Chapter 11 : Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap11-2.gif


This chapter examines the early events that occur upon infection of cultured cells with foot-and-mouth disease virus (FMDV) and defines the known virus-receptor interactions. In addition, the authors try to relate what is known about these early interactions to disease pathogenesis. The first identification of the integrin receptor for FMDV was made by comparing its receptor specificity with that of the human enterovirus, coxsackievirus A9 (CAV9), which contains a 17-amino-acid C-terminal insertion in VPl containing an arginineglycine- aspartic acid (RGD) sequence. Other important functional domains of integrins include the cytoplasmic domains of the α and β subunits. The authors examined the role of the cytoplasmic domains of the bovine integrin αv β3 in FMDV infection of cultured cells. While they have learned much about the early interactions of FMDV with its receptors in vitro, the role these receptors play in the pathogenesis of the disease is still unclear. Studies on the pathogenesis of FMD have shown that initial sites of viral replication are the lung and pharyngeal areas followed by rapid dissemination of the virus to the oral and pedal epithelia. Application of knowledge of the detailed mechanisms of FMDV-receptor interactions in vitro to the disease in the whole animal should provide insights into viral pathogenesis and may provide new information on how to control this important disease. Thus, future research should concentrate on determining which of the RGD-binding integrins found in susceptible hosts are capable of serving as receptors for FMDV.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11

Key Concept Ranking

Yellow fever virus
Foot-and-mouth disease virus
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Competition binding of FMDV types A and OBFS. Purified H-uridine-labeled FMDV types A (○) or O1BFS (■), at a concentration of 1 × 10 particles/cell, were mixed with increasing concentrations of either purified unlabeled (a) type A or (b) OBFS and allowed to bind to BHK-21 cells for 90 min at room temperature. The level of binding was determined for labeled virus in the absence of unlabeled competitor, and the inhibition of binding of the labeled viruses by the unlabeled viruses is shown.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acharya, R.,, E. Fry,, D. Stuart,, G. Fox,, D. Rowlands,, and F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature 337:709716.
2. Baranowski, E.,, C. M. Ruiz-Jarabo,, N. Sevilla,, D. An-dreu,, E. Beck,, and E. Domingo. 2000. Cell recognition by foot-and-mouth disease virus that lacks the RGD integrin-binding motif: flexibility in aphthovirus receptor usage. J. Virol. 74:16411647.
3. Baranowski, E.,, N. Sevilla,, N. Verdaguer,, C. Ruiz-Jarabo,, E. Beck,, and E. Domingo. 1998. Multiple virulence determinants of foot-and-mouth disease virus in cell culture. J. Virol. 72:63626372.
4. Barteling, S. J.,, and J. Vreeswijk. 1991. Developments in foot-and-mouth disease vaccines. Vaccine 9:7588.
5. Bauer, K., 1997. Foot-and-mouth disease as zoonosis, p. 9597. In O.-R. Kaaden,, C.-P. Czerny,, and W. Eichhorn (ed.), Viral Zoonoses and Food of Animal Origin. A Re-Evaluation of Possible Hazards for Human Health. Springer-Ver-lag Wien, New York, N.Y..
6. Baxt, B. 1987. Effect of lysosomotropic compounds on early events in foot-and-mouth disease virus replication. Virus Res. 7:257271.
7. Baxt, B.,, and H. L. Bachrach. 1980. Early interactions of foot-and-mouth disease virus with cultured cells. Virology 101:4255.
8. Baxt, B.,, and H. L. Bachrach. 1982. The adsorption and degradation of foot-and-mouth disease virus by isolated BHK-21 cell plasma membranes. Virology 116:391405.
9. Baxt, B.,, and Y. Becker. 1990. The effect of peptides containing the arginine-glycine-aspartic acid sequence on the adsorption of foot-and-mouth disease virus to tissue culture cells. Virus Genes 4:7383.
10. Baxt, B.,, and P. W. Mason. 1995. Foot-and-mouth disease virus undergoes restricted replication in macrophage cell cultures following Fc receptor-mediated adsorption. Virology 207:503509.
11. Berinstein, A.,, M. Roivainen,, T. Hovi,, P. W. Mason,, and B. Baxt. 1995. Antibodies to the vitronectin receptor (integrin αvβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 69:26642666.
12. Blystone, S. D.,, J. L. Graham,, F. P. Lindberg,, and E. J. Brown. 1994. Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. Integrin αvβ3 differentially regulates adhesive and phagocytic functions of the fibronectin receptor α5β1. J. Cell Biol. 127:11291137.
13. Blystone, S. D.,, F. P. Lindberg,, S. E. LaFlamme,, and E. J. Brown. 1995. Integrin β3 cytoplasmic tail is necessary and sufficient for regulation of α5β1 phagocytosis by αvβ3 and integrin-associated protein. J. Cell Biol. 130: 745754.
14. 14- Blystone, S. D.,, F. P. Lindberg,, M. P. Williams,, K. McHugh,, and E. J. Brown. 1996. Inducible tyrosine phosphorylation of the ?3 integrin requires the av integrin cytoplasmic tail. J. Biol. Chem. 271:3145831462.
15. Blystone, S. D.,, M. P. Williams,, S. E. Slater,, and E. J. Brown. 1997. Requirement of integrin β3 tyrosine 747 for β3 tyrosine phosphorylation and regulation of αvβ3 avidity. J. Biol. Chem. 272:2875728761.
16. Breuss, J. M.,, J. Gallo,, H. M. DeLisser,, J. V. Kliman-skaya,, H. G. Folkesson,, J. F. Pittet,, S. L. Nishimura,, K. Aldape,, D. V. Landers,, W. Carpenter,, N. Gillett,, D. Sheppard,, M. A. Matthay,, S. M. Albelda,, R. H. Krammer,, and R. Pytela. 1995. Expression of the ?6 integrin subunit in development, neoplasia, and tissue repair suggests a role in epithelial remodeling. J. Cell Sci. 108: 22412251.
17. Breuss, J. M.,, N. Gillett,, L. Lu,, D. Sheppard,, and R. Pytela. 1993. Restricted distribution of β6 messenger RNA in primate epithelial tissues. J. Histochem. Cytochem. 41:15211527.
18. Brooks, P. C.,, R. A. F. Clark,, and D. A. Cheresh. 1994. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264:569571.
19. Brown, C. C.,, R. F. Meyer,, H. J. Olander,, C. House,, and C. A. Mebus. 1992. A pathogenesis study of foot-and-mouth disease in cattle using in situ hybridization. Can. J. Vet. Res. 56:189193.
20. Brown, C. C.,, M. E. Piccone,, P. W. Mason,, T. S.-C. McKenna,, and M. J. Grubman. 1996. Pathogenesis of wild-type and leaderless foot-and-mouth disease virus in cattle. J. Virol. 70:56385641.
21. Burrows, R. J.,, A. Mann,, A. J. M. Garland,, A. Grieg,, and D. Goodridge. 1981. The pathogenesis of natural and simulated natural foot-and-mouth disease virus infection in cattle. J. Comp. Pathol. 91:599609.
22. Calvete, J. J.,, A. Henschen,, and J. González-Rodríguez. 1991. Assignment of disulphide bonds in human platelet GPIIIa. A disulphide pattern for the β-subunits of the integrin family. Biochem. J. 274:6371.
23. Carrillo, E. C.,, C. Giachetti,, and R. Campos. 1984. Effect of lysosomotropic agents on the foot-and-mouth disease virus replication. Virology 135:542545.
24. Carrillo, E. C.,, C. Giachetti,, and R. Campos. 1985. Early steps in FMDV replication: further analysis on the effects of chloroquine. Virology 147:118125.
25. Cavanagh, D.,, D. J. Rowlands,, and F. Brown. 1978. Early events in the interaction between foot-and-mouth disease virus and primary pig kidney cells. J. Gen. Virol. 41:255264.
26. Chang, K. H.,, P. Auvinen,, T. Hyypiä,, and G. Stanway. 1989. The nucleotide sequence of coxsackievirus A9: implications for receptor binding and enterovirus classification. J. Gen. Virol. 70:32693280.
27. Chang, K. H.,, C. Day,, J. Walker,, T. Hyypia,, and G. Stanway. 1992. The nucleotide sequences of wild type coxsackievirus A9 strains imply that an RGD motif in VP1 is functionally significant. J. Gen. Virol. 73:621626.
28. Crowell, R. L.,, B. J. Landau,, and J. Siak,. 1981. Picor-navirus receptors in pathogenesis, p. 170180. In K. Lonberg-Holm, and L. Philipson (ed.), Receptors and Recognition. Virus Receptors, part 2, Animal Viruses, series B, vol. 8. Chapman and Hall, New York, N.Y..
29. Curry, S.,, M. Chow,, and J. M. Hogle. 1996. The po-liovirus 135S particle is infectious. J. Virol. 70:71257131.
30. Damjanovich, L.,, S. M. Albelda,, S. A. Mette,, and C. A. Buck. 1992. Distribution of integrin cell adhesion receptors in normal and malignant lung tissue. Am. J. Respir. Cell Mol. Biol. 6:197206.
31. David, D.,, Y. Stram,, H. Yadin,, Z. Trainin,, and Y. Becker. 1995. Foot-and-mouth disease virus replication in bovine skin langerhans cells under in vitro conditions detected by RT-PCR. Virus Genes 10:513.
32. Evans, D. J.,, and J. W. Almond. 1998. Cell receptors for picornaviruses as determinants of cell tropism and pathogenesis. Trends Microbiol. 6:198202.
33. Everaert, L.,, R. Vrijsen,, and A. Boeyé. 1989. Eclipse products of poliovirus after cold-synchronized infection of HeLa cells. Virology 171:7682.
34. Faull, R. J.,, J. Wang,, D. J. Leavesley,, W. Puzon,, G. R. Russ,, D. Vestweber,, and Y. Takada. 1996. A novel activating anti-β1 integrin monoclonal antibody binds to the cysteine-rich repeats in the β1 chain. J. Biol. Chem. 271:2509925106.
35. Felding-Haberman, B.,, and D. A. Cheresh. 1993. Vitronectin and its receptors. Curr. Opin. Cell Biol. 5:864868.
36. Fernández, C.,, K. Clark,, L. Burrows,, N. R. Schofield,, and M. J. Humphries. 1998. Regulation of the extracellular ligand binding activity of integrins. Front. Biosci. 3: 684700.
37. Fox, G.,, N. R. Parry,, P. V. Barnett,, B. McGinn,, D. J. Rowlands,, and F. Brown. 1989. The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). J. Gen. Virol. 70:625637.
38. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. King,, and D. 1. Stuart. 1999. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J. 18:543554.
39. Goldman, M. J.,, and J. M. Wilson. 1995. Expression of αvβ5 integrin is necessary for efficient adenovirus-mediated gene transfer in the human airway. J. Virol. 69: 59515958.
40. González-Amaro, R.,, and F. Sánchez-Madrid. 1999. Cell adhesion molecules: selectins and integrins. Crit. Rev. Immunol. 19:389429.
41. Green, L.,, A. P. Mould,, and M. J. Humphries. 1998. The integrin beta subunit. Int. J. Biochem. Cell Biol. 30: 179184.
42. Greve, J. M.,, C. P. Forte,, C. W. Marlor,, A. M. Meyer,, H. Hoover-Litty,, D. Wunderlich,, and A. McClelland. 1991. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J. Virol. 65:60156023.
43. Haapasalmi, K.,, K. Zhang,, M. Tonnesen,, J. Olerud,, D. Sheppard,, T. Salo,, R. Kramer,, R. A. Clark,, V. J. Uitto,, and H. Larjava. 1996. Keratinocytes in human wounds express αvβ6 integrin. J. Invest. Dermatol. 106:4248.
44. Haas, T. A.,, and E. F. Plow. 1997. Development of a structural model for the cytoplasmic domain of an integrin. Protein Eng. 10:13951405.
45. Häkkinen, L.,, C. Hildebrand,, A. Berndt,, H. Kosmehl,, and H. Larjava. 2000. Immunolocalization of tenascin-C, ctg integrin subunit, and αvβ6 integrin during wound healing in oral mucosa. J. Histochem. Cytochem. 48:985998.
46. Hendry, E.,, H. Hatanaki,, E. Fry,, M. Smyth,, J. Tate,, G. Stanway,, J. Santti,, M. Maaronen,, T. Hyypia,, and D. Stuart. 1999. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enteroviruses. Structure 7:15271538.
47. Hughes, P. I.,, C. Horsnell,, and G. Stanway. 1995. The coxsackievirus A9 RGD motif is not essential for virus viability. J. Virol. 69:80358040.
48. Hughes, P. E.,, T. E. O'Toole,, J. Ylänne,, S. J. Shattil,, and M. H. Ginsberg. 1995. The conserved membrane-proximal region of an integrin cytoplasmic domain specifies ligand binding affinity. J. Biol. Chem. 270:1241112417.
49. Hynes, R. O. 1987. Integrins: a family of cell surface receptors. Cell 48:549554.
50. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:1125.
51. Hynes, R. O. 1999. Cell adhesion: old and new questions. Trends Cell Biol. 9:M33M37.
52. Jackson, T.,, W. Blakemore,, J. W. I. Newman,, N. J. Knowles,, A. P. Mould,, M. J. Humphries,, and A. M. Q. King. 2000. Foot-and-mouth disease virus is a ligand for the high-affinity binding conformation of integrin α5β1 influence of the leucine residue within the RGDL motif on selectivity of integrin binding. J. Gen. Virol. 81:13831391.
53. Jackson, T.,, F. M. Ellard,, R. Abu-Ghazaleh,, S. M. Brooks,, W. E. Blakemore,, A. H. Corteyn,, D. J. Stuart,, J. W. J. Newman,, and A. M. Q. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70:52825287.
54. Jackson, T.,, D. Sheppard,, M. Denyer,, W. Blakemore,, and A. M. Q. King. 2000. The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74: 49494956.
55. Kaplan, G.,, M. S. Freistadt,, and V. R. Racaniello. 1990. Neutralization of poliovirus by cell receptors expressed in insect cells. J. Virol. 64:46974702.
56. Kashiwagi, H.,, Y. Tomiyama,, S. Tadokoro,, S. Honda,, M. Shiraga,, H. Mizutani,, M. Handa,, Y. Kurata,, Y. Matsuzawa,, and S. J. Shattil. 1999. A mutation in the extracellular cysteine-rich repeat region of the β3 subunit activates integrins α11bβ3 and αvβ3. Blood 93:25592568.
57. Kim, J. P.,, K. Zhang,, J. D. Chen,, R. H. Kramer,, and D. T. Woodley. 1994. Vitronectin-driven human keratinocyte locomotion is mediated by the αVβ3 integrin receptor. J. Biol. Chem. 269:2692626932.
58. Law, D. A.,, F. R. DeGuzman,, P. Heiser,, K. Ministri-Madrid,, N. Kileen,, and D. R. Phillips. 1999. Integrin cytoplasmic tyrosine motif is required for outside-in α11bβ3 signaling and platelet function. Nature 401:808811.
59. Leippert, M.,, E. Beck,, F. Weiland,, and E. Pfaff. 1997. Point mutations within the βG-βH loop of foot-and-mouth disease virus O1K affect virus attachment to target cells. J. Virol. 71:10461051.
60. Li, E.,, D. Stupack,, G. M. Bokoch,, and G. R. Nemerow. 1998. Adenovirus endocytosis requires actin cytoskeleton reorganization mediated by Rho family GTPases. J. Virol. 72:88068812.
61. Li, E.,, D. Stupack,, R. Klemke,, D. A. Cheresh,, and G. R. Nemerow. 1998. Adenovirus endocytosis via αv integrins requires phosphoinositide-3-OH kinase. J. Virol. 72:20552061.
62. Liaw, L.,, M. P. Skinner,, E. W. Raines,, R. Ross,, D. A. Cheresh,, S. M. Schwartz,, and C. M. Giachelli. 1995. The adhesive and migratory effects of osteopontin are mediated via distinct cell surface integrins. Role of αvβ3 in smooth muscle cell migration to osteopontin in vitro. J. Clin. Invest. 95:713724.
63. Loeffler, F.,, and P. Frosch. 1898. Berichte der Kommission zur Erforschung der Maulund klauenseuche bei dem Institut für Infektionskrankheiten in Berlin. Zentbl. Bakteriol., Parasitenkd Infektkrankh., Abt. 1 23:371391.
64. Logan, D.,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, T. Jackson,, A. King,, S. Lea,, R. Lewis,, J. Newman,, N. Parry,, D. Rowlands,, D. Stuart,, and F. Brown. 1993. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature 362:566568.
65. Lonberg-Holm, K.,, L. B. Gosser,, and J. C. Kauer. 1975. Early alteration of poliovirus in infected cells and its specific inhibition. J. Gen. Virol. 27:329342.
66. Lonberg-Holm, K.,, and N. M. Whiteley. 1976. Physical and metabolic requirements for early interaction of poliovirus and human rhinoviruses with HeLa cells. J. Virol. 19:857870.
67. Martínez, M.,, N. Verdaguer,, M. G. Mateu,, and E. Domingo. 1997. Evolution subverting essentiality: dispensability of the cell attachment Arg-Gly-Asp motif in multiply passaged foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 94:67986802.
68. Mason, P. W.,, B. Baxt,, F. Brown,, J. Harber,, A. Murdin,, and E. Wimmer. 1993. Antibody-complexed foot-and-mouth disease, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192:568577.
69. Mason, P.,, A. Berinstein,, B. Baxt,, R. Parsells,, A. Kang,, and E. Rieder. 1996. Cloning and expression of a single-chain antibody fragment specific for foot-and-mouth disease virus. Virology 224:548554.
70. Mason, P. W.,, E. Rieder,, and B. Baxt. 1994- RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody dependent enhancement pathway. Proc. Natl. Acad. Sci. USA 91:19321936.
71. McKenna, T. St. C.,, J. Lubroth,, E. Rieder,, B. Baxt,, and P. W. Mason. 1995. Receptor binding site-deleted foot-and-mouth disease (FMD) virus protects cattle from FMD. J. Virol. 69:57875790.
72. Mette, S. A.,, J. Pilewski,, C. A. Buck,, and S. M. Al-belda. 1993. Distribution of integrin cell adhesion receptors on normal bronchial epithelial cells and lung cancer cells in vitro and in vivo. Am. J. Respir. Cell Mol. Biol. 8:562572.
72a.. Neff, S.,, and B. Baxt. 2001. The ability of the integrin αvβ3 to function as a receptor for foot-and-mouth disease virus is not dependent on the presence of complete cytoplasmic domains. J. Virol. 75:527532.
73. Neff, S.,, P. W. Mason,, and B. Baxt. 2000. High efficiency utilization of the bovine integrin ?v?3 as a receptor for foot-and-mouth disease virus is dependent on the bovine ft subunit. J. Virol. 74:72987306.
74. Neff, S.,, D. Sa-Carvalho,, E. Rieder,, P. W. Mason,, S. D. Blystone,, E. J. Brown,, and B. Baxt. 1998. Foot-and-mouth disease virus virulent for cattle utilizes the integrin αvβ3 as its receptor. J. Virol. 72:35873594.
75. O'Toole, T. E.,, Y. Katagiri,, R. J. Faull,, K. Peter,, R. Tamura,, V. Quaranta,, J. C. Loftus,, S. J. Shattil,, and M. H. Ginsberg. 1994. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124: 10471059.
76. Pfaff, E.,, H. J. Thiel,, E. Beck,, K. Strohmaier,, and H. Schaller. 1988. Analysis of neutralizing epitopes on foot-and-mouth disease virus. J. Virol. 62:20332040.
77. Pierschbacher, M. D.,, E. G. Hayman,, and E. Ruoslahti. 1985. The cell attachment determinant in fibronectin. J. Cell. Biocliem. 28:115126.
78. Pierschbacher, M. D.,, and E. Ruoslahti. 1984. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309: 3033.
79. Pierschbacher, M. D.,, and E. Ruoslahti. 1984. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc. Natl. Acad. Sci. USA 81:59855988.
80. Puzon-McLaughlin, W.,, T. A. Yednock,, and Y. Takada. 1996. Regulation of conformation and ligand binding function of integrin α5β1 by the ft cytoplasmic domain. J. Biol. Chem. 271:1658016585.
81. Rieder, E.,, B. Baxt,, and P. W. Mason. 1994. Animal-derived antigenic variants of foot-and-mouth disease virus type A12 have low affinity for cells in culture. J. Virol. 68: 52965299.
82. Rieder, E.,, A. Berinstein,, B. Baxt,, A. Kang,, and R. W. Mason. 1996. Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 93:1042810433.
83. Roivainen, M.,, T. Hyypia,, L. Piirainen,, N. Kalkkinen,, G. Stanway,, and T. Hovi. 1991. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J. Virol. 65:47354740.
84-. Roivainen, M.,, L. Piirainen,, and T. Hovi. 1996. Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 141:19091919.
85. Roivainen, M.,, L. Piirainen,, T. Hovi,, J. Virtanen,, T. Riikonen,, J. Heino,, and T. Hyypia. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with αvβ3 integrin, the vitronectin receptor. Virology 203:357365.
86. Ruoslahti, E. 1996. RGD and other recognition sequences for integrins. Ann. Rev. Cell Dev. Biol. 12:697715.
87. Sa-Carvalho, D.,, E. Rieder,, B. Baxt,, R. Rodarte,, A. Tanuri,, and P. W. Mason. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71:51155123.
88. Schaffner-Reckinger, E.,, V. Gouon,, C. Melchior,, S. Plancon,, and N. Kieffer. 1998. Distinct involvement of β3 integrin cytoplasmic domain tyrosine residues 747 and 759 in integrin-mediated cytoskeletal assembly and phos-photyrosine signaling. J. Biol. Chem. 273:1262312632.
89. Schneider-Schaulies, J. 2000. Cellular receptors for viruses: links to tropism and pathogenesis. J. Gen. Virol. 81: 14131429.
90. Sekiguchi, K.,, A. J. Franke,, and B. Baxt. 1982. Competition for cellular receptor sites among selected aphtho-viruses. Arch. Virol. 74:5364.
91. Shieh, M.-T.,, D. WuDunn,, R. J. Montgomery,, J. D. Esko,, and P. Spear. 1992. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116:12731281.
92. Sutmoller, P.,, and J. McVicar. 1976. Pathogenesis of foot-and-mouth disease: the lung as an additional portal of entry of the virus. J. Hyg. (Cambridge) 77:235243.
93. Tamkun, J. W.,, D. W. DeSimone,, D. Fonda,, R. S. Patel,, C. Buck,, A. F. Horwitz,, and R. O. Hynes. 1986. Structure of integrin, a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell 46: 271282.
94. Wang, K.,, T. Guan,, D. A. Cheresh,, and G. R. Nemerow. 2000. Regulation of adenovirus membrane penetration by the cytoplasmic tail of integrin β5. J. Virol. 74: 27312739.
95. Wang, A.,, Y. Yokosaki,, R. Ferrando,, J. Balmes,, and D. Sheppard. 1996. Differential regulation of airway epithelial integrins by growth factors. Am. J. Respir. Cell Mol. Biol. 15:664672.
96. Weinacker, A.,, R. Ferrando,, M. Elliot,, J. Hogg,, J. Balmes,, and D. Sheppard. 1995. Distribution of integrins αvβ6 and α9β1 and their known ligands, fibronectin and tenascin, in human airways. Am. J. Respir. Cell Mol. Biol. 12:547556.
97. Wimmer, E., 1994- Introduction, p. 113. In E. Wimmer (ed.), Cellular Receptors for Animal Viruses. Cold Spring Harbor Laboratory Press, Plainview, N.Y..
98. WuDunn, D.,, and P. G. Spear. 1989. Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. J. Virol. 63:5258.


Generic image for table

Replication of FMDV in CHO cells with defined receptor specificity

Adapted from data in reference .

See text for descriptions of the viruses.

Viral proteins detected in infected cells by radioimmunoprecipitation.

No viral proteins detected in infected cells.

Not determined.

Citation: Baxt B, Neff S, Mason P, Rieder E. 2002. Foot-and-Mouth Disease Virus-Receptor Interactions: Role in Pathogenesis and Tissue Culture Adaptation, p 115-123. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error