1887

Chapter 17 : Contexts and Challenges for the Use of New Antibiotics

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Contexts and Challenges for the Use of New Antibiotics, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817886/9781555818937_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817886/9781555818937_Chap17-2.gif

Abstract:

The emergence of huge population centers, with 10 to 20 million inhabitants in large cities without adequate hygiene and sanitation, has been described as a time bomb for emergence of new infectious diseases. As a counterpoint to newly emerging bacterial pathogens is the increase in known pathogens with new arsenals of drug resistance. While hospitals are clearly fertile arenas for selection of antibiotic-resistant pathogenic bacteria, a complementary arena that has been understood for decades is the use of antibiotics in animal feed, for growth promotion and infectious disease prophylaxis. It has been noted that overgrowth has led to restrictions on cephalosporin use in certain geriatric populations and that extensive use of cephalosporins in the 1980s played a significant part in the emergence and spread of Methicillin-resistant (MRSA) in London and in Tokyo hospitals as well as the selection for and strains with many mutational variants of the plasmid-encoded β-lactamases. Increased molecular knowledge about essential bacterial genes and the ability to screen such validated targets with libraries of new synthetic and natural products are likely to turn up new antibiotics against nontraditional bacterial targets. But new antibiotic molecules by themselves will not alter the kinetics of the cycles of resistance development.

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17

Key Concept Ranking

Lower Respiratory Tract Infections
0.44277483
0.44277483
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Untitled
Untitled

Problem pathogens. Electron micrograph of vancomycin-resistant enterococci exposed to vancomycin, with inset of a control cell grown in trypticase soy broth alone. Bar = 1 m. (From , with permission.)

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.1
Figure 17.1

Antibiotic resistance phenotypes of multidrug-resistant serovar typhimurium DT104.

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 17.2
Figure 17.2

Suggestion for antibiotic cycling to treat bacterial sepsis in hospitals. (From Gould [1999], with permission.)

Citation: Walsh C. 2003. Contexts and Challenges for the Use of New Antibiotics, p 285-295. In Antibiotics. ASM Press, Washington, DC. doi: 10.1128/9781555817886.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817886.chap17
1. Achari, A.,, D. O. Somers,, J. N. Champness,, P. K. Bryant,, J. Rosemond,, and D. K. Stammers. 1997. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4: 490 497.
2. Admiraal, S. J.,, C. T. Walsh,, and C. Khosla. 2001. The loading module of rifamycin synthetase is an adenylation-thiolation didomain with substrate tolerance for substituted benzoates. Biochemistry 40: 6116 6123.
3. Allen, N. E. 1985. Nonclassical targets for antibacterial agents. Annu. Rep. Med. Chem. 20: 155 162.
4. Amyes, S. G. B. 2001. Magic Bullets, Lost Horizons: the Rise and Fall of Antibiotics. Taylor and Francis, New York, N.Y.
5. Anborgh, P. H.,, and A. Parmeggiani. 1991. New antibiotic that acts specifically on the GTP-bound form of elongation factor Tu. EMBO J. 10: 779 784.
6. Andres, C. J.,, J. J. Bronson,, S. V. D’Andrea,, M. S. Deshpande,, P. J. Falk,, K. A. Grant-Young,, W. E. Harte,, H. T. Ho,, P. F. Misco,, J. G. Robertson,, D. Stock,, Y. Sun,, and A. W. Walsh. 2000. 4-Thiazolidinones: novel inhibitors of the bacterial enzyme MurB. Bioorg. Med. Chem. Lett. 10: 715 717.
7. Anonymous. 1999. The choice of antibacterial drugs. Med. Lett. 41: 95 104.
8. Anonymous. 2001. The choice of antibacterial drugs. Med. Lett. 43: 69 78.
9. Apfel, C. M.,, H. Locher,, S. Evers,, B. Takacs,, C. Hubschwerlen,, W. Pirson,, M. G. Page,, and W. Keck. 2001. Peptide deformylase as an antibacterial drug target: target validation and resistance development. Antimicrob. Agents Chemother. 45: 1058 1064.
10. Araoz, R.,, E. Anhalt,, L. Rene,, M. A. Badet-Denisot,, P. Courvalin,, and B. Badet. 2000. Mechanism-based inactivation of VanX, a D-alanyl-D-alanine dipeptidase necessary for vancomycin resistance. Biochemistry 39: 15971 15979.
11. Arthur, M.,, and P. Courvalin. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37: 1563 1571.
12. Arya, P.,, D. T. H. Chou,, and M. G. Baek. 2001. Diversity-based organic synthesis in the era of genomics and proteomics. Angew. Chem. Int. Ed. 40: 339 346.
13. Arya, P.,, R. Joseph,, and D. T. Chou. 2002. Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem. Biol. 9: 145 156.
14. Asahi, Y.,, Y. Takeuchi,, and K. Ubukata. 1999. Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2X in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob. Agents Chemother. 43: 1252 1255.
15. Bachmann, B. O.,, R. Li,, and C. A. Townsend. 1998. β-lactam synthetase: a new biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 95: 9082 9086.
16. Baizman, E. R.,, A. A. Branstrom,, C. B. Longley,, N. Allanson,, M. J. Sofia,, D. Gange,, and R. C. Goldman. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146(Pt. 12): 3129 3140.
17. Baltz, R. H., 1997. Lipopeptide antibiotics produced by Streptomyces roseosporus and Streptomyces fradiae, p. 415 430. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
18. Ban, C.,, and W. Yang. 1998. Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95: 541 552.
19. Ban, N.,, P. Nissen,, J. Hansen,, P. B. Moore,, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 A° resolution. Science 289: 905 920.
20. Barrett, J. F.,, and J. A. Hoch. 1998. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother. 42: 1529 1536.
21. Barriere, J. C.,, N. Berthaud,, D. Beyer,, S. Dutka-Malen,, J. M. Paris,, and J. F. Desnottes. 1998. Recent developments in streptogramin research. Curr. Pharm. Des. 4: 155 180.
22. Barton, D., Sir,, K. Nakanishi,, O. Meth-Cohn,, and U. Sankawa. 1999. Comprehensive Natural Products Chemistry. Pergamon, New York, N.Y.
23. Bayles, K. W. 2000. The bactericidal action of penicillin: new clues to an unsolved mystery. Trends Microbiol. 8: 274 278.
24. Beadle, B. M.,, I. Trehan,, P. J. Focia,, and B. K. Shoichet. 2002. Structural milestones in the reaction pathway of an amide hydrolase: substrate, acyl, and product complexes of cephalothin with AmpC beta-lactamase. Structure (Cambridge) 10: 413 424.
25. Belova, L.,, T. Tenson,, L. Xiong,, P. M. McNicholas,, and A. S. Mankin. 2001. A novel site of antibiotic action in the ribosome: interaction of everninomicin with the large ribosomal subunit. Proc. Natl. Acad. Sci. USA 98: 3726 3731.
26. Benson, T. E.,, D. J. Filman,, C. T. Walsh,, and J. M. Hogle. 1995. An enzyme-substrate complex involved in bacterial cell wall biosynthesis. Nat. Struct. Biol. 2: 644 653.
27. Benson, T. E.,, J. L. Marquardt,, A. C. Marquardt,, F. A. Etzkorn,, and C. T. Walsh. 1993. Overexpression, purification, and mechanistic study of UDP- N-acetylenolpyruvylglucosamine reductase. Biochemistry 32: 2024 2030.
28. Bentley, S. D.,, K. F. Chater,, A. M. Cerdeno-Tarraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C. H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M. A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141 147.
29. Berger, J. M.,, S. J. Gamblin,, S. C. Harrison,, and J. C. Wang. 1996. Structure and mechanism of DNA topoisomerase II. Nature 379: 225 232.
30. Berger-Bachi, B.,, and M. Tschierske. 1998. Role of Fem factors in methicillin resistance. Drug Resist. Update 2: 310 324.
31. Bernat, B. A.,, L. T. Laughlin,, and R. N. Armstrong. 1997. Fosfomycin resistance protein (FosA) is a manganese metalloglutathione transferase related to glyoxalase I and the extradiol dioxygenases. Biochemistry 36: 3050 3055.
32. Besra, G. S.,, K. H. Khoo,, M. R. McNeil,, A. Dell,, H. R. Morris,, and P. J. Brennan. 1995. A new interpretation of the structure of the mycolyl-arabinogalactan complex of Mycobacterium tuberculosis as revealed through characterization of oligoglycosylalditol fragments by fast-atom bombardment mass spectrometry and 1H nuclear magnetic resonance spectroscopy. Biochemistry 34: 4257 4266.
33. Bibb, M. 1996. 1995 Colworth Prize Lecture. The regulation of antibiotic production in Streptomyces coelicolor A3(2). Microbiology 142(Pt. 6): 1335 1344.
34. Bibb, M. J.,, V. Molle,, and M. J. Buttner. 2000. Sigma(BldN), an extracytoplasmic function RNA polymerase Sigma factor required for aerial mycelium formation in Streptomyces coelicolor A3(2). J. Bacteriol. 182: 4606 4616.
35. Bischoff, D.,, S. Pelzer,, A. Holtzel,, G. J. Nicholson,, S. Stockert,, W. Wohlleben,, G. Jung,, and R. D. Sussmuth. 2001. The biosynthesis of vancomycin-type glycopeptide antibiotics—new insights into the cyclization steps. Angew. Chem. Int. Ed. 40: 1693 1696.
36. Bonhoeffer, S.,, M. Lipsitch,, and B. R. Levin. 1997. Evaluating treatment protocols to prevent antibiotic resistance. Proc. Natl. Acad. Sci. USA 94: 12106 12111.
37. Borges-Walmsley, M. I.,, and A. R. Walmsley. 2001. The structure and function of drug pumps. Trends Microbiol. 9: 71 79.
38. Borisova, S. A.,, L. Zhao,, D. H. Sherman,, and H. W. Liu. 1999. Biosynthesis of desosamine: construction of a new macrolide carrying a genetically designed sugar moiety. Org. Lett. 1: 133 136.
39. Born, T. L.,, and J. S. Blanchard. 1999. Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr. Opin. Chem. Biol. 3: 607 613.
40. Bozdogan, B.,, and R. Leclercq. 1999. Effects of genes encoding resistance to streptogramins A and B on the activity of quinupristin-dalfopristin against Enterococcus faecium. Antimicrob. Agents Chemother. 43: 2720 2725.
41. Braun, V.,, and K. Hantke. 1974. Biochemistry of bacterial cell envelopes. Annu. Rev. Biochem. 43: 89 121.
42. Breukink, E.,, I. Wiedemann,, C. van Kraaij,, O. P. Kuipers,, H. Sahl,, and B. de Kruijff. 1999. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science 286: 2361 2364.
43. Briggs, C. E.,, and P. M. Fratamico. 1999. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43: 846 849.
44. Brock, T. D.,, M. T. Madigan,, J. M. Martinko,, and J. Parker. 1994. Biology of Microorganisms, 7th ed. Prentice-Hall, Inc., Englewood Cliffs, N.J.
45. Bronson, J. J.,, and J. F. Barrett. 2001a. Recent developments in antibacterial research. Annu. Rep. Med. Chem. 36: 89 98.
46. Bronson, J. J.,, and J. F. Barrett. 2001b. Quinolone, everninomycin, glycylcycline, carbapenem, lipopeptide and cephem antibacterials in clinical development. Curr. Med. Chem. 8: 1775 1793.
47. Brotz, H.,, G. Bierbaum,, K. Leopold,, P. E. Reynolds,, and H. G. Sahl. 1998. The lantibiotic mersacidin inhibits peptidoglycan synthesis by targeting lipid II. Antimicrob. Agents Chemother. 42: 154 160.
48. Brotz, H.,, and H. G. Sahl. 2000. New insights into the mechanism of action of lantibiotics-diverse biological effects by binding to the same molecular target. J. Antimicrob. Chemother. 46: 1 6.
49. Bugg, T. D.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin,, and C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 10408 10415.
50. Bugg, T. D.,, and C. T. Walsh. 1992. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat. Prod. Rep. 9: 199 215.
51. Bugg, T. D.,, and P. E. Brandish. 1994. From peptidoglycan to glycoproteins: common features of lipid-linked oligosaccharide biosynthesis. FEMS Microbiol. Lett. 119: 255 262.
52. Bush, K.,, and S. Mobashery. 1998. How beta-lactamases have driven pharmaceutical drug discovery. From mechanistic knowledge to clinical circumvention. Adv. Exp. Med. Biol. 456: 71 98.
53. Bush, K.,, and M. Macielag. 2000. New approaches in the treatment of bacterial infections. Curr. Opin. Chem. Biol. 4: 433 439.
54. Bussiere, D. E.,, S. W. Muchmore,, C. G. Dealwis,, G. Schluckebier,, V. L. Nienaber,, R. P. Edalji,, K. A. Walter,, U. S. Ladror,, T. F. Holzman,, and C. Abad-Zapatero. 1998. Crystal structure of ErmC´, an rRNA methyltransferase which mediates antibiotic resistance in bacteria. Biochemistry 37: 7103 7112.
55. Bycroft, B. W.,, C. Maslen,, S. J. Box,, A. Brown,, and J. W. Tyler. 1988. The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)- carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J. Antibiot. (Tokyo) 41: 1231 1242.
56. Calfee, M. W.,, J. P. Coleman,, and E. C. Pesci. 2001. Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 98: 11633 11637.
57. Campbell, E. A.,, N. Korzheva,, A. Mustaev,, K. Murakami,, S. Nair,, A. Goldfarb,, and S. A. Darst. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901 912.
58. Capobianco, J. O.,, Z. Cao,, V. D. Shortridge,, Z. Ma,, R. K. Flamm,, and P. Zhong. 2000. Studies of the novel ketolide ABT-773: transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 44: 1562 1567.
59. Carter, A. P.,, W. M. Clemons,, D. E. Brodersen,, R. J. Morgan-Warren,, B. T. Wimberly,, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340 348.
60. Cassidy, P. J.,, and F. M. Kahan. 1973. A stable enzyme-phosphoenolpyruvate intermediate in the synthesis of uridine-5´-diphospho- N-acetyl-2-amino-2-deoxyglucose 3- O-enolpyruvyl ether. Biochemistry 12: 1364 1374.
61. Cetinkaya, Y.,, P. Falk,, and C. G. Mayhall. 2000. Vancomycin-resistant enterococci. Clin. Microbiol. Rev. 13: 686 707.
62. Chakraburtty, R.,, and M. Bibb. 1997. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation. J. Bacteriol. 179: 5854 5861.
63. Champness, W. C. 2000. Prokaryotic Development. ASM Press, Washington, D.C.
64. Chang, G.,, and C. B. Roth. 2001. Structure of MsbA from E. coli: a homolog of the multidrug resistance ATP binding cassette (ABC) transporters. Science 293:1793- 1800.
65. Chang, H. M.,, M. Y. Chen,, Y. T. Shieh,, M. J. Bibb,, and C. W. Chen. 1996. The cutRS signal transduction system of Streptomyces lividans represses the biosynthesis of the polyketide antibiotic actinorhodin. Mol. Microbiol. 21: 1075 1085.
66. Chang, Y. T.,, N. S. Gray,, G. R. Rosania,, D. P. Sutherlin,, S. Kwon,, T. C. Norman,, R. Sarohia,, M. Leost,, L. Meijer,, and P. G. Schultz. 1999. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 6: 361 375.
67. Chen, H.,, M. G. Thomas,, B. K. Hubbard,, H. C. Losey,, C. T. Walsh,, and M. D. Burkart. 2000. Deoxysugars in glycopeptide antibiotics: enzymatic synthesis of TDPL- epivancosamine in chloroeremomycin biosynthesis. Proc. Natl. Acad. Sci. USA 97: 11942 11947.
68. Chen, H.,, and C. T. Walsh. 2001. Coumarin formation in novobiocin biosynthesis: beta-hydroxylation of the aminoacyl enzyme tyrosyl- S-NovH by a cytochrome P450 NovI. Chem. Biol. 8: 301 312.
69. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler,, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545 549.
70. Chirgadze, N. Y.,, S. L. Briggs,, K. A. McAllister,, A. S. Fischl,, and G. Zhao. 2000. Crystal structure of Streptococcus pneumoniae acyl carrier protein synthase: an essential enzyme in bacterial fatty acid biosynthesis. EMBO J. 19: 5281 5287.
71. Chopra, I.,, J. Hodgson,, B. Metcalf,, and G. Poste. 1997. The search for antimicrobial agents effective against bacteria resistant to multiple antibiotics. Antimicrob. Agents Chemother. 41: 497 503.
72. Chopra, I.,, and M. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65: 232 260.
73. Chu, D. T. 1999. Recent progress in novel macrolides, quinolones, and 2-pyridones to overcome bacterial resistance. Med. Res. Rev. 19: 497 520.
74. Chu, D. T.,, J. J. Plattner,, and L. Katz. 1996. New directions in antibacterial research. J. Med. Chem. 39: 3853 3874.
75. Chuanchuen, R.,, K. Beinlich,, T. T. Hoang,, A. Becher,, R. R. Karkhoff-Schweizer,, and H. P. Schweizer. 2001. Cross-resistance between triclosan and antibiotics in Pseudomonas aeruginosa is mediated by multidrug efflux pumps: exposure of a susceptible mutant strain to triclosan selects nfxB mutants overexpressing MexCDOprJ. Antimicrob. Agents Chemother. 45: 428 432.
76. Clements, J. M.,, F. Coignard,, I. Johnson,, S. Chandler,, S. Palan,, A. Waller,, J. Wijkmans,, and M. G. Hunter. 2002. Antibacterial activities and characterization of novel inhibitors of LpxC. Antimicrob. Agents Chemother. 46: 1793 1799.
77. Cockerill, F. R., III. 1999. Genetic methods for assessing antimicrobial resistance. Antimicrob. Agents Chemother. 43: 199 212.
78. Cohen, M. L. 2000. Changing patterns of infectious disease. Nature 406: 762 767.
79. Coote, J. G. 1992. Structural and functional relationships among the RTX toxin determinants of gram-negative bacteria. FEMS Microbiol. Rev. 8: 137 161.
80. Cortes, J.,, S. F. Haydock,, G. A. Roberts,, D. J. Bevitt,, and P. F. Leadlay. 1990. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea. Nature 348: 176 178.
81. Couturier, M.,, M. el Bahassi,, and L. Van Melderen. 1998. Bacterial death by DNA gyrase poisoning. Trends Microbiol. 6: 269 275.
82. Cozzarelli, N. R. 1980. DNA gyrase and the supercoiling of DNA. Science 207: 953 960.
83. Crump, M. P.,, J. Crosby,, C. E. Dempsey,, J. A. Parkinson,, M. Murray,, D. A. Hopwood,, and T. J. Simpson. 1997. Solution structure of the actinorhodin polyketide synthase acyl carrier protein from Streptomyces coelicolor A3(2). Biochemistry 36: 6000 6008.
84. Cubbon, M. D.,, and R. G. Masterton. 2000. New quinolones—a fresh answer to the pneumococcus. J. Antimicrob. Chemother. 46: 869 872.
85. Cudic, M.,, and L. Otvos, Jr. 2002. Intracellular targets of antibacterial peptides. Curr. Drug Targets 3: 101 106.
86. Cudic, P.,, J. K. Kranz,, D. C. Behenna,, R. G. Kruger,, H. Tadesse,, A. J. Wand,, Y. I. Veklich,, J. W. Weisel,, and D. G. McCafferty. 2002. Complexation of peptidoglycan intermediates by the lipoglycodepsipeptide antibiotic ramoplanin: minimal structural requirements for intermolecular complexation and fibril formation. Proc. Natl. Acad. Sci. USA 99: 7384 7389.
87. Culver, G. M. 2001. Meanderings of the mRNA through the ribosome. Structure (Cambridge) 9: 751 758.
88. Dancer, S. J. 2001. The problem with cephalosporins. J. Antimicrob. Chemother. 48: 463 478.
89. Datta, N.,, and P. Kontomichalou. 1965. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature 208: 239 41.
90. Davies, J. 1994. Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375 382.
91. Davis, J. R.,, and J. Lederberg. 2000. NAS Workshop Report: Emerging Infectious Diseases from the Global to the Local Perspective.: National Academy of Sciences, Washington, D.C.
92. Decicco, C. P.,, D. J. Nelson,, Y. Luo,, L. Shen,, K. Y. Horiuchi,, K. M. Amsler,, L. A. Foster,, S. M. Spitz,, J. J. Merrill,, C. F. Sizemore,, K. C. Rogers,, R. A. Copeland,, and M. R. Harpel. 2001. Glutamyl-gamma-boronate inhibitors of bacterial GlutRNA( Gln) amidotransferase. Bioorg. Med. Chem. Lett. 11: 2561 2564.
93. Denome, S. A.,, P. K. Elf,, T. A. Henderson,, D. E. Nelson,, and K. D. Young. 1999. Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J. Bacteriol. 181: 3981 3993.
94. DeVito, J. A.,, J. A. Mills,, V. G. Liu,, A. Agarwal,, C. F. Sizemore,, Z. Yao,, D. M. Stoughton,, M. G. Cappiello,, M. D. Barbosa,, L. A. Foster,, and D. L. Pompliano. 2002. An array of target-specific screening strains for antibacterial discovery. Nat. Biotechnol. 20: 478 483.
95. Diederichs, K.,, J. Diez,, G. Greller,, C. Muller,, J. Breed,, C. Schnell,, C. Vonrhein,, W. Boos,, and W. Welte. 2000. Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis. EMBO J. 19: 5951 5961.
96. Dinos, G. P.,, and D. L. Kalpaxis. 2000. Kinetic studies on the interaction between a ribosomal complex active in peptide bond formation and the macrolide antibiotics tylosin and erythromycin. Biochemistry 39: 11621 11628.
97. Doekel, S.,, and M. A. Marahiel. 2001. Biosynthesis of natural products on modular peptide synthetases. Metab. Eng. 3: 64 77.
98. Dolle, R. E. 2000. Comprehensive survey of combinatorial library synthesis: 1999. J. Comb. Chem. 2: 383 433.
99. Donadio, S.,, M. J. Staver,, J. B. McAlpine,, S. J. Swanson,, and L. Katz. 1991. Modular organization of genes required for complex polyketide biosynthesis. Science 252: 675 679.
100. Dong, Y. H.,, J. L. Xu,, X. Z. Li,, and L. H. Zhang. 2000. AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526 3531.
101. Dougherty, T. J.,, K. Kennedy,, R. E. Kessler,, and M. J. Pucci. 1996. Direct quantitation of the number of individual penicillin-binding proteins per cell in Escherichia coli. J. Bacteriol. 178: 6110 6115.
102. Douthwaite, S.,, L. H. Hansen,, and P. Mauvais. 2000. Macrolide-ketolide inhibition of MLS-resistant ribosomes is improved by alternative drug interaction with domain II of 23S rRNA. Mol. Microbiol. 36: 183 193.
103. Drenkard, E.,, and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740 743.
104. Drlica, K. 2001. Antibiotic resistance: can we beat the bugs? Drug Discov. Today 6: 714 715.
105. Du, L.,, C. Sanchez,, and B. Shen. 2001. Hybrid peptide-polyketide natural products: biosynthesis and prospects toward engineering novel molecules. Metab. Eng. 3: 78 95.
106. Duitman, E. H.,, L. W. Hamoen,, M. Rembold,, G. Venema,, H. Seitz,, W. Saenger,, F. Bernhard,, R. Reinhardt,, M. Schmidt,, C. Ullrich,, T. Stein,, F. Leenders,, and J. Vater. 1999. The mycosubtilin synthetase of Bacillus subtilis ATCC6633: a multifunctional hybrid between a peptide synthetase, an amino transferase, and a fatty acid synthase. Proc. Natl. Acad. Sci. USA 96: 13294 13299.
107. Eggert, U. S.,, N. Ruiz,, B. V. Falcone,, A. A. Branstrom,, R. C. Goldman,, T. J. Silhavy,, and D. Kahne. 2001. Genetic basis for activity differences between vancomycin and glycolipid derivatives of vancomycin. Science 294: 361 364.
108. Elliot, T. S.,, J. G. M. Hastings,, and U. Desselberger. 1997. Lecture Notes on Medical Microbiology, 3rd ed. Blackwell Scientific Publications, Ltd., Oxford, United Kingdom.
109. Engberg, J.,, F. M. Aarestrup,, D. E. Taylor,, P. Gerner-Smidt,, and I. Nachamkin. 2001. Quinolone and macrolide resistance in Campylobacter jejuni and C. coli: resistance mechanisms and trends in human isolates. Emerg. Infect. Dis. 7: 24 34.
110. Enne, V. I.,, D. M. Livermore,, P. Stephens,, and L. M. Hall. 2001. Persistence of sulphonamide resistance in Escherichia coli in the UK despite national prescribing restriction. Lancet 357: 1325 1328.
111. Erlandsen, H.,, E. E. Abola,, and R. C. Stevens. 2000. Combining structural genomics and enzymology: completing the picture in metabolic pathways and enzyme active sites. Curr. Opin. Struct. Biol. 10: 719 730.
112. Falkow, S.,, and D. Kennedy. 2001. Antibiotics, animals, and people—again! Science 291: 397.
113. Fan, C.,, P. C. Moews,, C. T. Walsh,, and J. R. Knox. 1994. Vancomycin resistance: structure of D-alanine:D-alanine ligase at 2.3 A° resolution. Science 266: 439 443.
114. Fernandez-Lopez, S.,, H. S. Kim,, E. C. Choi,, M. Delgado,, J. R. Granja,, A. Khasanov,, K. Kraehenbuehl,, G. Long,, D. A. Weinberger,, K. M. Wilcoxen,, and M. R. Ghadiri,. 2001. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture. Nature 412: 452 455. Fierro, J. F.,, C. Hardisson,, and J. A. Salas. 1987. Resistance to oleandomycin in Streptomyces antibioticus, the producer organism. J. Gen. Microbiol. 133(Pt. 7):1931- 1939.
115. Filipe, S. R.,, M. G. Pinho,, and A. Tomasz. 2000. Characterization of the murMN operon involved in the synthesis of branched peptidoglycan peptides in Streptococcus pneumoniae. J. Biol. Chem. 275: 27768 27774.
116. Fisher, J.,, J. G. Belasco,, S. Khosla,, and J. R. Knowles. 1980. β-lactamase proceeds via an acyl-enzyme intermediate. Interaction of the Escherichia coli RTEM enzyme with cefoxitin. Biochemistry 19: 2895 2901.
117. Fralick, J. A. 1996. Evidence that TolC is required for functioning of the Mar/AcrAB efflux pump of Escherichia coli. J. Bacteriol. 178: 5803 5805.
118. Fuchs, P. C.,, A. L. Barry,, and S. D. Brown. 2001. In vitro activities of ertapenem (MK-0826) against clinical bacterial isolates from 11 North American medical centers. Antimicrob. Agents Chemother. 45: 1915 1918.
119. Fujihashi, M.,, Y. W. Zhang,, Y. Higuchi,, X. Y. Li,, T. Koyama,, and K. Miki. 2001. Crystal structure of cis-prenyl chain elongating enzyme, undecaprenyl diphosphate synthase. Proc. Natl. Acad. Sci. USA 98: 4337 4342.
120. Galan, J. E.,, and A. Collmer. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322 1328.
121. Gale, E. F.,, E. Cundliffe,, P. E. Reynolds,, M. H. Richmond,, and M. J. Waring. 1981. The Molecular Basis of Antibiotic Action, 2nd ed. Wiley, London, United Kingdom.
122. Garrett, L. 1995. The Coming Plague: Newly Emerging Diseases in a World out of Balance.: Virago, London, United Kingdom.
123. Gaunt, P. N.,, and L. J. Piddock. 1996. Ciprofloxacin resistant Campylobacter spp. in humans: an epidemiological and laboratory study. J. Antimicrob. Chemother. 37: 747 757.
124. Ge, M.,, Z. Chen,, H. R. Onishi,, J. Kohler,, L. L. Silver,, R. Kerns,, S. Fukuzawa,, C. Thompson,, and D. Kahne. 1999. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284: 507 511.
125. Gegnas, L. D.,, S. T. Waddell,, R. M. Chabin,, S. Reddy,, and K. K. Wong. 1998. Inhibitors of the bacterial cell wall biosynthesis enzyme MurD. Bioorg. Med. Chem. Lett. 8: 1643 1618.
126. Gehring, A. M.,, W. J. Lees,, D. J. Mindiola,, C. T. Walsh,, and E. D. Brown. 1996. Acetyltransfer precedes uridylyltransfer in the formation of UDP- Nacetylglucosamine in separable active sites of the bifunctional GlmU protein of Escherichia coli. Biochemistry 35: 579 585.
127. Ghuysen, J. M. 1991. Serine beta-lactamases and penicillin-binding proteins. Annu. Rev. Microbiol. 45: 37 67.
128. Gokhale, R. S.,, S. Y. Tsuji,, D. E. Cane,, and C. Khosla. 1999. Dissecting and exploiting intermodular communication in polyketide synthases. Science 284: 482 485.
129. Goldman, R. C.,, S. W. Fesik,, and C. C. Doran. 1990. Role of protonated and neutral forms of macrolides in binding to ribosomes from gram-positive and gram-negative bacteria. Antimicrob. Agents Chemother. 34: 426 431.
130. Gorbach, S. L. 2001. Antimicrobial use in animal feed—time to stop. N. Engl. J. Med. 345: 1202 1203. Gould, I. M. 1999. A review of the role of antibiotic policies in the control of antibiotic resistance. J. Antimicrob. Chemother. 43: 459 465.
131. Goussard, S.,, and P. Courvalin. 1999. Updated sequence information for TEM betalactamase genes. Antimicrob. Agents Chemother. 43: 367 370.
132. Greenwood, D.,, and F. O’Grady. 1969. A comparison of the effects of ampicillin on Escherichia coli and Proteus mirabilis. J. Med. Microbiol. 2: 435 441.
133. Greenwood, D. 2000. Antimicrobial Chemotherapy, 4th ed. Oxford University Press, Oxford, United Kingdom.
134. Greenwood, D.,, and F. O’Grady. 1973. The two sites of penicillin action in Escherichia coli. J. Infect. Dis. 128: 791 794.
135. Groisman, E. A. 2001. Principles of Bacterial Pathogenesis.: Academic Press Inc., San Diego, Calif.
136. Guan, K. L.,, and J. E. Dixon. 1990. Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249: 553 556.
137. Guo, L.,, K. B. Lim,, J. S. Gunn,, B. Bainbridge,, R. P. Darveau,, M. Hackett,, and S. I. Miller. 1997. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 276: 250 253.
138. Guo, L.,, K. B. Lim,, C. M. Poduje,, M. Daniel,, J. S. Gunn,, M. Hackett,, and S. I. Miller. 1998. Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95: 189 198.
139. Ha, S.,, E. Chang,, M.-C. Lo., H. Men, P. Park, M. Ge, and S. Walker. 1999. The kinetic characterization of Escherichia coli MurG using synthetic substrate analogues. J. Am. Chem. Soc. 121: 8415 8426.
140. Ha, S.,, D. Walker,, Y. Shi,, and S. Walker. 2000. The 1.9 A° crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. Protein Sci. 9: 1045 1052.
141. Hakenbeck, R. 1998. Mosaic genes and their role in penicillin-resistant Streptococcus pneumoniae. Electrophoresis 19: 597 601.
142. Hakenbeck, R.,, T. Grebe,, D. Zahner,, and J. B. Stock. 1999. Beta-lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non-penicillin-binding proteins. Mol. Microbiol. 33: 673 678.
143. Hall, D. G.,, S. Manku,, and F. Wang. 2001. Solution- and solid-phase strategies for the design, synthesis, and screening of libraries based on natural product templates: a comprehensive survey. J. Comb. Chem. 3: 125 150.
144. Hancock, R. E.,, and D. S. Chapple. 1999. Peptide antibiotics. Antimicrob. Agents Chemother. 43: 1317 1323.
145. Hansen, J. N., 1997. Nisin and related antimicrobial peptides, p. 437 470. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
146. Hansen, J. L.,, J. A. Ippolito,, N. Ban,, P. Nissen,, P. B. Moore,, and T. A. Steitz. 2002. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol. Cell 10: 117 128.
147. Hanzelka, B. L.,, M. R. Parsek,, D. L. Val,, P. V. Dunlap,, J. E. Cronan, Jr., and E. P. Greenberg. 1999. Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J. Bacteriol. 181: 5766 5770.
148. Hecht, S.,, W. Eisenreich,, P. Adam,, S. Amslinger,, K. Kis,, A. Bacher,, D. Arigoni,, and F. Rohdich. 2001. Studies on the nonmevalonate pathway to terpenes: the role of the GcpE (IspG) protein. Proc. Natl. Acad. Sci. USA 98: 14837 14842.
149. Heddle, J. G.,, S. J. Blance,, D. B. Zamble,, F. Hollfelder,, D. A. Miller,, L. M. Wentzell,, C. T. Walsh,, and A. Maxwell. 2001. The antibiotic microcin B17 is a DNA gyrase poison: characterisation of the mode of inhibition. J. Mol. Biol. 307: 1223 1234.
150. Hedl, M.,, A. Sutherlin,, E. I. Wilding,, M. Mazzulla,, D. McDevitt,, P. Lane,, J. W. Burgner, 2nd, K. R. Lehnbeuter, C. V. Stauffacher, M. N. Gwynn, and V. W. Rodwell. 2002. Enterococcus faecalis acetoacetyl-coenzyme A thiolase /3-hydroxy-3- methylglutaryl-coenzyme A reductase, a dual-function protein of isopentenyl diphosphate biosynthesis. J. Bacteriol. 184: 2116 2122.
151. Heep, M.,, U. Rieger,, D. Beck,, and N. Lehn. 2000. Mutations in the beginning of the rpoB gene can induce resistance to rifamycins in both Helicobacter pylori and Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 44: 1075 1077.
152. Heerding, D. A.,, G. Chan,, W. E. DeWolf,, A. P. Fosberry,, C. A. Janson,, D. D. Jaworski,, E. McManus,, W. H. Miller,, T. D. Moore,, D. J. Payne,, X. Qiu,, S. F. Rittenhouse,, C. Slater-Radosti,, W. Smith,, D. T. Takata,, K. S. Vaidya,, C. C. Yuan,, and W. F. Huffman. 2001. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase. Bioorg. Med. Chem. Lett. 11: 2061 2065.
153. Heffron, S. E.,, and F. Jurnak. 2000. Structure of an EF-Tu complex with a thiazolyl peptide determined at 2.35 A° resolution: atomic basis for GE2270A inhibition of EF-Tu. Biochemistry 39: 37 45.
154. Hensel, M.,, J. E. Shea,, C. Gleeson,, M. D. Jones,, E. Dalton,, and D. W. Holden. 1995. Simultaneous identification of bacterial virulence genes by negative selection. Science 269: 400 403.
155. Hilliard, J. J.,, R. M. Goldschmidt,, L. Licata,, E. Z. Baum,, and K. Bush. 1999. Multiple mechanisms of action for inhibitors of histidine protein kinases from bacterial twocomponent systems. Antimicrob. Agents Chemother. 43: 1693 1699.
156. Hiramatsu, K. 1998. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 104: 7S 10S.
157. Hiramatsu, K.,, L. Cui,, M. Kuroda,, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9: 486 493.
158. Holdgate, G. A.,, A. Tunnicliffe,, W. H. Ward,, S. A. Weston,, G. Rosenbrock,, P. T. Barth,, I. W. Taylor,, R. A. Pauptit,, and D. Timms. 1997. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. Biochemistry 36: 9663 9673.
159. Holtje, J. V. 1998. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 62: 181 203.
160. Hon, W. C.,, G. A. McKay,, P. R. Thompson,, R. M. Sweet,, D. S. Yang,, G. D. Wright,, and A. M. Berghuis. 1997. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89: 887 895.
161. Hopwood, D. A. 1997. Genetic contributions to understanding polyketide synthases. Chem. Rev. 97: 2465 2498.
162. Hu, H.,, Q. Zhang,, and K. Ochi. 2002. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184: 3984 3991.
163. Hubbard, B. K.,, M. G. Thomas,, and C. T. Walsh. 2000. Biosynthesis of L-phydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem. Biol. 7: 931 942.
164. Hubbard, B. K.,, and C. T. Walsh. Vancomycin assembly; Nature’s way. Angew. Chem. Int. Ed. Engl., in press.
165. Hughes, J. M.,, and F. C. Tenover. 1997. Approaches to limiting emergence of antimicrobial resistance in bacteria in human populations. Clin. Infect. Dis. 24(Suppl. 1): S131 S135.
166. Hung, L. W.,, I. X. Wang,, K. Nikaido,, P. Q. Liu,, G. F. Ames,, and S. H. Kim. 1998. Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396: 703 707.
167. Huntington, K. M.,, T. Yi,, Y. Wei,, and D. Pei. 2000. Synthesis and antibacterial activity of peptide deformylase inhibitors. Biochemistry 39: 4543 4551.
168. Hutchinson, C. R. 1997. Antibiotics from genetically engineered microorganisms, p. 683 702. In W. R. Strohl (ed.), Biotechnology of Antibiotics, 2nd ed. Marcel Dekker Inc., New York, N.Y.
169. Hutchinson, C. R.,, and I. Fujii. 1995. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Annu. Rev. Microbiol. 49: 201 238.
170. Ilangovan, U.,, H. Ton-That,, J. Iwahara,, O. Schneewind,, and R. T. Clubb. 2001. Structure of sortase, the transpeptidase that anchors proteins to the cell wall of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98: 6056 6061.
171. Isberg, R. R.,, and J. M. Leong. 1990. Multiple beta 1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60: 861 871.
172. Jack, R.,, G. Bierbaum,, C. Heidrich,, and H. G. Sahl. 1995. The genetics of lantibiotic biosynthesis. Bioessays 17: 793 802.
173. Jackman, J. E.,, C. R. Raetz,, and C. A. Fierke. 1999. UDP-3- O-(R-3-hydroxymyristoyl)- N-acetylglucosamine deacetylase of Escherichia coli is a zinc metalloenzyme. Biochemistry 38: 1902 1911.
174. Jacobs, C.,, J. M. Frere,, and S. Normark. 1997. Cytosolic intermediates for cell wall biosynthesis and degradation control inducible beta-lactam resistance in gramnegative bacteria. Cell 88: 823 832.
175. Jain, R.,, M. C. Rivera,, and J. A. Lake. 1999. Horizontal gene transfer among genomes: the complexity hypothesis. Proc. Natl. Acad. Sci. USA 96: 3801 3806.
176. Jarvest, R. L.,, J. M. Berge,, C. S. Houge-Frydrych,, L. M. Mensah,, P. J. O’Hanlon,, and A. J. Pope. 2001. Inhibitors of bacterial tyrosyl tRNA synthetase: synthesis of carbocyclic analogues of the natural product SB-219383. Bioorg. Med. Chem. Lett. 11: 2499 2502.
177. Ji, Y.,, B. Zhang,, S. F. Van Horn,, P. Warren,, G. Woodnutt,, M. K. Burnham,, and M. Rosenberg. 2001. Identification of critical staphylococcal genes using conditional phenotypes generated by antisense RNA. Science 293: 2266 2269.
178. Jiang, W.,, J. Wanner,, R. J. Lee,, P. Y. Bounaud,, and D. L. Boger. 2002. Total synthesis of the ramoplanin A2 and ramoplanose aglycon. J. Am. Chem. Soc. 124: 5288 5290.
179. Kahan, J. S.,, F. M. Kahan,, R. Goegelman,, S. A. Currie,, M. Jackson,, E. O. Stapley,, T. W. Miller,, A. K. Miller,, D. Hendlin,, S. Mochales,, S. Hernandez,, H. B. Woodruff,, and J. Birnbaum. 1979. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J. Antibiot. (Tokyo) 32: 1 12.
180. Kaper, J. B.,, and A. D. O’Brien. 1998. Escherichia coli O157:H7 and other Shiga toxin-producing E. coli strains. ASM Press, Washington, D.C.
181. Karmali, M. A. 1989. Infection by verocytotoxin-producing Escherichia coli. Clin. Microbiol. Rev. 2: 15 38.
182. Katz, L. 1997. Manipulation of modular polyketide synthases. Chem. Rev. 97: 2557 2576.
183. Kawachi, R.,, U. Wangchaisoonthorn,, T. Nihira,, and Y. Yamada. 2000. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae. J. Bacteriol. 182: 6259 6263.
184. Keating, T. A.,, and C. T. Walsh. 1999. Initiation, elongation, and termination strategies in polyketide and polypeptide antibiotic biosynthesis. Curr. Opin. Chem. Biol. 3: 598 606.
185. Kemp, L. E.,, C. S. Bond,, and W. N. Hunter. 2002. Structure of 2C-methyl-Derythritol 2,4-cyclodiphosphate synthase: an essential enzyme for isoprenoid biosynthesis and target for antimicrobial drug development. Proc. Natl. Acad. Sci. USA 99: 6591 6596.
186. Khaleeli, N.,, R. W. Busby,, and C. A. Townsend. 2000. Site-directed mutagenesis and biochemical analysis of the endogenous ligands in the ferrous active site of clavaminate synthase: the His-3 variant of the 2-His-1-carboxylate mold. Biochemistry 39: 8666 8673.
187. Khosla, C. 1997. Harnessing the biosynthetic potential of modular polyketide synthases. Chem. Rev. 97: 2577 2590.
188. Kieser, T.,, K. F. Chater,, M. Bibb,, M. J. Buttner,, and D. A. Hopwood. 2000. Practical Streptomyces Genetics.: The John Innes Foundation, Norwich.
189. Kinoshita, K.,, P. G. Willard,, C. Khosla,, and D. E. Cane. 2001. Precursor-directed biosynthesis of 16-membered macrolides by the erythromycin polyketide synthase. J. Am. Chem. Soc. 123: 2495 2502.
190. Kleerebezem, M.,, L. E. Quadri,, O. P. Kuipers,, and W. M. de Vos. 1997. Quorum sensing by peptide pheromones and two-component signal-transduction systems in gram-positive bacteria. Mol. Microbiol. 24: 895 904.
191. Kloss, P.,, L. Xiong,, D. L. Shinabarger,, and A. S. Mankin. 1999. Resistance mutations in 23S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J. Mol. Biol. 294: 93 101.
192. Knowles, J. R. 1985. Penicillin resistance: the chemistry of β-lactamase inhibition. Acc. Chem. Res. 18: 97 104.
193. Knox, J. R. 1995. Extended-spectrum and inhibitor-resistant TEM-type betalactamases: mutations, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. 39: 2593 2601.
194. Knox, J. R.,, P. C. Moews,, and J. M. Frere. 1996. Molecular evolution of bacterial beta-lactam resistance. Chem. Biol. 3: 937 947.
195. Kobayashi, K.,, M. Ogura,, H. Yamaguchi,, K. Yoshida,, N. Ogasawara,, T. Tanaka,, and Y. Fujita. 2001. Comprehensive DNA microarray analysis of Bacillus subtilis twocomponent regulatory systems. J. Bacteriol. 183: 7365 7370.
196. Koebnik, R.,, K. P. Locher,, and P. Van Gelder. 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37: 239 253.
197. Konz, D.,, and M. A. Marahiel. 1999. How do peptide synthetases generate structural diversity? Chem. Biol. 6: R39 R48.
198. Koppisch, A. T.,, D. T. Fox,, B. S. Blagg,, and C. D. Poulter. 2002. E. coli MEP synthase: steady-state kinetic analysis and substrate binding. Biochemistry 41: 236 243.
199. Koronakis, V.,, A. Sharff,, E. Koronakis,, B. Luisi,, and C. Hughes. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405: 914 919.
200. Kostrewa, D.,, A. D’Arcy,, B. Takacs,, and M. Kamber. 2001. Crystal structures of Streptococcus pneumoniae N-acetylglucosamine-1-phosphate uridyltransferase, GlmU, in apo form at 2.33 A° resolution and in complex with UDP- Nacetylglucosamine and Mg(2+) at 1.96 A° resolution. J. Mol. Biol. 305: 279 289.
201. Kotra, L. P.,, J. Haddad,, and S. Mobashery. 2000. Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob. Agents Chemother. 44: 3249 3256.
202. Kragol, G.,, S. Lovas,, G. Varadi,, B. A. Condie,, R. Hoffmann,, and L. Otvos, Jr. 2001. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40: 3016 3026.
203. Kunin, C. M. 1997. Antibiotic armageddon. Clin. Infect. Dis. 25: 240 241.
204. Kuroda, M.,, T. Ohta,, I. Uchiyama,, T. Baba,, H. Yuzawa,, I. Kobayashi,, L. Cui,, A. Oguchi,, K. Aoki,, Y. Nagai,, J. Lian,, T. Ito,, M. Kanamori,, H. Matsumaru,, A. Maruyama,, H. Murakami,, A. Hosoyama,, Y. Mizutani-Ui,, N. K. Takahashi,, T. Sawano,, R. Inoue,, C. Kaito,, K. Sekimizu,, H. Hirakawa,, S. Kuhara,, S. Goto,, J. Yabuzaki,, M. Kanehisa,, A. Yamashita,, K. Oshima,, K. Furuya,, C. Yoshino,, T. Shiba,, M. Hattori,, N. Ogasawara,, H. Hayashi,, and K. Hiramatsu. 2001. Whole genome sequencing of methicillin-resistant Staphylococcus aureus. Lancet 357: 1225 1240.
205. Kurokawa, H.,, T. Yagi,, N. Shibata,, K. Shibayama,, and Y. Arakawa. 1999. Worldwide proliferation of carbapenem-resistant gram-negative bacteria. Lancet 354: 955.
206. Kurz, M.,, and W. Guba. 1996. 3D structure of ramoplanin: a potent inhibitor of bacterial cell wall synthesis. Biochemistry 35: 12570 12575.
207. Kurz, M.,, W. Guba,, and L. Vertesy. 1998. Three-dimensional structure of moenomycin A—a potent inhibitor of penicillin-binding protein 1b. Eur. J. Biochem. 252: 500 507.
208. Kuzin, A. P.,, T. Sun,, J. Jorczak-Baillass,, V. L. Healy,, C. T. Walsh,, and J. R. Knox. 2000. Enzymes of vancomycin resistance: the structure of D-alanine-D-lactate ligase of naturally resistant Leuconostoc mesenteroides. Structure 8: 463 470.
209. Lambalot, R. H.,, A. M. Gehring,, R. S. Flugel,, P. Zuber,, M. LaCelle,, M. A. Marahiel,, R. Reid,, C. Khosla,, and C. T. Walsh. 1996. A new enzyme superfamily—the phosphopantetheinyl transferases. Chem. Biol. 3: 923 936.
210. Lancini, G., 1983. Ansamycins, p. 231 254. In L. C. Vining (ed.), Biochemistry and Genetic Regulation of Commercially Important Antibiotics. Addison-Wesley Publishing Co., Inc., Reading, Mass.
211. Lee, D.,, J. K. Sello,, and S. L. Schreiber. 1999. A strategy for macrocyclic ring closure and functionalization aimed toward split-pool syntheses. J. Am. Chem. Soc. 121: 10648 10649.
212. Lee, J.,, S. U. Kang,, S. Y. Kim,, S. E. Kim,, Y. J. Job,, and S. Kim. 2001. Vanilloid and isovanilloid analogues as inhibitors of methionyl-tRNA and isoleucyl-tRNA synthetases. Bioorg. Med. Chem. Lett. 11: 965 968.
213. Lee, V. J.,, and S. J. Hecker. 1999. Antibiotic resistance versus small molecules, the chemical evolution. Med. Res. Rev. 19: 521 542.
214. Lee, V. T.,, and O. Schneewind. 2001. Protein secretion and the pathogenesis of bacterial infections. Genes Dev. 15: 1725 1752.
215. Lessard, I. A.,, V. L. Healy,, I. S. Park,, and C. T. Walsh. 1999. Determinants for differential effects on D-Ala-D-lactate vs D-Ala-D-Ala formation by the VanA ligase from vancomycin-resistant enterococci. Biochemistry 38: 14006 14022.
216. Lessard, I. A.,, and C. T. Walsh. 1999. Mutational analysis of active-site residues of the enterococcal D-Ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-Ala-D-Ala ligase and D-Ala-D-Ala carboxypeptidase VanY. Chem. Biol. 6: 177 187.
217. Levy, S. B. 1992. The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle.: Plenum Press, New York, N.Y.
218. Levy, S. B. 1998. The challenge of antibiotic resistance. Sci. Am. 278: 46 53.
219. Levy, S. B. 2001. Antimicrobial resistance potential. Lancet 358: 1100 1101.
220. Lewis, H. A.,, E. B. Furlong,, B. Laubert,, G. A. Eroshkina,, Y. Batiyenko,, J. M. Adams,, M. G. Bergseid,, C. D. Marsh,, T. S. Peat,, W. E. Sanderson,, J. M. Sauder,, and S. G. Buchanan. 2001. A structural genomics approach to the study of quorum sensing: crystal structures of three LuxS orthologs. Structure 9: 527 537.
221. Lewis, R. J.,, O. M. Singh,, C. V. Smith,, T. Skarzynski,, A. Maxwell,, A. J. Wonacott,, and D. B. Wigley. 1996. The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X-ray crystallography. EMBO J. 15: 1412 1420.
222. Li, R.,, N. Khaleeli,, and C. A. Townsend. 2000. Expansion of the clavulanic acid gene cluster: identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol. 182: 4087 4095.
223. Lim, D.,, H. U. Park,, L. De Castro,, S. G. Kang,, H. S. Lee,, S. Jensen,, K. J. Lee,, and N. C. Strynadka. 2001. Crystal structure and kinetic analysis of beta-lactamase inhibitor protein-II in complex with TEM-1 beta-lactamase. Nat. Struct. Biol. 8: 848 852.
224. Lindsley, C. W.,, L. K. Chan,, B. C. Goess,, R. Joseph,, and M. D. Shair. 2000. Solidphase biomimetic synthesis of carpanone-like molecules. J. Am. Chem. Soc. 122: 422 423.
225. Liu, H.,, R. Sadamoto,, P. S. Sears,, and C. H. Wong. 2001. An efficient chemoenzymatic strategy for the synthesis of wild-type and vancomycin-resistant bacterial cell-wall precursors: UDP- N-acetylmuramyl-peptides. J. Am. Chem. Soc. 123: 9916 9917.
226. Liu, H. W.,, and J. S. Thorson. 1994. Pathways and mechanisms in the biogenesis of novel deoxysugars by bacteria. Annu. Rev. Microbiol. 48: 223 256.
227. Livermore, D. M. 2000. Quinupristin/dalfopristin and linezolid: where, when, which and whether to use? J. Antimicrob. Chemother. 46: 347 350.
228. Livermore, D. M.,, and N. Woodford. 2000. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3: 489 495.
229. Lo, M.-C.,, H. Men,, A. Branstrom,, J. Helm,, N. Yao,, R. Goldman,, and S. Walker. 2000. A new mechanism of action proposed for ramoplanin. J. Am. Chem. Soc. 122: 3540 3541.
230. Locher, K. P.,, A. T. Lee,, and D. C. Rees. 2002. The E. coli BtuCD structure: a framework for ABC transporter architecture and mechanism. Science 296: 1091 1098.
231. Lomovskaya, O.,, M. S. Warren,, A. Lee,, J. Galazzo,, R. Fronko,, M. Lee,, J. Blais,, D. Cho,, S. Chamberland,, T. Renau,, R. Leger,, S. Hecker,, W. Watkins,, K. Hoshino,, H. Ishida,, and V. J. Lee. 2001. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45: 105 116.
232. Lorenz, M. C.,, and G. R. Fink. 2001. The glyoxylate cycle is required for fungal virulence. Nature 412: 83 86.
233. Lorian, V.,, and F. Fernandes. 1997. The effect of vancomycin on the structure of vancomycin-susceptible and -resistant Enterococcus faecium strains. Antimicrob. Agents Chemother. 41: 1410 1411.
234. Losey, H. C.,, M. W. Peczuh,, Z. Chen,, U. S. Eggert,, S. D. Dong,, I. Pelczer,, D. Kahne,, and C. T. Walsh. 2001. Tandem action of glycosyltransferases in the maturation of vancomycin and teicoplanin aglycones: novel glycopeptides. Biochemistry 40: 4745 4755.
235. Lowy, F. D. 1998. Staphylococcus aureus infections. N. Engl. J. Med. 339: 520 532.
236. Lyon, G. J.,, P. Mayville,, T. W. Muir,, and R. P. Novick. 2000. Rational design of a global inhibitor of the virulence response in Staphylococcus aureus, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. Proc. Natl. Acad. Sci. USA 97: 13330 13335.
237. Ma, Y.,, F. Pan,, and M. McNeil. 2002. Formation of dTDP-rhamnose is essential for growth of mycobacteria. J. Bacteriol. 184: 3392 3395.
238. Mahan, M. J.,, J. M. Slauch,, and J. J. Mekalanos. 1993. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259: 686 688.
239. Mahan, M. J.,, J. W. Tobias,, J. M. Slauch,, P. C. Hanna,, R. J. Collier,, and J. J. Mekalanos. 1995. Antibiotic-based selection for bacterial genes that are specifically induced during infection of a host. Proc. Natl. Acad. Sci. USA 92: 669 673.
240. Maiti, S. N.,, O. A. Phillips,, R. G. Micetich,, and D. M. Livermore. 1998. Betalactamase inhibitors: agents to overcome bacterial resistance. Curr. Med. Chem. 5: 441 456.
241. Malik, V. S. 1972. Chloramphenicol. Adv. Appl. Microbiol. 15: 297 336.
242. Manges, A. R.,, J. R. Johnson,, B. Foxman,, T. T. O’Bryan,, K. E. Fullerton,, and L. W. Riley. 2001. Widespread distribution of urinary tract infections caused by a multidrug- resistant Escherichia coli clonal group. N. Engl. J. Med. 345: 1007 1013.
243. Marahiel, M. A.,, T. Stachelhaus,, and H. D. Mootz. 1997. Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem. Rev. 97: 2651 2674.
244. Marmor, S.,, C. P. Petersen,, F. Reck,, W. Yang,, N. Gao,, and S. L. Fisher. 2001. Biochemical characterization of a phosphinate inhibitor of Escherichia coli MurC. Biochemistry 40: 12207 12214.
245. Marshall, C. G.,, G. Broadhead,, B. K. Leskiw,, and G. D. Wright. 1997. D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 94: 6480 6483.
246. Marshall, C. G.,, I. A. Lessard,, I. Park,, and G. D. Wright. 1998. Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms. Antimicrob. Agents Chemother. 42: 2215 2220.
247. Martinez, M. B.,, M. Flickinger,, L. Higgins,, T. Krick,, and G. L. Nelsestuen. 2001. Reduced outer membrane permeability of Escherichia coli O157:H7: suggested role of modified outer membrane porins and theoretical function in resistance to antimicrobial agents. Biochemistry 40: 11965 11974.
248. Martinez-Hackert, E.,, S. Harlocker,, M. Inouye,, H. M. Berman,, and A. M. Stock. 1996. Crystallization, X-ray studies, and site-directed cysteine mutagenesis of the DNA-binding domain of OmpR. Protein Sci. 5: 1429 1433.
249. Martinez-Hackert, E.,, and A. M. Stock. 1997. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor. Structure 5: 109 124.
250. Massova, I.,, and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob. Agents Chemother. 42: 1 17.
251. Matsushita, M.,, and K. D. Janda. 2002. Histidine kinases as targets for new antimicrobial agents. Bioorg. Med. Chem. 10: 855 867.
252. Maxwell, A. 1997. DNA gyrase as a drug target. Trends Microbiol. 5: 102 109.
253. Mazmanian, S. K.,, G. Liu,, H. Ton-That,, and O. Schneewind. 1999. Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall. Science 285: 760 763.