Chapter 17 : Contexts and Challenges for the Use of New Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Contexts and Challenges for the Use of New Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817886/9781555818937_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817886/9781555818937_Chap17-2.gif


The emergence of huge population centers, with 10 to 20 million inhabitants in large cities without adequate hygiene and sanitation, has been described as a time bomb for emergence of new infectious diseases. As a counterpoint to newly emerging bacterial pathogens is the increase in known pathogens with new arsenals of drug resistance. While hospitals are clearly fertile arenas for selection of antibiotic-resistant pathogenic bacteria, a complementary arena that has been understood for decades is the use of antibiotics in animal feed, for growth promotion and infectious disease prophylaxis. It has been noted that overgrowth has led to restrictions on cephalosporin use in certain geriatric populations and that extensive use of cephalosporins in the 1980s played a significant part in the emergence and spread of Methicillin-resistant (MRSA) in London and in Tokyo hospitals as well as the selection for and strains with many mutational variants of the plasmid-encoded β-lactamases. Increased molecular knowledge about essential bacterial genes and the ability to screen such validated targets with libraries of new synthetic and natural products are likely to turn up new antibiotics against nontraditional bacterial targets. But new antibiotic molecules by themselves will not alter the kinetics of the cycles of resistance development.

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17

Key Concept Ranking

Lower Respiratory Tract Infections
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Untitled

Problem pathogens. Electron micrograph of vancomycin-resistant enterococci exposed to vancomycin, with inset of a control cell grown in trypticase soy broth alone. Bar = 1 m. (From , with permission.)

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.1
Figure 17.1

Antibiotic resistance phenotypes of multidrug-resistant serovar typhimurium DT104.

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.2
Figure 17.2

Suggestion for antibiotic cycling to treat bacterial sepsis in hospitals. (From Gould [1999], with permission.)

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Achari, A.,, D. O. Somers,, J. N. Champness,, P. K. Bryant,, J. Rosemond,, and D. K. Stammers. 1997. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4:490497.
2. Admiraal, S. J.,, C. T. Walsh,, and C. Khosla. 2001. The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40:61166123.
3. Allen, N. E. 1985. Nonclassical targets for antibacterial agents. Annu. Rep. Med. Chem. 20:155162.
4. Amyes, S. G. B. 2001. Magic Bullets, Lost Horizons: the Rise and Fall of Antibiotics. Taylor and Francis, New York, N.Y.
5. Anborgh, P. H.,, and A. Parmeggiani. 1991. New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J. 10:779784.
6. Andres, C. J.,, J. J. Bronson,, S. V. D’Andrea,, M. S. Deshpande,, P. J. Falk,, K. A. Grant-Young,, W. E. Harte,, H. T. Ho,, P. F. Misco,, J. G. Robertson,, D. Stock,, Y. Sun,, and A. W. Walsh. 2000. 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg. Med. Chem. Lett. 10:715717.
7. Anonymous. 1999. The choice of antibacterial drugs. Med. Lett. 41:95104.
8. Anonymous. 2001. The choice of antibacterial drugs. Med. Lett. 43:6978.
9. Apfel, C. M.,, H. Locher,, S. Evers,, B. Takacs,, C. Hubschwerlen,, W. Pirson,, M. G. Page,, and W. Keck. 2001. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45:10581064.
10. Araoz, R.,, E. Anhalt,, L. Rene,, M. A. Badet-Denisot,, P. Courvalin,, and B. Badet. 2000. Mechanism-based inactivation of VanX, a D-alanyl-D-alanine dipeptidase necessary for vancomycin resistance. Biochemistry 39:1597115979.
11. Arthur, M.,, and P. Courvalin. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37:15631571.
12. Arya, P.,, D. T. H. Chou,, and M. G. Baek. 2001. Diversity-based organic synthesis in the era of genomics and proteomics. Angew. Chem. Int. Ed. 40:339346.
13. Arya, P.,, R. Joseph,, and D. T. Chou. 2002. Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem. Biol. 9:145156.
14. Asahi, Y.,, Y. Takeuchi,, and K. Ubukata. 1999. Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2X in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob. Agents Chemother. 43:12521255.
15. Bachmann, B. O.,, R. Li,, and C. A. Townsend. 1998. β-lactam synthetase: a new biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 95:90829086.
16. Baizman, E. R.,, A. A. Branstrom,, C. B. Longley,, N. Allanson,, M. J. Sofia,, D. Gange,, and R. C. Goldman. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146(Pt. 12):31293140.
17. Baltz, R. H., 1997. Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae, p. 415430. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
18. Ban, C.,, and W. Yang. 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541552.
19. Ban, N.,, P. Nissen,, J. Hansen,, P. B. Moore,, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A° resolution. Science 289: 905920.
20. Barrett, J. F.,, and J. A. Hoch. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother. 42:15291536.
21. Barriere, J. C.,, N. Berthaud,, D. Beyer,, S. Dutka-Malen,, J. M. Paris,, and J. F. Desnottes. 1998. Recent developments in streptogramin research. Curr. Pharm. Des. 4:155180.
22. Barton, D., Sir,, K. Nakanishi,, O. Meth-Cohn,, and U. Sankawa. 1999. Comprehensive Natural Products Chemistry. Pergamon, New York, N.Y.
23. Bayles, K. W. 2000. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol. 8:274278.
24. Beadle, B. M.,, I. Trehan,, P. J. Focia,, and B. K. Shoichet. 2002. Structural milestones in the reaction pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin with AmpC beta-lactamase. Structure (Cambridge) 10:413424.
25. Belova, L.,, T. Tenson,, L. Xiong,, P. M. McNicholas,, and A. S. Mankin. 2001. A novel site of antibiotic action in the ribosome: interaction of everninomicin with the large ribosomal subunit. Proc. Natl. Acad. Sci. USA 98:37263731.
26. Benson, T. E.,, D. J. Filman,, C. T. Walsh,, and J. M. Hogle. 1995. An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat. Struct. Biol. 2:644653.
27. Benson, T. E.,, J. L. Marquardt,, A. C. Marquardt,, F. A. Etzkorn,, and C. T. Walsh. 1993. Overexpression, purification, and mechanistic study of UDP-N-acetylenolpyruvylglucosamine reductase. Biochemistry 32:20242030.
28. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141147.
29. Berger, J. M.,, S. J. Gamblin,, S. C. Harrison,, and J. C. Wang. 1996. Structure and mechanism of DNA topoisomerase II. Nature 379:225232.
30. Berger-Bachi, B.,, and M. Tschierske. 1998. Role of Fem factors in methicillin resistance. Drug Resist. Update 2:310324.
31. Bernat, B. A.,, L. T. Laughlin,, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36:30503055.
32. Besra, G. S.,, K. H. Khoo,, M. R. McNeil,, A. Dell,, H. R. Morris,, and P. J. Brennan. 1995. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34:42574266.
33. Bibb, M. 1996. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142(Pt. 6):13351344.
34. Bibb, M. J.,, V. Molle,, and M. J. Buttner. 2000. Sigma(BldN), an extracytoplasmic function RNA polymerase Sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 182:46064616.
35. Bischoff, D.,, S. Pelzer,, A. Holtzel,, G. J. Nicholson,, S. Stockert,, W. Wohlleben,, G. Jung,, and R. D. Sussmuth. 2001. The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew. Chem. Int. Ed. 40:16931696.
36. Bonhoeffer, S.,, M. Lipsitch,, and B. R. Levin. 1997. Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl. Acad. Sci. USA 94:1210612111.
37. Borges-Walmsley, M. I.,, and A. R. Walmsley. 2001. The structure and function of drug pumps. Trends Microbiol. 9:7179.
38. Borisova, S. A.,, L. Zhao,, D. H. Sherman,, and H. W. Liu. 1999. Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1:133136.
39. Born, T. L.,, and J. S. Blanchard. 1999. Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr. Opin. Chem. Biol. 3:607613.
40. Bozdogan, B.,, and R. Leclercq. 1999. Effects of genes encoding resistance to streptogramins A and B on the activity of quinupristin-dalfopristin against Enterococcus faecium. Antimicrob. Agents Chemother. 43:27202725.
41. Braun, V.,, and K. Hantke. 1974. Biochemistry of bacterial cell envelopes. Annu. Rev. Biochem. 43:89121.
42. Breukink, E.,, I. Wiedemann,, C. van Kraaij,, O. P. Kuipers,, H. Sahl,, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286:23612364.
43. Briggs, C. E.,, and P. M. Fratamico. 1999. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43:846849.
44. Brock, T. D.,, M. T. Madigan,, J. M. Martinko,, and J. Parker. 1994. Biology of Microorganisms, 7th ed. Prentice-Hall, Inc., Englewood Cliffs, N.J.
45. Bronson, J. J.,, and J. F. Barrett. 2001a. Recent developments in antibacterial research. Annu. Rep. Med. Chem. 36:8998.
46. Bronson, J. J.,, and J. F. Barrett. 2001b. Quinolone, everninomycin, glycylcycline, carbapenem, lipopeptide and cephem antibacterials in clinical development. Curr. Med. Chem. 8:17751793.
47. Brotz, H.,, G. Bierbaum,, K. Leopold,, P. E. Reynolds,, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42:154160.
48. Brotz, H.,, and H. G. Sahl. 2000. New insights into the mechanism of action of lantibiotics-diverse biological effects by binding to the same molecular target. J. Antimicrob. Chemother. 46:16.
49. Bugg, T. D.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin,, and C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:1040810415.
50. Bugg, T. D.,, and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9:199215.
51. Bugg, T. D.,, and P. E. Brandish. 1994. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol. Lett. 119: 255262.
52. Bush, K.,, and S. Mobashery. 1998. How beta-lactamases have driven pharmaceutical drug discovery. From mechanistic knowledge to clinical circumvention. Adv. Exp. Med. Biol. 456:7198.
53. Bush, K.,, and M. Macielag. 2000. New approaches in the treatment of bacterial infections. Curr. Opin. Chem. Biol. 4:433439.
54. Bussiere, D. E.,, S. W. Muchmore,, C. G. Dealwis,, G. Schluckebier,, V. L. Nienaber,, R. P. Edalji,, K. A. Walter,, U. S. Ladror,, T. F. Holzman,, and C. Abad-Zapatero. 1998. Crystal structure of ErmC´, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37:71037112.
55. Bycroft, B. W.,, C. Maslen,, S. J. Box,, A. Brown,, and J. W. Tyler. 1988. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)- carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J. Antibiot. (Tokyo) 41:12311242.
56. Calfee, M. W.,, J. P. Coleman,, and E. C. Pesci. 2001. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98:1163311637.
57. Campbell, E. A.,, N. Korzheva,, A. Mustaev,, K. Murakami,, S. Nair,, A. Goldfarb,, and S. A. Darst. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104:901912.
58. Capobianco, J. O.,, Z. Cao,, V. D. Shortridge,, Z. Ma,, R. K. Flamm,, and P. Zhong. 2000. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44:15621567.
59. Carter, A. P.,, W. M. Clemons,, D. E. Brodersen,, R. J. Morgan-Warren,, B. T. Wimberly,, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407:340348.
60. Cassidy, P. J.,, and F. M. Kahan. 1973. A stable enzyme-phosphoenolpyruvate intermediate in the synthesis of uridine-5´-diphospho-N-acetyl-2-amino-2-deoxyglucose 3-O-enolpyruvyl ether. Biochemistry 12:13641374.
61. Cetinkaya, Y.,, P. Falk,, and C. G. Mayhall. 2000. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13:686707.
62. Chakraburtty, R.,, and M. Bibb. 1997. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179:58545861.
63. Champness, W. C. 2000. Prokaryotic Development. ASM Press, Washington, D.C.
64. Chang, G.,, and C. B. Roth. 2001. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793- 1800.
65. Chang, H. M.,, M. Y. Chen,, Y. T. Shieh,, M. J. Bibb,, and C. W. Chen. 1996. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol. Microbiol. 21:10751085.
66. Chang, Y. T.,, N. S. Gray,, G. R. Rosania,, D. P. Sutherlin,, S. Kwon,, T. C. Norman,, R. Sarohia,, M. Leost,, L. Meijer,, and P. G. Schultz. 1999. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 6:361375.
67. Chen, H.,, M. G. Thomas,, B. K. Hubbard,, H. C. Losey,, C. T. Walsh,, and M. D. Burkart. 2000. Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDPL- epivancosamine in chloroeremomycin biosynthesis. Proc. Natl. Acad. Sci. USA 97: 1194211947.
68. Chen, H.,, and C. T. Walsh. 2001. Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. Chem. Biol. 8:301312.
69. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler,, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545549.
70. Chirgadze, N. Y.,, S. L. Briggs,, K. A. McAllister,, A. S. Fischl,, and G. Zhao. 2000. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis. EMBO J. 19:52815287.
71. Chopra, I.,, J. Hodgson,, B. Metcalf,, and G. Poste. 1997. The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother. 41:497503.
72. Chopra, I.,, and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232260.
73. Chu, D. T. 1999. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med. Res. Rev. 19:497520.
74. Chu, D. T.,, J. J. Plattner,, and L. Katz. 1996. New directions in antibacterial research. J. Med. Chem. 39:38533874.
75. Chuanchuen, R.,, K. Beinlich,, T. T. Hoang,, A. Becher,, R. R. Karkhoff-Schweizer,, and H. P. Schweizer. 2001. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCDOprJ. Antimicrob. Agents Chemother. 45:428432.
76. Clements, J. M.,, F. Coignard,, I. Johnson,, S. Chandler,, S. Palan,, A. Waller,, J. Wijkmans,, and M. G. Hunter. 2002. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob. Agents Chemother. 46:17931799.
77. Cockerill, F. R., III. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents Chemother. 43:199212.
78. Cohen, M. L. 2000. Changing patterns of infectious disease. Nature 406:762767.
79. Coote, J. G. 1992. Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol. Rev. 8:137161.
80. Cortes, J.,, S. F. Haydock,, G. A. Roberts,, D. J. Bevitt,, and P. F. Leadlay. 1990. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348:176178.
81. Couturier, M.,, M. el Bahassi,, and L. Van Melderen. 1998. Bacterial death by DNA gyrase poisoning. Trends Microbiol. 6:269275.
82. Cozzarelli, N. R. 1980. DNA gyrase and the supercoiling of DNA. Science 207:953960.
83. Crump, M. P.,, J. Crosby,, C. E. Dempsey,, J. A. Parkinson,, M. Murray,, D. A. Hopwood,, and T. J. Simpson. 1997. Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2). Biochemistry 36: 60006008.
84. Cubbon, M. D.,, and R. G. Masterton. 2000. New quinolones—a fresh answer to the pneumococcus. J. Antimicrob. Chemother. 46:869872.
85. Cudic, M.,, and L. Otvos, Jr. 2002. Intracellular targets of antibacterial peptides. Curr. Drug Targets 3:101106.
86. Cudic, P.,, J. K. Kranz,, D. C. Behenna,, R. G. Kruger,, H. Tadesse,, A. J. Wand,, Y. I. Veklich,, J. W. Weisel,, and D. G. McCafferty. 2002. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. Proc. Natl. Acad. Sci. USA 99:73847389.
87. Culver, G. M. 2001. Meanderings of the mRNA through the ribosome. Structure (Cambridge) 9:751758.
88. Dancer, S. J. 2001. The problem with cephalosporins. J. Antimicrob. Chemother. 48: 463478.
89. Datta, N.,, and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208:23941.
90. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375382.
91. Davis, J. R.,, and J. Lederberg. 2000. NAS Workshop Report: Emerging Infectious Diseases from the Global to the Local Perspective.: National Academy of Sciences, Washington, D.C.
92. Decicco, C. P.,, D. J. Nelson,, Y. Luo,, L. Shen,, K. Y. Horiuchi,, K. M. Amsler,, L. A. Foster,, S. M. Spitz,, J. J. Merrill,, C. F. Sizemore,, K. C. Rogers,, R. A. Copeland,, and M. R. Harpel. 2001. Glutamyl-gamma-boronate inhibitors of bacterial GlutRNA( Gln) amidotransferase. Bioorg. Med. Chem. Lett. 11:25612564.
93. Denome, S. A.,, P. K. Elf,, T. A. Henderson,, D. E. Nelson,, and K. D. Young. 1999. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181:39813993.
94. DeVito, J. A.,, J. A. Mills,, V. G. Liu,, A. Agarwal,, C. F. Sizemore,, Z. Yao,, D. M. Stoughton,, M. G. Cappiello,, M. D. Barbosa,, L. A. Foster,, and D. L. Pompliano. 2002. An array of target-specific screening strains for antibacterial discovery. Nat. Biotechnol. 20:478483.
95. Diederichs, K.,, J. Diez,, G. Greller,, C. Muller,, J. Breed,, C. Schnell,, C. Vonrhein,, W. Boos,, and W. Welte. 2000. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19:59515961.
96. Dinos, G. P.,, and D. L. Kalpaxis. 2000. Kinetic studies on the interaction between a ribosomal complex active in peptide bond formation and the macrolide antibiotics tylosin and erythromycin. Biochemistry 39:1162111628.
97. Doekel, S.,, and M. A. Marahiel. 2001. Biosynthesis of natural products on modular peptide synthetases. Metab. Eng. 3:6477.
98. Dolle, R. E. 2000. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 2:383433.
99. Donadio, S.,, M. J. Staver,, J. B. McAlpine,, S. J. Swanson,, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252:675679.
100. Dong, Y. H.,, J. L. Xu,, X. Z. Li,, and L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97:35263531.
101. Dougherty, T. J.,, K. Kennedy,, R. E. Kessler,, and M. J. Pucci. 1996. Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichia coli. J. Bacteriol. 178:61106115.
102. Douthwaite, S.,, L. H. Hansen,, and P. Mauvais. 2000. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol. Microbiol. 36:183193.
103. Drenkard, E.,, and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740743.
104. Drlica, K. 2001. Antibiotic resistance: can we beat the bugs? Drug Discov. Today 6: 714715.
105. Du, L.,, C. Sanchez,, and B. Shen. 2001. Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab. Eng. 3:7895.
106. Duitman, E. H.,, L. W. Hamoen,, M. Rembold,, G. Venema,, H. Seitz,, W. Saenger,, F. Bernhard,, R. Reinhardt,, M. Schmidt,, C. Ullrich,, T. Stein,, F. Leenders,, and J. Vater. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96:1329413299.
107. Eggert, U. S.,, N. Ruiz,, B. V. Falcone,, A. A. Branstrom,, R. C. Goldman,, T. J. Silhavy,, and D. Kahne. 2001. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294:361364.
108. Elliot, T. S.,, J. G. M. Hastings,, and U. Desselberger. 1997. Lecture Notes on Medical Microbiology, 3rd ed. Blackwell Scientific Publications, Ltd., Oxford, United Kingdom.
109. Engberg, J.,, F. M. Aarestrup,, D. E. Taylor,, P. Gerner-Smidt,, and I. Nachamkin. 2001. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg. Infect. Dis. 7:2434.
110. Enne, V. I.,, D. M. Livermore,, P. Stephens,, and L. M. Hall. 2001. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357:13251328.
111. Erlandsen, H.,, E. E. Abola,, and R. C. Stevens. 2000. Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites. Curr. Opin. Struct. Biol. 10:719730.
112. Falkow, S.,, and D. Kennedy. 2001. Antibiotics, animals, and people—again! Science 291:397.
113. Fan, C.,, P. C. Moews,, C. T. Walsh,, and J. R. Knox. 1994. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 A° resolution. Science 266:439443.
114. Fernandez-Lopez, S.,, H. S. Kim,, E. C. Choi,, M. Delgado,, J. R. Granja,, A. Khasanov,, K. Kraehenbuehl,, G. Long,, D. A. Weinberger,, K. M. Wilcoxen,, and M. R. Ghadiri,. 2001. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412:452455. Fierro, J. F.,, C. Hardisson,, and J. A. Salas. 1987. Resistance to oleandomycin in Streptomyces antibioticus, the producer organism. J. Gen. Microbiol. 133(Pt. 7):1931- 1939.
115. Filipe, S. R.,, M. G. Pinho,, and A. Tomasz. 2000. Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J. Biol. Chem. 275:2776827774.
116. Fisher, J.,, J. G. Belasco,, S. Khosla,, and J. R. Knowles. 1980. β-lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry 19:28952901.
117. Fralick, J. A. 1996. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 178:58035805.
118. Fuchs, P. C.,, A. L. Barry,, and S. D. Brown. 2001. In vitro activities of ertapenem (MK-0826) against clinical bacterial isolates from 11 North American medical centers. Antimicrob. Agents Chemother. 45:19151918.
119. Fujihashi, M.,, Y. W. Zhang,, Y. Higuchi,, X. Y. Li,, T. Koyama,, and K. Miki. 2001. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl. Acad. Sci. USA 98:43374342.
120. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:13221328.
121. Gale, E. F.,, E. Cundliffe,, P. E. Reynolds,, M. H. Richmond,, and M. J. Waring. 1981. The Molecular Basis of Antibiotic Action, 2nd ed. Wiley, London, United Kingdom.
122. Garrett, L. 1995. The Coming Plague: Newly Emerging Diseases in a World out of Balance.: Virago, London, United Kingdom.
123. Gaunt, P. N.,, and L. J. Piddock. 1996. Ciprofloxacin resistant Campylobacter spp. in humans: an epidemiological and laboratory study. J. Antimicrob. Chemother. 37: 747757.
124. Ge, M.,, Z. Chen,, H. R. Onishi,, J. Kohler,, L. L. Silver,, R. Kerns,, S. Fukuzawa,, C. Thompson,, and D. Kahne. 1999. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507511.
125. Gegnas, L. D.,, S. T. Waddell,, R. M. Chabin,, S. Reddy,, and K. K. Wong. 1998. Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg. Med. Chem. Lett. 8:16431618.
126. Gehring, A. M.,, W. J. Lees,, D. J. Mindiola,, C. T. Walsh,, and E. D. Brown. 1996. Acetyltransfer precedes uridylyltransfer in the formation of UDP-Nacetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35:579585.
127. Ghuysen, J. M. 1991. Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45:3767.
128. Gokhale, R. S.,, S. Y. Tsuji,, D. E. Cane,, and C. Khosla. 1999. Dissecting and exploiting intermodular communication in polyketide synthases. Science 284:482485.
129. Goldman, R. C.,, S. W. Fesik,, and C. C. Doran. 1990. Role of protonated and neutral forms of macrolides in binding to ribosomes from gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 34:426431.
130. Gorbach, S. L. 2001. Antimicrobial use in animal feed—time to stop. N. Engl. J. Med. 345:12021203. Gould, I. M. 1999. A review of the role of antibiotic policies in the control of antibiotic resistance. J. Antimicrob. Chemother. 43:459465.
131. Goussard, S.,, and P. Courvalin. 1999. Updated sequence information for TEM betalactamase genes. Antimicrob. Agents Chemother. 43:367370.
132. Greenwood, D.,, and F. O’Grady. 1969. A comparison of the effects of ampicillin on Escherichia coli and Proteus mirabilis. J. Med. Microbiol. 2:435441.
133. Greenwood, D. 2000. Antimicrobial Chemotherapy, 4th ed. Oxford University Press, Oxford, United Kingdom.
134. Greenwood, D.,, and F. O’Grady. 1973. The two sites of penicillin action in Escherichia coli. J. Infect. Dis. 128:791794.
135. Groisman, E. A. 2001. Principles of Bacterial Pathogenesis.: Academic Press Inc., San Diego, Calif.
136. Guan, K. L.,, and J. E. Dixon. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249:553556.
137. Guo, L.,, K. B. Lim,, J. S. Gunn,, B. Bainbridge,, R. P. Darveau,, M. Hackett,, and S. I. Miller. 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276:250253.
138. Guo, L.,, K. B. Lim,, C. M. Poduje,, M. Daniel,, J. S. Gunn,, M. Hackett,, and S. I. Miller. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189198.
139. Ha, S.,, E. Chang,, M.-C. Lo., H. Men, P. Park, M. Ge, and S. Walker. 1999. The kinetic characterization of Escherichia coli MurG using synthetic substrate analogues. J. Am. Chem. Soc. 121:84158426.
140. Ha, S.,, D. Walker,, Y. Shi,, and S. Walker. 2000. The 1.9 A° crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9:10451052.
141. Hakenbeck, R. 1998. Mosaic genes and their role in penicillin-resistant Streptococcus pneumoniae. Electrophoresis 19:597601.
142. Hakenbeck, R.,, T. Grebe,, D. Zahner,, and J. B. Stock. 1999. Beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol. 33:673678.
143. Hall, D. G.,, S. Manku,, and F. Wang. 2001. Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J. Comb. Chem. 3:125150.
144. Hancock, R. E.,, and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43:13171323.
145. Hansen, J. N., 1997. Nisin and related antimicrobial peptides, p. 437470. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
146. Hansen, J. L.,, J. A. Ippolito,, N. Ban,, P. Nissen,, P. B. Moore,, and T. A. Steitz. 2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10:117128.
147. Hanzelka, B. L.,, M. R. Parsek,, D. L. Val,, P. V. Dunlap,, J. E. Cronan, Jr., and E. P. Greenberg. 1999. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181:57665770.
148. Hecht, S.,, W. Eisenreich,, P. Adam,, S. Amslinger,, K. Kis,, A. Bacher,, D. Arigoni,, and F. Rohdich. 2001. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc. Natl. Acad. Sci. USA 98:1483714842.
149. Heddle, J. G.,, S. J. Blance,, D. B. Zamble,, F. Hollfelder,, D. A. Miller,, L. M. Wentzell,, C. T. Walsh,, and A. Maxwell. 2001. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J. Mol. Biol. 307:12231234.
150. Hedl, M.,, A. Sutherlin,, E. I. Wilding,, M. Mazzulla,, D. McDevitt,, P. Lane,, J. W. Burgner, 2nd, K. R. Lehnbeuter, C. V. Stauffacher, M. N. Gwynn, and V. W. Rodwell. 2002. Enterococcus faecalis acetoacetyl-coenzyme A thiolase /3-hydroxy-3- methylglutaryl-coenzyme A reductase, a dual-function protein of isopentenyl diphosphate biosynthesis. J. Bacteriol. 184:21162122.
151. Heep, M.,, U. Rieger,, D. Beck,, and N. Lehn. 2000. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44:10751077.
152. Heerding, D. A.,, G. Chan,, W. E. DeWolf,, A. P. Fosberry,, C. A. Janson,, D. D. Jaworski,, E. McManus,, W. H. Miller,, T. D. Moore,, D. J. Payne,, X. Qiu,, S. F. Rittenhouse,, C. Slater-Radosti,, W. Smith,, D. T. Takata,, K. S. Vaidya,, C. C. Yuan,, and W. F. Huffman. 2001. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase. Bioorg. Med. Chem. Lett. 11:20612065.
153. Heffron, S. E.,, and F. Jurnak. 2000. Structure of an EF-Tu complex with a thiazolyl peptide determined at 2.35 A° resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39:3745.
154. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269:400403.
155. Hilliard, J. J.,, R. M. Goldschmidt,, L. Licata,, E. Z. Baum,, and K. Bush. 1999. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial twocomponent systems. Antimicrob. Agents Chemother. 43:16931699.
156. Hiramatsu, K. 1998. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 104:7S10S.
157. Hiramatsu, K.,, L. Cui,, M. Kuroda,, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9:486493.
158. Holdgate, G. A.,, A. Tunnicliffe,, W. H. Ward,, S. A. Weston,, G. Rosenbrock,, P. T. Barth,, I. W. Taylor,, R. A. Pauptit,, and D. Timms. 1997. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry 36:96639673.
159. Holtje, J. V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62:181203.
160. Hon, W. C.,, G. A. McKay,, P. R. Thompson,, R. M. Sweet,, D. S. Yang,, G. D. Wright,, and A. M. Berghuis. 1997. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89:887895.
161. Hopwood, D. A. 1997. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97:24652498.
162. Hu, H.,, Q. Zhang,, and K. Ochi. 2002. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184:39843991.
163. Hubbard, B. K.,, M. G. Thomas,, and C. T. Walsh. 2000. Biosynthesis of L-phydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7:931942.
164. Hubbard, B. K.,, and C. T. Walsh. Vancomycin assembly; Nature’s way. Angew. Chem. Int. Ed. Engl., in press.
165. Hughes, J. M.,, and F. C. Tenover. 1997. Approaches to limiting emergence of antimicrobial resistance in bacteria in human populations. Clin. Infect. Dis. 24(Suppl. 1):S131S135.
166. Hung, L. W.,, I. X. Wang,, K. Nikaido,, P. Q. Liu,, G. F. Ames,, and S. H. Kim. 1998. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396: 703707.
167. Huntington, K. M.,, T. Yi,, Y. Wei,, and D. Pei. 2000. Synthesis and antibacterial activity of peptide deformylase inhibitors. Biochemistry 39:45434551.
168. Hutchinson, C. R. 1997. Antibiotics from genetically engineered microorganisms, p. 683702. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
169. Hutchinson, C. R.,, and I. Fujii. 1995. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49:201238.
170. Ilangovan, U.,, H. Ton-That,, J. Iwahara,, O. Schneewind,, and R. T. Clubb. 2001. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98:60566061.
171. Isberg, R. R.,, and J. M. Leong. 1990. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861871.
172. Jack, R.,, G. Bierbaum,, C. Heidrich,, and H. G. Sahl. 1995. The genetics of lantibiotic biosynthesis. Bioessays 17:793802.
173. Jackman, J. E.,, C. R. Raetz,, and C. A. Fierke. 1999. UDP-3-O-(R-3-hydroxymyristoyl)- N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38:19021911.
174. Jacobs, C.,, J. M. Frere,, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gramnegative bacteria. Cell 88:823832.
175. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96:38013806.
176. Jarvest, R. L.,, J. M. Berge,, C. S. Houge-Frydrych,, L. M. Mensah,, P. J. O’Hanlon,, and A. J. Pope. 2001. Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of carbocyclic analogues of the natural product SB-219383. Bioorg. Med. Chem. Lett. 11:24992502.
177. Ji, Y.,, B. Zhang,, S. F. Van Horn,, P. Warren,, G. Woodnutt,, M. K. Burnham,, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293:22662269.
178. Jiang, W.,, J. Wanner,, R. J. Lee,, P. Y. Bounaud,, and D. L. Boger. 2002. Total synthesis of the ramoplanin A2 and ramoplanose aglycon. J. Am. Chem. Soc. 124:52885290.
179. Kahan, J. S.,, F. M. Kahan,, R. Goegelman,, S. A. Currie,, M. Jackson,, E. O. Stapley,, T. W. Miller,, A. K. Miller,, D. Hendlin,, S. Mochales,, S. Hernandez,, H. B. Woodruff,, and J. Birnbaum. 1979. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. (Tokyo) 32:112.
180. Kaper, J. B.,, and A. D. O’Brien. 1998. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. ASM Press, Washington, D.C.
181. Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2:1538.
182. Katz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97:25572576.
183. Kawachi, R.,, U. Wangchaisoonthorn,, T. Nihira,, and Y. Yamada. 2000. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae. J. Bacteriol. 182:62596263.
184. Keating, T. A.,, and C. T. Walsh. 1999. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 3:598606.
185. Kemp, L. E.,, C. S. Bond,, and W. N. Hunter. 2002. Structure of 2C-methyl-Derythritol 2,4-cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. Proc. Natl. Acad. Sci. USA 99: 65916596.
186. Khaleeli, N.,, R. W. Busby,, and C. A. Townsend. 2000. Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase: the His-3 variant of the 2-His-1-carboxylate mold. Biochemistry 39:86668673.
187. Khosla, C. 1997. Harnessing the biosynthetic potential of modular polyketide synthases. Chem. Rev. 97:25772590.
188. Kieser, T.,, K. F. Chater,, M. Bibb,, M. J. Buttner,, and D. A. Hopwood. 2000. Practical Streptomyces Genetics.: The John Innes Foundation, Norwich.
189. Kinoshita, K.,, P. G. Willard,, C. Khosla,, and D. E. Cane. 2001. Precursor-directed biosynthesis of 16-membered macrolides by the erythromycin polyketide synthase. J. Am. Chem. Soc. 123:24952502.
190. Kleerebezem, M.,, L. E. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24:895904.
191. Kloss, P.,, L. Xiong,, D. L. Shinabarger,, and A. S. Mankin. 1999. Resistance mutations in 23S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J. Mol. Biol. 294:93101.
192. Knowles, J. R. 1985. Penicillin resistance: the chemistry of β-lactamase inhibition. Acc. Chem. Res. 18:97104.
193. Knox, J. R. 1995. Extended-spectrum and inhibitor-resistant TEM-type betalactamases: mutations, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. 39:25932601.
194. Knox, J. R.,, P. C. Moews,, and J. M. Frere. 1996. Molecular evolution of bacterial beta-lactam resistance. Chem. Biol. 3:937947.
195. Kobayashi, K.,, M. Ogura,, H. Yamaguchi,, K. Yoshida,, N. Ogasawara,, T. Tanaka,, and Y. Fujita. 2001. Comprehensive DNA microarray analysis of Bacillus subtilis twocomponent regulatory systems. J. Bacteriol. 183:73657370.
196. Koebnik, R.,, K. P. Locher,, and P. Van Gelder. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37:239253.
197. Konz, D.,, and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6:R39R48.
198. Koppisch, A. T.,, D. T. Fox,, B. S. Blagg,, and C. D. Poulter. 2002. E. coli MEP synthase: steady-state kinetic analysis and substrate binding. Biochemistry 41:236243.
199. Koronakis, V.,, A. Sharff,, E. Koronakis,, B. Luisi,, and C. Hughes. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405:914919.
200. Kostrewa, D.,, A. D’Arcy,, B. Takacs,, and M. Kamber. 2001. Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A° resolution and in complex with UDP-Nacetylglucosamine and Mg(2+) at 1.96 A° resolution. J. Mol. Biol. 305:279289.
201. Kotra, L. P.,, J. Haddad,, and S. Mobashery. 2000. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 44:32493256.
202. Kragol, G.,, S. Lovas,, G. Varadi,, B. A. Condie,, R. Hoffmann,, and L. Otvos, Jr. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40:30163026.
203. Kunin, C. M. 1997. Antibiotic armageddon. Clin. Infect. Dis. 25:240241.
204. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357:12251240.
205. Kurokawa, H.,, T. Yagi,, N. Shibata,, K. Shibayama,, and Y. Arakawa. 1999. Worldwide proliferation of carbapenem-resistant gram-negative bacteria. Lancet 354:955.
206. Kurz, M.,, and W. Guba. 1996. 3D structure of ramoplanin: a potent inhibitor of bacterial cell wall synthesis. Biochemistry 35:1257012575.
207. Kurz, M.,, W. Guba,, and L. Vertesy. 1998. Three-dimensional structure of moenomycin A—a potent inhibitor of penicillin-binding protein 1b. Eur. J. Biochem. 252: 500507.
208. Kuzin, A. P.,, T. Sun,, J. Jorczak-Baillass,, V. L. Healy,, C. T. Walsh,, and J. R. Knox. 2000. Enzymes of vancomycin resistance: the structure of D-alanine-D-lactate ligase of naturally resistant Leuconostoc mesenteroides. Structure 8:463470.
209. Lambalot, R. H.,, A. M. Gehring,, R. S. Flugel,, P. Zuber,, M. LaCelle,, M. A. Marahiel,, R. Reid,, C. Khosla,, and C. T. Walsh. 1996. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol. 3:923936.
210. Lancini, G., 1983. Ansamycins, p. 231254. In L. C. Vining (ed.), Biochemistry and Genetic Regulation of Commercially Important Antibiotics. Addison-Wesley Publishing Co., Inc., Reading, Mass.
211. Lee, D.,, J. K. Sello,, and S. L. Schreiber. 1999. A strategy for macrocyclic ring closure and functionalization aimed toward split-pool syntheses. J. Am. Chem. Soc. 121: 1064810649.
212. Lee, J.,, S. U. Kang,, S. Y. Kim,, S. E. Kim,, Y. J. Job,, and S. Kim. 2001. Vanilloid and isovanilloid analogues as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorg. Med. Chem. Lett. 11:965968.
213. Lee, V. J.,, and S. J. Hecker. 1999. Antibiotic resistance versus small molecules, the chemical evolution. Med. Res. Rev. 19:521542.
214. Lee, V. T.,, and O. Schneewind. 2001. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 15:17251752.
215. Lessard, I. A.,, V. L. Healy,, I. S. Park,, and C. T. Walsh. 1999. Determinants for differential effects on D-Ala-D-lactate vs D-Ala-D-Ala formation by the VanA ligase from vancomycin-resistant enterococci. Biochemistry 38:1400614022.
216. Lessard, I. A.,, and C. T. Walsh. 1999. Mutational analysis of active-site residues of the enterococcal D-Ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-Ala-D-Ala ligase and D-Ala-D-Ala carboxypeptidase VanY. Chem. Biol. 6:177187.
217. Levy, S. B. 1992. The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle.: Plenum Press, New York, N.Y.
218. Levy, S. B. 1998. The challenge of antibiotic resistance. Sci. Am. 278:4653.
219. Levy, S. B. 2001. Antimicrobial resistance potential. Lancet 358:11001101.