Ann. Hum. Genet. 57: 251 271.
120. Shepard, C. C. 1960. The experimental disease that follows the injection of human leprosy bacilli into footpads of mice. J. Exp. Med. 112: 445 454.
121. Shepard, C. C.,, and D. H. McRae. 1968. A method for counting acid-fast bacteria. Int. J. Lepr. 36: 78 82.
122. Sheskin, J. 1965. Thalidomide in the treatment of lepra reactions. Clin. Pharmacol. Ther. 6: 303 306.
123. Shetty, V. P. 1993. Animal model to study the mechanism of nerve damage in leprosy; a preliminary report. Int. J. Lepr. 61: 70 75.
124. Shetty, V. P.,, P. S. Matharu,, and H. A. Noshir. 1999. Sciatic nerve of normal and T200×5R Swiss white mice fails to support multiplication of intraneurally injected M. leprae. Int. J. Lepr. 67: 446 452.
125. Shi, L.,, R. P. Kraut,, R. Aebersold,, and A. H. Greenberg. 1992. A natural killer cell granule protein that induces DNA fragmentation and apoptosis. J. Exp. Med. 175: 553 566.
126. Sibley, L. D.,, S. G. Franzblau,, and J. L. Krahenbuhl. 1987. Intracellular fate of Mycobacterium leprae in normal and activated mouse macrophages. Infect. Immun. 55: 680 685.
127. Sibley, L. D.,, and J. L. Krahenbuhl. 1987. Mycobacterium leprae-burdened macrophages are refractory to activation by gamma-interferon. Infect. Immun. 55: 446 450.
128. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Defective activation of granuloma macrophages from Mycobacterium leprae-infected nude mice. J. Leukoc. Biol. 43: 60 66.
129. Sibley, L. D.,, and J. L. Krahenbuhl. 1988. Induction of unresponsiveness to gamma interferon in macrophages infected with Mycobacterium leprae. Infect. Immun. 56: 1912 1919.
130. Siddiqui, M. R.,, S. Meisner,, K. Tosh,, K. Balakrishnan,, S. Ghei,, S. E. Fisher,, M. Golding,, N. Panangadan,, S. Narayan,, T. Sitaraman,, U. Sengupta,, R. Pitchappan,, and A. V. S. Hill. 2001. Amajor susceptibility locus for leprosy in India maps to chromosome 10p13. Nat. Genet. 27: 439 441.
131. Sieling, P. A.,, D. Chatterjee,, S. A. Porcelli,, T. I. Prigozy,, R. J. Mazzaccaro,, T. Soriano,, B. R. Bloom,, M. B. Brenner,, M. Kronenberg,, P. J. Brennan,, and R. L. Modlin. 1995. CD-1-restricted T cell recognition of microbial lipoglycan antigens. Science 269: 227 230.
132. Sieling, P. A.,, D. Jullien,, M. Dahlem,, T. F. Tedder,, T. H. Rea,, R. L. Modlin,, and S. A. Procelli. 1999. CD1 expression by dendritic cells in human leprosy lesions: correlation with effective host immunity. J. Immunol. 162: 1851 1858.
133. Sieling, P. A.,, M.-T. Ochoa,, D. Jullien,, D. S. Leslie,, S. Sabet,, J.-P. Rosat,, A. E. Burdick,, T. H. Rea,, M. B. Brenner,, S. A. Porcelli,, and R. A. Modlin. 2000. Evidence for human CD4 +T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J. Immunol. 164: 4790 4796.
134. Sieling, P. A.,, X. H. Wang,, M. K. Gately,, J. L. Oliveros,, T. McHugh,, P. F. Barnes,, S. F. Wolf,, L. Golkar,, M. Yamamura,, and Y. Yogi. 1994. IL-12 regulates T helper type 1 cytokine responses in human infectious disease. J. Immunol. 153: 3639 3647.
135. SivaSai, K. S.,, H. K. Prasad,, R. S. Misra,, V. Ramesh,, D. Wilfred,, and I. Nath. 1993. Effect of recombinant interferon gamma administration on lesional monocytes/macrophages in lepromatous leprosy patients. Int. J. Lepr. 61: 259 269.
136. Soebono, H.,, M. J. Giphart,, G. M. T. Schreuder,, P. R. Klatser,, and R. R. P. de Vries. 1997. Associations between HLA-DRB1 alleles and leprosy in an Indonesian population. Int. J. Lepr. 65: 190 196.
137. Spierings, E.,, T. de Boer,, B. Wieles,, L. B. Adams,, E. Marani,, and T. H. Ottenhoff. 2001. Mycobacterium leprae-specific, HLA class II-restricted killing of human Schwann cells by CD4 +Th1 cells: a novel immunopathogenic mechanism of nerve damage in leprosy. J. Immunol. 166: 5883 5888.
138. Spierings, E.,, T. De Boer,, L. Zulianello,, and T. H. Ottenhoff. 2000. The role of Schwann cells, T cells and Mycobacterium leprae in the immunopathogenesis of nerve damage in leprosy. Lepr. Rev. 71: S121 S129.
139. Sreenivasan, P.,, R. S. Misra,, D. Wilfred,, and I. Nath. 1998. Lepromatous leprosy patients show T helper 1-like cytokine profile with differential expression of interleukin- 10 during type 1 and 2 reactions. Immunology 95: 529 536.
140. Steinhoff, U.,, and S. H. Kaufmann. 1988. Specific lysis by CD8 +T cells of Schwann cells expressing Mycobacterium leprae antigens. Eur. J. Immunol. 18: 969 972.
141. Steinhoff, W.,, A. Wand-Wurttenberger,, A. Bremerich,, and S. H. Kaufmann. 1991. Mycobacterium leprae renders Schwann cells and mononuclear phagocytes susceptible or resistant to killer cells. Infect. Immun. 59: 684 688.
142. Stenger, S.,, D. A. Hanson,, R. Teitlebaum,, P. Dewan,, K. R. Niazi,, C. J. Froelich,, T. Ganz,, S. Thoma-Uszynski,, A. Melian,, C. Bogdan,, S. A. Porcelli,, B. R. Bloom,, A. M. Krensky,, and R. L. Modlin. 1998. An antimicrobial activity of cytolytic T cells mediated by granulysin. Science 282: 121 125.
143. Stenger, S.,, R. J. Mazzaccaro,, K. Uyemura,, S. Cho,, P. F. Barnes,, J. P. Rosat,, A. Sette,, M. B. Brenner,, S. A. Procelli,, B. R. Bloom,, and R. L. Modlin. 1997. Differential effects of cytolytic T cell subsets on intracellular infection. Science 276: 1684 1687.
144. Thangaraj, H. S.,, F. I. Lamb,, E. O. Davis,, P. J. Jenner,, L. H. Jeyakumar,, and M. J. Colston. 1990. Identification, sequencing, and expression of Mycobacterium leprae superoxide dismutase, a major antigen. Infect. Immun. 58: 1937 1942.
145. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. T. Ochoa,, M. Engele,, P. A. Sieling,, P. F. Barnes,, M. Rollinghoff,, P. L. Bolcskei,, M. Wagner,, S. Akira,, M. V. Norgard,, J. T. Belisle,, P. J. Godowski,, B. R. Bloom,, and R. L. Modlin. 2001. Induction of direct antimicrobial activity through mammalian toll-like receptors. Science 291: 1544 1547.
146. Truman, R. W.,, and J. L. Krahenbuhl. 2001. Viable M. leprae as a research reagent. Int. J. Lepr. 69: 1 12.
147. Underhill, D. M.,, A. Onzinsky,, K. D. Smith,, and A. Aderem. 1999. Toll-like receptor- 2 mediates mycobacteria-induced proinflammatory signaling in macrophages. Proc. Natl. Acad. Sci. USA 96: 14459 14463.
148. Verhagen, C. E.,, E. A. Wierenga,, A. A. Buffing,, M. A. Chand,, W. R. Faber,, and P. K. Das. 1997. Reversal reaction in borderline leprosy is associated with a polarized shift to type 1-like Mycobacterium leprae T cell reactivity in lesional skin: a follow-up study. J. Immunol. 159: 4474 4483.
149. Visentainer, J. E.,, L. T. Tsuneto,, M. F. Serra,, P. R. Peixoto,, and M. L. Petzl-Erler. 1997. Association of leprosy with HLA-DR2 in a southern Brazilian population. Braz. J. Med. Biol. Res. 30: 51 59.
150. Wang, L.-M.,, A. Kimura,, M. Satoh,, and S. Mineshita. 1999. HLA linked with leprosy in Southern China; HLA-linked resistance alleles to leprosy. Int. J. Lepr. 67: 403 408.
151. Weinberg, J. B. 1998. Nitric oxide production and nitric oxide synthase type 2 expression by human mononuclear phagocytes: a review. Mol. Med. 4: 557 591.
152. Wengenack, N. L.,, M. P. Jensen,, F. Rusnak,, and M. K. Stern. 1999. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem. Biophys. Res. Commun. 256: 485 487.
153. Wheeler, P. R.,, and D. Gregory. 1980. Superoxide dismutase, peroxidatic activity and catalase in Mycobacterium leprae purified from armadillo liver. J. Gen. Microbiol. 121: 457 464.
154. Yamamura, M.,, K. Uyemura,, R. J. Deans,, K. Weinberg,, T. H. Rea,, B. R. Bloom,, and R. L. Modlin. 1991. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254: 277 279.
155. Yamamura, M.,, X. H. Wang,, J. D. Ohmen,, K. Uyemura,, T. H. Rea,, B. R. Bloom,, and R. L. Modlin. 1992. Cytokine patterns of immunologically mediated tissue damage. J. Immunol. 149: 1470 1475.
156. Yu, K.,, C. Mitchell,, Y. Xing,, R. S. Magliozzo,, B. R. Bloom,, and J. Chan. 1999. Toxicity of nitrogen oxides and related oxidants on mycobacteria: M. tuberculosis is resistant to peroxynitrite anion. Tuberc. Lung Dis. 79: 191 198.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error