1887

Chapter 14 : Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap14-2.gif

Abstract:

By the late 1970s, a skeleton of the translation mechanism utilized by the bulk of cellular mRNAs had been elucidated. More elegant proof of utilization of an internal ribosome entry site (IRES) on the viral RNA was provided by analysis of translation of bicistronic constructs engineered to encode two tandem protein sequences, separated by a viral 5' untranslated region (UTR). The RNA sequences that constitute an IRES extend through several hundred nucleotides and fold into complex, multidomain structures. To identify the nucleotide sequences and structures in the picornavirus 5' UTRs that contribute to IRES function, mutations were introduced into cDNAs to generate transcripts whose translation could be evaluated in vitro or in transfected cells. For the picornavirus RNAs, a relatively relaxed structure is predicted, with a long, central axis of shifting base pairs, with relatively stable stems, loops, helices, and branch points extending from the central backbone. The conserved motifs in the secondary structure elements that are essential for IRES activity are likely to facilitate RNA-RNA or RNA-protein interactions required to maintain a higher order structure needed for proper recognition of the IRES element by the translational machinery. The picornavirus IRES elements represent relatively large complex domains composed of multiple subdomains that require correct spatial orientation and interactions to carry out IRES function. Efficient translation of capped mRNAs in eukaryotic cells involves a synergistic dependence on the 5'-terminal cap structure and the 3'-terminal poly(A) tail.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14

Key Concept Ranking

Theiler's Murine Encephalomyelitis
0.42516303
Human Parechovirus Type 1
0.41731668
0.42516303
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic representation of bicistronic mRNAs and their translation products.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the predicted stem-loop structures in the (A) poliovirus, (B) EMCV, and (C) hepatitis A virus 5′ UTR of the viral RNAs.

Citation: Ehrenfeld E, Teterina N. 2002. Initiation of Translation of Picornavirus RNAs: Structure and Function of the Internal Ribosome Entry Site, p 159-169. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap14
1. Agol, V. I. 1991. The 5'-untranslated region of picomaviral genomes. Adv. Virus Res. 40:103180.
2. Agol, V. I.,, S. G. Drozdov,, T. A. Ivannikova,, M. S. Kolesnikova,, M. B. Korolev,, and E. A. Tolskaya. 1989. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J. Virol. 63:40344038.
3. Alexander, L.,, H.-H. Lu,, and E. Wimmer. 1994. Polio-virus containing picornavirus type 1 and/or type 2 internal ribosomal entry site elements: genetic hybrids and the expression of a foreign gene. Proc. Natl. Acad. Sci. USA 91: 14061410.
4. Barton, D. J.,, B. J. O'Donnell,, and J. B. Flanegan. 2001. 5' cloverleaf in poliovirus RNA is a cis-acting replication element required for negative-strand synthesis. EMBO J. 20:14391448.
5. Belsham, G. J. 1992. Dual initiation sites of protein synthesis on foot-and-mouth disease virus RNA are selected following internal entry and scanning of ribosomes in vivo. EMBO J. 11:11051110.
6. Belsham, G. J.,, and J. K. Brangwyn. 1990. A region of the 5' noncoding region of foot-and-mouth disease virus RNA directs efficient internal initiation of protein synthesis within cells: involvement with the role of L protease in translational control. J. Virol. 64:53895395.
7. Bergamini, G.,, T. Preiss,, and M. W. Hentze. 2000. Picornavirus IRESes and the poly(A) tail jointly promote cap-independent translation in a mammalian cell-free system. RNA 6:17811790.
8. Bienkowska-Szewczyk, K.,, and E. Ehrenfeld. 1988. An internal 5'-noncoding region required for translation of poliovirus RNA in vitro. J. Virol. 62:30683072.
9. Blyn, L. B.,, R. Chen,, B. L, Semler, and E. Ehrenfeld. 1995. Host cell proteins binding to domain IV of the 5' noncoding region of poliovirus RNA. J. Virol. 69:43814389.
10. Blyn, L. B.,, J. S. Towner,, B. L. Semler,, and E. Ehrenfeld. 1997. Requirement of poly(rC) binding protein 2 for translation of poliovirus RNA. J. Virol. 71:62436246.
11. Borman, A. M.,, F. G. Deliat,, and K. M. Kean. 1994. Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J. 13:31493157.
12. Brown, B. A.,, and E. Ehrenfeld. 1979. Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97:396405.
13. Brown, E. A.,, S. P. Day,, R. W. Jansen,, and S. M. Lemon. 1991. The 5' nontranslated region of hepatitis A virus RNA: secondary structure and elements required for translation in vitro. J. Virol. 65:58285838.
14. Brown, E. A.,, A. J. Zajac,, and S. M. Lemon. 1994. In vitro characterization of an internal ribosomal entry site (IRES) present within the 5' nontranslated region of hepatitis A virus RNA: comparison with the IRES of encephalomyocarditis virus. J. Virol. 68:10661074.
15. Carter, M. S.,, K. M. Kuhn,, and P. Sarnow,. 2000. Cellular internal ribosome entry site elements and the use of cDNA microarrays in their investigation, p. 615636. In N. Sonenberg,, J. W. B. Hershey,, and M. B. Mathews (ed.), Translational Control of Gene Expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y..
16. Chapman, N. M.,, A. Ragland,, J. S. Leser,, K. Hofling,, S. Willian,, B. L. Semler,, and S. Tracy. 2000. A group B coxsackievirus/poliovirus 5' nontranslated region chimera can act as an attenuated vaccine strain in mice. J. Virol. 74:40474056.
17. Chen, C. Y.,, and P. Sarnow. 1995. Initiation of protein synthesis by the eukaryotic translational apparatus on circular RNAs. Science 268:415417.
18. Cornelis, S.,, Y. Bruynooghe,, G. Denecker,, S. van Huf-fel,, S. Tinton,, and R. Beyaert. 2000. Identification and characterization of a novel cell cycle-regulated internal ribosome entry site. Mol. Cell 5:597605.
19. De Gregorio, E.,, T. Preiss,, and M. W. Hentze. 1999. Translation driven by an eIF4G core domain in vivo. EMBO J. 18:48654874.
20. Dildine, S. L.,, and B. L. Semler. 1989. The deletion of 41 proximal nucleotides reverts a poliovirus mutant containing a temperature-sensitive lesion in the 5' noncoding region of genomic RNA. J. Virol. 63:847862.
21. Dorner, A. J.,, B. L. Semler,, R. J. Jackson,, R. Hanecak,, E. Duprey,, and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50:507514.
22. Drew, J.,, and G. J. Belsham. 1994. trans Complementation by RNA of defective foot-and-mouth disease virus internal ribosome entry site elements. J. Virol. 68:697703.
23. Duke, G. M.,, M. A. Hoffman,, and A. C. Palmenberg. 1992. Sequence and structural elements that contribute to efficient encephalomyocarditis virus RNA translation. J. Virol. 66:16021609.
24. Ehrenfeld, E. 1996. Initiation of Translation by Picornavirus RNAs, Translational Control. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
25. Ehrenfeld, E.,, and B. L. Semler. 1995. Anatomy of the poliovirus internal ribosome entry site. Curr. Top. Microbiol. Immunol. 203:6583.
26. Evstafieva, A. G.,, T. Y. Ugarova,, B. K. Chernov,, and I. N. Shatsky. 1991. A complex RNA sequence determines the internal initiation of encephalomyocarditis virus RNA translation. Nucleic Acids Res. 19:665671.
27. Gamarnik, A. V.,, and R. Andino. 2000. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. J. Virol. 74:22192226.
28. Gamarnik, A. V.,, and R. Andino. 1998. Switch from translation to RNA replication in positive-stranded RNA virus. Genes Dev. 12:22932304.
29. Gamarnik, A. V.,, and R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. RNA 3:882892.
30. Gingras, A. C.,, B. Raught,, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913963.
31. Glass, M. J.,, and D. F. Summers. 1993. Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro. Virology 193:10471050.
32. Graff, J.,, and E. Ehrenfeld. 1998. Coding sequences enhance internal initiation of translation by hepatitis A virus RNA in vitro. J. Virol. 72:35713577.
33. Gromeier, M.,, L. Alexander,, and E. Wimmer. 1996. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93:23702375.
34. Gromeier, M.,, B. Bossert,, M. Arita,, A. Nomoto,, and E. Wimmer. 1999. Dual stem loops within the poliovirus internal ribosomal entry site control neurovirulence. J. Virol. 73:958964.
35. Gutierrez, A. L.,, M. Denova-Ocampo,, V. R. Racaniello,, and R. M. del Angel. 1997. Attenuating mutations in the poliovirus 5' untranslated region alter its interaction with polypyrimidine tract-binding protein. J. Virol. 71:38263833.
36. Haller, A. A.,, and B. L. Semler. 1995. Stem-loop structure synergy in binding cellular proteins to the 5' non-coding region of poliovirus RNA. Virology 206:923934.
37. Hoffman, M. A.,, and A. C. Palmenberg. 1995. Mutational analysis of the J-K stem-loop region of the en-cephalomyocarditis virus IRES. J. Virol. 69:43994406.
38. Imataka, H.,, A. Gradi,, and N. Sonenberg. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:74807489.
39. Ishii, T.,, K. Shiroki,, A. Iwai,, and A. Nomoto. 1999. Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. J. Gen. Virol. 80:917920.
40. Jackson, R. J.,, and A. Kaminski. 1995. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1:9851000.
41. Jacobson, A. B.,, and M. Zuker. 1993. Structural analysis by energy dot plot of a large mRNA. J. Mol. Biol. 233: 261269.
42. Jaeger, J. A.,, D. H. Turner,, and M. Zuker. 1989. Improved predictions of secondary structures for RNA. Proc. Natl. Acad. Sci. USA 86:77067710.
43. Jang, S. K.,, M. V. Davies,, R. J. Kaufman,, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63:16511660.
44. Jang, S. K.,, H. G. Krausslich,, M. J. Nicklin,, G. M. Duke,, A. C. Palmenberg,, and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:26362643.
45. Jang, S. K.,, and E. Wimmer. 1990. Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev. 4:15601572.
46. Jia, X. Y.,, G. Scheper,, D. Brown,, W. Updike,, S. Harmon,, O. Richards,, D. Summers,, and E. Ehrenfeld. 1991. Translation of hepatitis A virus RNA in vitro: aberrant internal initiations influenced by 5' noncoding region. Virology 182:712722.
47. Jia, X. Y.,, M. Tesar,, D. F. Summers,, and E. Ehrenfeld. 1996. Replication of hepatitis A viruses with chimeric 5' nontranslated regions. J. Virol. 70:28612868.
48. Johansen, L. K.,, and C. D. Morrow. 2000. The RNA encompassing the internal ribosome entry site in the poliovirus 5' nontranslated region enhances the encapsidation of genomic RNA. Virology 273:391399.
49. Johnson, V. H.,, and B. L. Semler. 1988. Defined recombinants of poliovirus and coxsackievirus: sequence-specific deletions and functional substitutions in the 5' noncoding regions of viral RNAs. Virology 162:4757.
50. Kaminski, A.,, G. J. Belsham,, and R. J. Jackson. 1994. Translation of encephalomyocarditis virus RNA: parameters influencing the selection of the internal initiation site. EMBO J. 13:16731681.
51. Kaminski, A.,, S. L. Hunt,, C. L. Gibbs,, and R. J. Jackson. 1994. Internal initiation of mRNA translation in eukaryotes. Genet. Eng. 16:115155.
52. King, A. M. Q.,, F. Brown,, P. Christian,, T. Hovi,, T. Hyypia,, N. J. Knowles,, S. M. Lemon,, P. D. Minor,, A. C. Palmenberg,, T. Skern,, and G. Stanway,. 2000. Picorna-viridae, p. 657673. In M. H. V. Van Regenmortel,, C. M. Fauquet,, D. H. L. Bishop,, C. H. Calisher,, E. B. Carsten,, M. K. Estes,, S. M. Lemon,, J. Maniloff,, M. A. Mayo,, D. J. McGeoch,, C. R. Pringle,, and R. B. Wickner (ed.), Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses. Academic Press, New York, N.Y..
53. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson,, and E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547553.
54. Kolupaeva, V. G.,, T. V. Pestova,, C. U. Hellen,, and I. N. Shatsky. 1998. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273:1859918604.
55. Kong, W. P.,, and R. P. Roos. 1991. Alternative translation initiation site in the DA strain of Theiler's murine encephalomyelitis virus. J. Virol. 65:33953399.
56. Kuhn, R.,, N. Luz,, and E. Beck. 1990. Functional analysis of the internal translation initiation site of foot-and-mouth disease virus. J. Virol. 64:46254631.
57. La Monica, N.,, and V. R. Racaniello. 1989. Differences in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SY5Y. J. Virol. 63: 23572360.
58. Le, S.-Y.,, J.-H. Chen,, N. Sonenberg,, and J. V. Maizel. 1992. Conserved tertiary structure elements in the 5' untranslated region of human enteroviruses and rhinoviruses. Virology 191:858866.
59. Le, S.-Y.,, and J. V. Maizel. 1998. Evolution of a common structural core in the internal ribosome entry sites of picornavirus. Virus Genes 16:2538.
60. Le, S.-Y.,, A. Siddiqui,, and J. V. Maizel. 1996. A common structural core in the internal ribosome entry sites of picornavirus, hepatitis C virus, and pestivirus. Virus Genes 12:135147.
61. Liu, Z.,, C. M. Carthy,, P. Cheung,, L. Bohunek,, J. E. Wilson,, B. M. McManus,, and D. Yang. 1999. Structural and functional analysis of the 5' untranslated region of coxsackievirus B3 RNA: in vivo translational and infectivity studies of full-length mutants. Virology 265:206217.
62.L opez de Quinto, S.,, and E. Martinez-Salas. 2000. Interaction of the eIF4G initiation factor with the aphthovirus IRES is essential for internal translation initiation in vivo. RNA 6:13801392.
63. Lopez de Quinto, S.,, and E. Martinez-Salas. 1997>. Conserved structural motifs located in distal loops of aphthovirus internal ribosome entry site domain 3 are required for internal initiation of translation. J. Virol. 71:41714175.
64. Marcotrigiano, J.,, I. B. Lomakin,, N. Sonenberg,, T. V. Pestova,, C. U. Hellen,, and S. K. Burley. 2001. A conserved HEAT domain within eIF4G directs assembly of the translation initiation machinery. Mol. Cell 7:193203.
65. Martinez-Salas, E.,, R. Ramos,, E. Lafuente,, and S. Lopez de Quinto. 2001. Functional interactions in internal translation initiation directed by viral and cellular IRES elements. J. Gen. Virol. 82:973984.
66. Martinez-Salas, E.,, M. P. Regalado,, and E. Domingo. 1996. Identification of an essential region for internal initiation of translation in the aphthovirus internal ribosome entry site and implications for viral evolution. J. Virol. 70: 992998.
67. Meerovitch, K.,, Y. V. Svitkin,, H. S. Lee,, E. Lejbkowicz,, D. J. Kenan,, E. K. Chan,, V. I. Agol,, J. D. Keene, and N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67:37983807.
68. Michel, Y. M.,, D. Poncet,, M. Piron,, K. M. Kean,, and A. Borman. 2000. Cap-poly (A) synergy in mammalian cell-free extracts. J. Biol. Chem. 275:3226832276.
69. Minor, P. D. 1992. The molecular biology of polio-vaccines. J. Gen. Virol. 73:30653077.
70. Nateri, A. S.,, P. J. Hughes,, and G. Stanway. 2000. In vivo and in vitro identification of structural and sequence elements of the human parechovirus 5' untranslated region required for internal initiation. J. Virol. 74:62696277.
71. Nicholson, R.,, J. Pelletier,, S.-Y. Le,, and N. Sonenberg. 1991. Structural and functional analysis of the ribosome landing pad of poliovirus type 2: in vivo translation studies. J. Virol. 65:58865894.
72. Niepmann, M. 1999. Internal initiation of translation of picornaviruses, hepatitis C virus and pestiviruses. Recent Res. Dev. Virol. 1:229250.
73. Ohlmann, T.,, and R. J. Jackson. 1999. The properties of chimeric picornavirus IRESes show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA 5:764778.
74. Ohlmann, T.,, M. Rau,, V. M. Pain,, and S. J. Morley. 1996. The C-terminal domain of eukaryotic protein synthesis initiation factor (eIF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15:13711382.
75. Palmenberg, A. C.,, and J.-Y. Sgro. 1997. Topological organization of picornaviral genomes: statistical prediction of RNA structural signals. Semin. Virol. 8:231241.
76. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld,, and B. L. Semler. 1997. Poly (rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3: 11241134.
77. Pause, A.,, N. Methot,, Y. Svitkin,, W. C. Merrick,, and N. Sonenberg. 1994. Dominant negative mutants of mammalian translation initiation factor eIF-4A define a critical role for eIF-4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13:12051215.
78. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320325.
79. Percy, N.,, G. J. Belsham,, J. K. Brangwyn,, M. Sullivan,, D. M. Stone,, and J. W. Almond. 1992. Intracellular modifications induced by poliovirus reduce the requirement for structural motifs in the 5' noncoding region of the genome involved in internal initiation of protein synthesis. J. Virol. 66:16951701.
80. Pestova, T. V.,, C. U. T. Hellen,, and I. N. Shatsky. 1996. Canonical eukaryotic initiation factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16:68596869.
81. Pestova, T. V.,, I. N. Shatsky,, and C. U. T. Hellen. 1996. Functional dissection of eukaryotic initiation factor 4F: the 4A subunit and the central domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Ceil. Biol. 16:68706878.
82. Phillips, B. A.,, and A. Emmert. 1986. Modulation of the expression of poliovirus proteins in reticulocyte lysates. Virology 148:255267.
83. Pilipenko, E. V.,, V. M. Blinov,, B. K. Chernov,, T. M. Dmitrieva,, and V. I. Agol. 1989. Conservation of the secondary structure elements of the 5'-untranslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 17: 57015711.
84. Pilipenko, E. V.,, V. M. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova,, and V. I. Agol. 1989. Conserved structural domains in the 5'-untranslated region of picornaviral genomes: an analysis of the segment controlling translation and neurovirulence. Virology 168:201209.
85. Pilipenko, E. V.,, A. P. Gmyl,, S. V. Maslova,, Y. V. Svitkin,, A. N. Sinyakov,, and V. I. Agol. 1992. Prokaryotic-like cis elements in the cap-independent internal initiation of translation on picornavirus RNA. Cell 68:119131.
86. Pilipenko, E. V.,, T. V. Pestova,, V. G. Kolupaeva,, E. V. Khitrina,, A. N. Poperechnaya,, V. I. Agol,, and C. U. Hellen. 2000. A cell cycle-dependent protein serves as a template-specific translation initiation factor. Genes Dev. 14:20282045.
87. Poyry, T.,, L. Kinnunen,, and T. Hovi. 1992. Genetic variation in vivo and proposed functional domains of the 5' noncoding region of poliovirus RNA. J. Virol. 66:53135319.
88. Racaniello, V. R.,, and D. Baltimore. 1981. Cloned poliovirus complementary DNA is infectious in mammalian cells. Science 214:916919.
89. Ramos, R.,, and E. Martinez-Salas. 1999. Long-range RNA interactions between structural domains of the aphthovirus internal ribosome entry site (IRES). RNA 5: 13741383.
90. Rinehart, J. E.,, R. M. Gomez,, and R. P. Roos. 1997. Molecular determinants for virulence in coxsackievirus B1 infection. J. Virol. 71:39863991.
91. Rivera, V. M.,, J. D. Welsh,, and J. V. Maizel, Jr. 1988. Comparative sequence analysis of the 5' noncoding region of the enteroviruses and rhinoviruses. Virology 165:4250.
92. Roberts, L. O.,, and G. J. Belsham. 1997. Complementation of defective internal ribosome entry site (IRES) elements by the coexpression of fragments of the IRES. Virology 227:5362.
93. Robertson, M. E.,, R. A. Seamons,, and G. J. Belsham. 1999. A selection system for functional internal ribosome entry site (IRES) elements: analysis of the requirement for a conserved GNRA tetraloop in the encephalomyocarditis virus IRES. RNA 5:11671179.
94. Scheper, G. C.,, H. O. Voorma,, and A. A. Thomas. 1992. Eukaryotic initiation factors-4E and -4F stimulate 5' cap-dependent as well as internal initiation of protein synthesis. J. Biol. Chem. 267:72697274.
95. Shih, D. S.,, I. W. Park,, C. L. Evans,, J. M. Jaynes,, and A. C. Palmenberg. 1987. Effects of cDNA hybridization on translation of encephalomyocarditis virus RNA. J. Virol. 61:20332037.
96. Shiroki, K.,, T. Ishii,, T. Aoki,, Y. Ota,, W. X. Yang,, T. Komatsu,, Y. Ami,, M. Arita,, S. Abe,, S. Hashizume,, and A. Nomoto. 1997. Host range phenotype induced by mutations in the internal ribosomal entry site of poliovirus RNA. J. Virol. 71:18.
97. Simoes, E. A.,, and P. Sarnow. 1991. An RNA hairpin at the extreme 5' end of the poliovirus RNA genome modulates viral translation in human cells. J. Virol. 65: 913921.
98. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, J. Cooper,, P. D. Minor,, and J. W. Almond. 1989. New model for the secondary structure of the 5' non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 207:379392.
99. Slobodskaya, O. R.,, A. P. Gmyl,, S. V. Maslova,, E. A. Tolskaya,, E. G. Viktorova,, and V. 1. Agol. 1996. Poliovirus neurovirulence correlates with the presence of a cryptic AUG upstream of the initiator codon. Virology 221:141150.
100. Stewart, S. R.,, and B. L. Semler. 1999. Pyrimidine-rich region mutations compensate for a stem-loop V lesion in the 5' noncoding region of poliovirus genomic RNA. Virology 264:385397.
101. Stewart, S. R.,, and B. L. Semler. 1997. RNA determinants of picornavirus cap-independent translation initiation. Semin. Virol. 8:242255.
102. Stewart, S. R.,, and B. L. Semler. 1998. RNA structure adjacent to the attenuation determinant in the 5'-non-coding region influences poliovirus viability. Nucleic Acids Res. 26:53185326.
103. Stone, D. M.,, J. W. Almond,, J. K. Brangwyn,, and G. J. Belsham. 1993. trans Complementation of cap-independent translation directed by poliovirus 5' non-coding region deletion mutants; evidence for RNA-RNA interactions. J. Virol. 67:62156223.
104. Svitkin, Y. V.,, T. V. Pestova,, S. V. Maslova,, and V. I. Agol. 1988. Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166:394404.
105. Tarun, S. Z.,, and A. B. Sachs. 1995. A common function for mRNA 5' and 3' ends in translation initiation in yeast. Genes Dev. 9:29973007.
106. Tesar, M.,, S. A. Harmon,, D. F. Summers,, and E. Ehrenfeld. 1992. Hepatitis A virus polyprotein synthesis initiates from two alternative AUG codons. Virology 186:609618.
107. Trono, D.,, R. Andino,, and D. Baltimore. 1988. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis. J. Viral. 62:22912299.
108. Tu, Z.,, N. M. Chapman,, G. Hufnagel,, S. Tracy,, J. R. Romero,, W. H. Barry,, L. Zhao,, K. Currey,, and B. Shapiro. 1995. The cardiovirulent phenotype of coxsackievirus B3 is determined at a single site in the genomic 5' nontranslated region. J. Virol. 69:46074618.
109. Van der Velden, A.,, A. Kaminski,, R. J. Jackson,, and G. J. Belsham. 1995. Defective point mutants of the encephalomyocarditis virus internal ribosome entry site can be complemented in trans. Virology 214:8290.
110. Wells, S. E.,, P. E. HiUner,, R. D. Vale,, and A. B. Sachs. 1998. Circularization of mRNA by eukaryotic translation initiation factors. Mol. Cell 2:135140.
111. Whetter, L. E.,, S. P. Day,, O. Elroy-Stein,, E. A. Brown,, and S. M. Lemon. 1994. Low efficiency of the 5' non-translated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells. J. Virol. 68:52535263.
112. Wimmer, E.,, C. U. T. Hellen,, and X. M. Cao. 1993. Genetics of poliovirus. Anna. Rev. Genet. 27:353436.
113. Witherell, G. W.,, C. S. Schultz-Witherell,, and E. Wimmer. 1995. cis-Acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology 214: 660663.
114. Yamashita, T.,, K. Sakae,, H. Tsuzuki,, Y. Suzuki,, N. Ishikawa,, N. Takeda,, T. Miyamura,, and S. Yamazaki. 1998. Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picor-naviridae associated with acute gastroenteritis in humans. J. Virol. 72:84088412.
115. Zuker, M.,, and A. B. Jacobson. 1995. "Well-determined" regions in RNA secondary structure prediction: analysis of small subunit ribosomal RNA. Nucleic Acids Res. 23:27912798.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error