1887

Chapter 10 : Receptors for Coxsackieviruses and Echoviruses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Receptors for Coxsackieviruses and Echoviruses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap10-2.gif

Abstract:

Studies in the late 1950s demonstrated that homogenates of particular tissues could adsorb picornaviruses, including some echoviruses and coxsackieviruses, and correlated virus adsorption with susceptibility to infection. The understanding of the receptors for group B coxsackieviruses (CVBs) is largely based on work carried out in the beginning of 1960s, and culminating in the identification of two receptor molecules within the past 5 years. Attachment-interference studies, in which saturation of cellular receptors by one virus was found to prevent attachment of a related virus, identified several picornavirus receptor families, whose members were likely to share receptors. Decay-accelerating factor (DAF) is expressed on many cell types and functions to protect cells from lysis by autologous complement. DAF is a member of a family of complement regulatory proteins composed of homologous short consensus repeat (SCR) domains. Consistent with the original observation that all six CVB serotypes compete for a single receptor, Coxsackievirus and adenovirus receptor (CAR) has been shown to mediate infection by laboratory and clinical isolates belonging to all six serotypes, including viruses like CVB3-rhabdomyosarcoma (RD) that also interact with DAF. The observation that CAR-transfected rodent cells become infected, while DAF-transfected CHO cells do not, suggests that DAF cannot perform some postattachment function essential for virus infection. Recent experiments confirm that ICAM-1 is in fact a receptor for group A coxsackieviruses (CVA)21. Infection by a variety of echovirus serotypes, as well as by CVA9, was reportedly inhibited by a monoclonal antibody to a 44-kDa cell surface protein.

Citation: Bergelson J. 2002. Receptors for Coxsackieviruses and Echoviruses, p 107-113. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch10

Key Concept Ranking

Integral Membrane Proteins
0.44226918
Swine Vesicular Disease
0.44226918
Major Histocompatibility Complex
0.44091913
0.44226918
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Receptors for echoviruses and coxsackieviruses. Each of these proteins has been shown by cDNA transfection to mediate virus attachment or infection. EV1 and EV8 interact directly with the I domain within the subunit of the integrin VLA-2. CVB3-RD interacts with SCR domain 2 (and possibly SCR3) of DAF. Other viruses may interact with other DAF SCR domains (see text). CVA21 interacts with ICAM-1, and CVB interact with CAR. These viruses are likely to interact with the distal Ig-like domains of their receptors.

Citation: Bergelson J. 2002. Receptors for Coxsackieviruses and Echoviruses, p 107-113. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap10
1. Agrez, M. V.,, D. R. Shafren,, X. Gu,, K. Cox,, D. Sheppard,, and R. D. Barry. 1997. Integrin αvβ6 enhances coxsackievirus B1 lytic infection of human colon cancer cells. Virology 239:7177.
2. Bergelson, J. M.,, B. M. C. Chan,, R. W. Finberg,, and M. E. Hemler. 1993. The integrin VLA-2 binds echovirus 1 and extracellular matrix ligands by different mechanisms. J. Clin. Invest. 92:232239.
3. Bergelson, J. M.,, M. Chan,, K. Solomon,, N. F. St. John,, H. Lin,, and R. W. Finberg. 1994. Decay-accelerating factor, a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA 91:62456248.
4. Bergelson, J. M.,, J. A. Cunningham,, G. Droguett,, E. A. Kurt-Jones,, A. Krithivas,, J. S. Hong,, M. S. Horwitz,, R. L. Crowell,, and R. W. Finberg. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:13201323.
5. Bergelson, J. M.,, A. Krithivas,, L. Celi,, G. Droguett,, M. S. Horwitz,, T. Wickham,, R. L. Crowell,, and R. W. Finberg. 1998. The murine CAR homologue (mCAR) is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 72:415419.
6. Bergelson, J. M.,, J. G. Mohanty,, R. L. Crowell,, N. F. St. John,, D. M. Lublin,, and R. W. Finberg. 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55). J. Virol. 69:19031906.
7. Bergelson, J. M.,, M. P. Shepley,, B. M. C. Chan,, M. E. Hemler,, and R. W. Finberg. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255: 17181720.
8. Bergelson, J. M.,, N. St. John,, S. Kawaguchi,, M. Chan,, H. Stubdal,, J. Modlin,, and R. W. Finberg. 1993. Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2. J. Virol. 67:68476852.
9. Bergelson, J. M.,, N. F. St. John,, S. Kawaguchi,, R. Pasqualini,, F. Berdichevsky,, M. E. Hemler,, and R. W. Finberg. 1994- The I domain is essential for echovirus 1 interaction with VLA-2. Cell Adhesion Commun. 2:455464.
10. Bewley, M. C.,, K. Springer,, Y.-B. Zhang,, P. Freimuth,, and J. M. Flanagan. 1999. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor, CAR. Science 286:15791583.
11. Carson, S. D.,, N. N. Chapman,, and S. M. Tracy. 1997. Purification of the putative coxsackievirus B receptor from HeLa cells. Biochem. Biophys. Res. Commun. 233:325328.
11a.. Cohen, C. J.,, J. T.-C. Shieh,, R. J. Pickles,, T. Okegawa,, J.-T. Hsieh,, and J. M. Bergelson. 2001. The coxsackievirus and adenovirus receptor is a transmembrane component of the tight junction. Proc. Natl. Acad. Sci. USA 98:1519115196.
11b.. Colonno, R. J.,, P. L. Callahan,, and W. J. Long. 1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 57:712.
12. Crowell, R. L.,, A. K. Field,, W. A. Schlief,, W. L. Long,, R. J. Colonno,, J. E. Mapoles,, and E. A. Emini. 1986. Monoclonal antibody that inhibits infection of HeLa and rhabdomyosarcoma cells by selected enteroviruses through receptor blockade. J. Virol. 57:438445.
13. Crowell, R. L.,, and M. A. Landau,. 1983. Receptors in the initiation of picornavirus infections, p. 142. In H. Fraenkel-Conrat, and R. R. Wagner (ed.), Comprehensive Virobgy, vol. 18. Plenum Publishing Corp., New York, N.Y..
14. de Verdugo, U. R.,, H.-C. Selinka,, M. Huber,, B. Kramer,, J. Kellerman,, P. H. HofSchneider,, and R. Kandolf. 1995. Characterization of a 100-kilodalton binding protein for the six serotypes of coxsackie B viruses. J. Virol. 69:67516757.
15. Dickeson, S. K.,, N. L. Mathis,, M. Rahman,, J. M. Bergelson,, and S. A. Santoro. 1999. Determinants of ligand binding specificity of the a2/31 and a2/31 integrins. J. Biol. Chem. 274:3218232191.
16. Emsley, J.,, S. L. King,, J. M. Bergelson,, and R. C. Liddington. 1997. Crystal structure of the I domain from integrin a2)31. J. Biol. Chem. 272:2851828522.
17. Fechner, H.,, A. Haack,, H. Wang,, X. Wang,, K. Eizema,, M. Pauschinger,, R. G. Schoemaker,, R. van Veghel,, A. B. Houtsmuller,, H.-P. Schultheiss,, J. M. J. Lamers,, and W. Poller. 1999. Expression of coxsackie adenovirus receptor and alpha v-integrin does not correlate with adenovector targeting in vivo indicating anatomical vector barriers. Gene Ther. 6:15201535.
18. Filman, D. J.,, M. W. Wien,, J. A. Cunningham,, J. M. Bergelson,, and J. M. Hogle. 1998. The structure determination of echovirus 1. Acta Crystallogr. D 54:12611272.
19. Freimuth, P.,, K. Springer,, C. Berard,, J. Hainfield,, M. Bewley,, and J. Flanagan. 1999. Coxsackievirus and adenovirus receptor amino-terminal immunoglobulin V-related domain binds adenovirus type 2 and fiber knob from adenovirus type 12. J. Virol. 73:13921398.
20. Goodfellow, I. G.,, R. M. Powell,, T. Ward,, O. B. Spiller,, J. W. Almond,, and D. J. Evans. 2000. Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J. Gen. Virol. 81:13931401.
21. Greve, J. M.,, G. Davis,, A. M. Meyer,, C. P. Forte,, S. C. Yost,, C. W. Marlor,, M. E. Kamarck,, and A. McClelland. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839847.
21a.. He, Y.,, P. R. Chipman,, J. Howitt,, C. M. Bator,, M. A. Whitt,, T. S. Baker,, R. J. Kuhn,, C. W. Anderson,, P. Freimuth,, and M. G. Rossmann. 2001. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 8:874878.
22. Hogle, J. M.,, M. Chow,, and D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 A resolution. Science 229:13581365.
23. Holland, J. J. 1961. Receptor affinities as major determinants of enterovirus tissue tropism in humans. Virology 15:312326.
24. Honda, T.,, H. Saitoh,, M. Masuko,, T. Katagiri-Abe,, K. Tominaga,, I. Kozakai,, K. Kobayashi,, T. Kominishi,, Y. G. Watanabe,, S. Odani,, and R. Kuwano. 2000. The coxsackievirus adenovirus receptor as a cell adhesion molecule in the developing mouse brain. Mol. Brain Res. 77: 1928.
25. Hsu, K.-H. L.,, K. Lonberg-Holm,, B. Alstein,, and R. L. Crowell. 1988. A monoclonal antibody specific for the cellular receptor for the group B coxsackieviruses. J. Virol. 62:16471652.
26. Hsu, K.-H. L.,, S. Paglini,, B. Alstein,, and R. L. Crowell,. 1990. Identification of a second cellular receptor for a coxsackievirus B3 variant, CB3-RD, p. 271277. In M. Brinton, and F. Heinz (ed.), New Aspects of Positive-Strand RNA Viruses. American Society for Microbiology, Washington, D.C..
27. Karnauchow, T. M.,, S. Dawe,, D. M. Lublin,, and K. Dimock. 1998. Short consensus repeat domain 1 of decay-accelerating factor is required for enterovirus 70 binding. J. Virol. 72:93809383.
28. Karnauchow, T. M.,, D. L. Tolson,, B. A. Harrison,, E. Altman,, D. M. Lublin,, and K. Dimock. 1996. The HeLa cell receptor for enterovirus 70 is decay-accelerating factor (CD55). J. Virol. 70:51435152.
29. King, S. L.,, J. A. Cunningham,, R. W. Finberg,, and J. M. Bergelson. 1995. Echovirus 1 interaction with the isolated VLA-2 I domain. J. Virol. 69:32373239.
30. King, S. L.,, T. Kamata,, J. A. Cunningham,, J. Emsley,, R. C. Liddington,, Y. Takada,, and J. M. Bergelson. 1997. Echovirus 1 interaction with the human very late antigen-2 (integrin a2fil) I domain: identification of two independent virus contact sites distinct from the metal ion-dependent adhesion site. J. Biol. Chem. 272:2851828522.
31. Lindberg, A. M.,, R. L. Crowell,, R. Zell,, R. Kandolf,, and U. Pettersson. 1992. Mapping of the RD phenotype of the Nancy strain of coxsackievirus B3. Virus Res. 24: 187196.
32. Lonberg-Holm, K.,, R. L. Crowell,, and L. Philipson. 1976. Unrelated animal viruses share receptors. Nature 259:679681.
33. Lublin, D. M.,, and J. P. Atkinson. 1989. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7:3557.
34. Mapoles, J. E.,, D. L. Krah,, and R. L. Crowell. 1985. Purification of a HeLa cell receptor protein for group B coxsackieviruses. J. Virol. 55:560566.
35. Martino, T. A.,, M. Petric,, H. Weingartl,, J. M. Bergelson,, M. A. Opavsky,, C. D. Richardson,, J. F. Modlin,, R. W. Finberg,, K. C. Kain,, N. Willis,, C. J. Gauntt,, and P. P. Liu. 2000. The coxsackie-adenovirus receptor (CAR) is used by reference strains and clinical isolates representing all six serotypes of coxsackievirus group B, and by swine vesicular disease virus. Virology 271:99108.
36. Mbida, A. D.,, O. G. Gaudin,, O. Sabido,, B. Pozzetto,, and J.-C. L. Bihan. 1992. Monoclonal antibody specific for the cellular receptor of echoviruses. Intervirology 33: 1722.
37. Mbida, A. D.,, B. Pozzetto,, O. G. Gaudin,, F. Grattard,, J.-C. L. Bihan,, Y. Akono,, and A. Ros. 1992. A 44,000 glycoprotein is involved in the attachment of echovirus-11 onto susceptible cells. Virology 189:350353.
38. Mohanty, J. G.,, and R. L. Crowell. 1993. Attempts to purify a second cellular receptor for a coxsackievirus B3 variant, CB3-RD from HeLa cells. Virus Res. 29:305320.
39. Muckelbauer, J. K.,, M. Kremer,, J. Minor,, G. Diana,, F. J. Dutko,, J. Groarke,, D. G. Pevear,, and M. G. Rossmann. 1995. The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653667.
39a.. Ohman, T.,, S. L. King,, A. Krithivas,, J. C. Cunningham,, S. K. Dickeson,, S. A. Santoro,, and J. M. Bergelson. 2001. Echoviruses 1 and 8 are genetically closely related, and bind to similar determinants within the VLA-2 I domain. Virus Res. 76:18.
39b.. Okegawa, T.,, R.-C. Pong,, Y. Li,, J. M. Bergelson,, A. J. Sagalowsy,, and J.-T. Hsieh. 2001. The mechanism of the growth inhibitory effect of coxsackie and adenovirus receptor (CAR) on human bladder cancer: a functional analysis of CAR protein structure. Cancer Res. 61:65926600.
40. Philipson, L.,, S. Bengtsson,, S. Brishammar,, L. Svennerholm,, and O. Zetterqvist. 1964. Purification and chemical analysis of the erythrocyte receptor for hemag-glutinating enteroviruses. Virology 22:580590.
41. Pickles, R. J.,, J. A. Fahrner,, J. M. Petrella,, R. C. Boucher,, and J. M. Bergelson. 2000. Retargeting the coxsackievirus and adenovirus receptor to the apical surface of polarized epithelial cells reveals the glycocalyx as a barrier to adenovirus-mediated gene transfer. J. Virol. 74:60506057.
42. Pickles, R. J.,, D. McCarty,, H. Matsui,, P. J. Hart,, S. H. Randell,, and R. C. Boucher. 1998. Limited entry of adenovirus vectors into well-differentiated airway epithelium is responsible for inefficient gene transfer. J. Virol. 72: 60146023.
43. Powell, R. M.,, V. Schmitt,, T. Ward,, I. Goodfellow,, D. J. Evans,, and J. W. Almond. 1998. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J. Gen. Virol. 79:17071713.
44. Powell, R. M.,, T. Ward,, D. J. Evans,, and J. W. Almond. 1997. Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation. J. Virol. 71: 93069312.
45. Powell, R. M.,, T. Ward,, I. Goodfellow,, J. W. Almond,, and D. J. Evans. 1999. Mapping the binding domains on decay accelerating factor (DAF) for haemagglutinating enteroviruses: implications for the evolution of a DAF-binding phenotype. J. Gen. Virol. 80:31453152.
46. Pulli, X.,, E. Koivunen,, and T. Hyypia. 1997. Cell-surface interactions of echovirus 22. J. Biol. Chem. 272:2117621180.
47. Racaniello, V. R. 1996. The poliovirus receptor: a hook, or an unzipper? Structure 4:769773.
48. Reagan, K. J.,, B. Goldberg,, and R. L. Crowell. 1984. Altered receptor specificity of coxsackie B3 after growth in rhabdomyosarcoma cells. J. Virol. 49:635640.
49. Roivainen, M.,, T. Hyypia,, L. Piirainen,, N. Kalkkinen,, G. Stanway,, and T. Hovi. 1991. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J. Virol. 65:47354740.
50. Roivainen, M.,, L. Piirainen,, T. Hovi,, I. Virtanen,, T. Riikinen,, J. Heino,, and T. Hyypia. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357365.
51. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H.-J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Moser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145153.
52. Shafren, D. R. 1998. Viral cell entry induced by cross-linked decay-accelerating factor. J. Virol. 72:94079412.
53. Shafren, D. R.,, R. C. Bates,, M. V. Agrez,, R. L. Herd,, G. F. Burns,, and R. D. Barry. 1995. Coxsackieviruses B1, B3, and B5 use decay accelerating factor as a receptor for cell attachment.J. Virol. 69:38733877.
54. Shafren, D. R.,, D. J. Dorahy,, S. J. Greive,, G. F. Burns,, and R. D. Barry. 1997. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J. Virol. 71:785789.
55. Shafren, D. R.,, D. J. Dorahy,, R. A. Ingham,, G. F. Burns,, and R. D. Barry. 1997. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J. Virol. 71:47364743.
56. Shafren, D. R.,, D. T. Williams,, and R. D. Barry. 1997. A decay-accelerating factor-binding strain of coxsackievirus B3 requires the coxsackievirus-adenovirus receptor protein to mediate lytic infection of rhabdomyosarcoma cells. J. Virol. 71:98449848.
57. Spiller, O. B.,, I. G. Goodefellow,, D. J. Evans,, J. W. Almond,, and B. B. Morgan. 2000. Echoviruses and coxsackie B viruses that use human decay-accelerating factor (DAF) as a receptor do not bind the rodent analogues of DAF. J. Infect. Dis. 181:350343.
58. Staunton, D. E.,, V. J. Merluzzi,, R. Rothlein,, R. Barton,, S. D. Marlin,, and T. A. Springer. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849853.
59. Tomassini, J. E.,, D. Graham,, C. M. DeWitt,, D. W. Lineberger,, J. A. Rodkey,, and R. J. Colonno. 1989. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 86:49077911.
60. Tomko, R. P.,, R. Xu,, and L. Philipson. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94:33523356.
60a.. Triantafilou, K.,, D. Fradelizi,, K. Wilson,, and M. Triantafilou. 2002. GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J. Virol. 76:633643.
61. Triantafilou, M.,, K. Triantafilou,, K. M. Wilson,, Y. Takada,, N. Fernandez,, and G. Stanway. 1999. Involvement of β2-microglobulin and integrin αvβ3 molecules in the coxsackievirus A9 infectious cycle. J. Gen. Virol. 80: 25912600.
62. van Raaij, M. J.,, E. Chouin,, H. van der Zandt,, J. M. Bergelson,, and S. Cusack. 2000. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Struct. Fold. Des. 8:11471155.
63. Walters, R. W.,, T. Grunst,, J. M. Bergelson,, R. W Finberg,, M. W. Welsh,, and J. Zabner. 1999. Basolateral localization of fiber receptors limits adenovirus infection of airway epithelia. J. Biol. Chem. 274:1021910226.
64. Wang, X.,, and J. M. Bergelson. 1999. CAR cytoplasmic and transmembrane domains are not essential for infection by coxsackie B viruses and adenoviruses. J. Virol. 73: 22592562.
65. Ward, T.,, P. A. Pipkin,, N. A. Clarkson,, D. M. Stone,, P. D. Minor,, and J. W. Almond. 1994. Decay accelerating factor (CD55) identified as a receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBOJ. 13:50705074.
66. Ward, T.,, R. M. Powell,, P. A. Pipkin,, D. J. Evans,, P. D. Minor,, and J. W. Almond. 1998. Role for beta2-microglobulin in echovirus infection of rhabdomyosarcoma cells. J. Virol. 72:53605365.
67. Wickham, T. J.,, P. Mathias,, D. A. Cheresh,, and G. R. Nemerow. 1993. Integrins αvβ3 and αvβ5 promote adenovirus internalization but not virus attachment. Cell 73: 309319.
68. Zajac, J.,, and R. L. Crowell. 1965. Effect of enzymes on the interaction of enteroviruses with living HeLa cells. J. Bacteriol. 89:574582.
69. Zajac, I.,, and R. L. Crowell. 1965. Location and regeneration of enterovirus receptors of HeLa cells. J. Bacteriol. 89:10971100.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error