1887

Chapter 15 : Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap15-2.gif

Abstract:

In December 1975, Hugh Pelham invented the micrococcal nuclease-treated (messenger-dependent) rabbit reticulocyte lysate. The sequencing of picornavirus RNAs in the early 1980s revealed that they had rather long 5' untranslated regions (5' UTRs) of between 610 and ~1400 nucleotides [nt], depending on the particular virus species. In due course, evidence for translation by direct internal ribosome entry was provided by the demonstration that the insertion of a picornavirus 5' UTR between the two cistrons of a laboratory-constructed dicistronic mRNA leads to dramatic enhancement of expression of the downstream cistron. Entero- and rhinovirus 2A and foot-and-mouth disease virus (FMDV) L proteases cleave eIF4G into an N-terminal one-third fragment, which has the eIF4E interaction site, and a C-terminal two-thirds fragment, which has the interaction site for eIF3, and both sites where eIF4A binds. Toe-printing and sucrose gradient analyses of initiation complexes formed with highly purified initiation factors have shown that the binding of the 40S subunit to the correct initiation site on the encephalomyocarditis virus (EMCV) internal ribosomal entry site (IRES) absolutely requires eIF2, 3, and 4A and either the complete native eIF4F complex (with associated eIF4A) or recombinant fragments of eIF4G, which include the central one-third domain. In conclusion, therefore, the most plausible hypothesis is that by binding at multiple points in the IRES element, polypyrimidine tract-binding protein (PTB), PCBP-2, and serve to help in the maintenance or the attainment of the appropriate three-dimensional RNA structure.

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15

Key Concept Ranking

Theiler's Murine Encephalomyelitis
0.4428227
0.4428227
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic diagram of eIF4G domain structure. The eIF4G polypeptide is depicted as an open rectangle, with binding/interaction sites of PABP, eIF3, eIF4A helicase (two interaction sites), and eIF4E cap-binding factor shown ( ). The putative RNP-1 and RNP-2 motifs of the hypothetical RRM in the central domain are shown as vertical black bars. The indicated central domain is (so far) the minimum eIF4G fragment able to support translation initiation dependent on the EMCV IRES. The diagram is based on the more abundant and better studied eIF4G species, eIF4GI. The other minor species (eIF4GII), although only 46% homologous to eIF4GI throughout the whole protein, shows much greater homology in certain specific regions, notably in the center and toward the C terminus, suggesting that the sites of interaction with PABP, eIF3, eIF4A, and eIF4E will be in similar positions as in eIF4GI ( ).

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic diagram of the EMCV IRES. The sequence around the authentic initiation site (AUG-11, shown in bold) is given. The various subdomains (H through L) discussed in the text are indicated. The site at which eIF4G (or eIF4F) binds as determined by foot-printing ( ) is shown by stippling, and the self-consistent toe-print site ( ) is also indicated. Asterisks denote the regions protected when PTB binds to the IRES, as determined by foot-printing/protection experiments ( ). The A-rich bulge (sequence 5′-UAAAAAA-3′ in EMCV strain R) is denoted by a thickened checkered line; a fortuitous expansion of this bulge by a single additional A-residue renders the activity of the IRES highly dependent on PTB ( ).

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic diagram of the domain structure of , PTB, and PCBPs. The diagrams are approximately to scale and show the five cold-shock domains (CSD) of in black, the four noncanonical RRMs of PTB as stippled rectangles, and the three KH-domains of PCBP-1/2 as vertically striped rectangles. The amino acid sequences of the core of each of the five CSDs of are given, with the amino acid residues believed to constitute the RNA-binding surface ( ) in bold. Note that all five CSDs of have the sequence FFH, which is unique to this member of the family, in contrast with the FVH motif found in all other CSD proteins ( ). At the bottom is the amino acid sequence of PCBP-2, with the differences found in PCPB-1 given below. These amino acid sequences are those published by Leffers et al. ( ), and the K-H domains identified by Leffers et al. are highlighted by boxed rectangles.

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap15
1. Blyn, L. B.,, K. M. Swiderek,, O. Richards,, D. C. Stahl,, B. L. Semler,, and E. Ehrenfeld. 1996. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 93:1111511120.
2. Blyn, L. B.,, J. S. Towner,, B. L. Semler,, and E. Ehrenfeld. 1997. Requirement of poly(rC) binding protein 2 for ttanslation of poliovirus RNA. J. Virol. 71:62436246.
3. Borman, A. M.,, and K. M. Kean. 1997. Intact eukaryotic initiation factor 4G is tequired for hepatitis A virus internal initiation of translation. Virology 237:129136.
4. Borman, A. M.,, J.-L. Bailly,, M. Girard,, and K. M. Kean. 1995. Picornavirus internal ribosome entry segments— comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro. Nuckic Acids Res. 23:36563663.
5. Borman, A. M.,, M. T. Howell,, J. G. Patton,, and R. J. Jackson. 1993. The involvement of a spliceosome component in internal initiation of human rhinovirus RNA translation. J. Gen. Virol. 74:17751788.
6. Borman, A. M.,, R. Kirchweger,, E. Ziegler,, R. E. Rhoads,, T. Skern,, and K. M. Kean. 1997. eIF4G and its proteolytic cleavage products: effect on initiation of protein synthesis from capped, uncapped and IRES-containing mRNAs. RNA 3:186196.
7. Borman, A. M.,, P. Le Mercier,, M. Girard,, and K. M. Kean. 1997. Comparison of picornaviral IRES-driven internal initiation in cultured cells of different origins. Nucleic Acids Res. 25:925932.
8. Boussadia, O.,, F. Amiot,, S. Cases,, G. Triqueneaux,, H. Jacquemin-Sablon,, and F. Dautry. 1997. Transcription of unr (upstream of N-ras) down-modulates N-ros expression in vivo. FEBS Lett. 420:2024.
9. Boussadia, O.,, H. Jacquemin-Sablon,, and F. Dautry. 1993. Exon skipping in the expression of the gene immediately upstream of N-ras (unr/NRU). Biochim. Biophys. Acta 1172:6472.
10. Brown, B. A.,, and E. Ehrenfeld. 1979. Translation of poliovirus RNA in vitro: changes in cleavage pattern and initiation sites by ribosomal salt wash. Virology 97:396405.
11.[Reference deleted in proof.].
12. Craig, A. W. B.,, Y. V. Svitkin,, H. S. Lee,, G. J. Belsham,, and N. Sonenberg. 1997. The La autoantigen contains a dimerization domain that is essential for enhancing translation. Mol. Cell. Biol. 17:163169.
13. De Gregorio, E.,, T. Preiss,, and M. W. Hentze. 1998. Translational activation of uncapped mRNAs by the central part of human eIF4G is 5' end dependent. RNA 4: 828836.
14. De Gregorio, E.,, T. Preiss,, and M. W. Hentze. 1999. Translation driven by an eIF4G core domain in vivo. EMBO J. 18:48654874.
15. Dorner, A. J.,, B. L. Semler,, R. J. Jackson,, R. Hanecak,, E. Duprey,, and E. Wimmer. 1984. In vitro translation of poliovirus RNA: utilization of internal initiation sites in reticulocyte lysate. J. Virol. 50:507514.
16. Follett, E. A. C.,, C. R. Pringle,, and T. H. Pennington. 1975. Vitus development in enucleate cells: echovirus, poliovirus, pseudorabies virus, reovirus, respiratory syncytial virus and Semliki Forest virus. J. Gen. Virol. 26:183196.
17. Gamarnik, A. V.,, and R. Andino. 1996. Replication of poliovirus in Xenopws oocytes requires two human factors. EMBO J. 15:59885998.
18. Gamarnik, A. V.,, and R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. RNA 3:882892.
19. Ghetti, A.,, S. Pinol-Roma,, W. M. Michael,, C. Morandi,, and G. Dreyfuss. 1992. hnRNP I, the polypyrimidine tract binding protein: distinct nuclear localization and association with hnRNPs. Nucleic Acids Res. 14:36713678.
20. Gingras, A. C.,, B. Raught,, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913963.
21. Glass, M.,, and D. Summers. 1993. Identification of a trans-acting activity from liver that stimulates hepatitis A virus translation in vitro. Virology 193:10471050.
22. Goyer, C.,, M. Altmann,, H. S. Lee,, A. Blanc,, M. Desh-mukh,, J. L. Woolford,, H. Trachsel,, and N. Sonenberg. 1993. TIF4631 and TIF4632: two yeast genes encoding the high molecular weight subunits of cap-binding protein complex (eukaryotic initiation factor 4F) contain an RNA tecognition motif-like sequence and carry out an essential function. Mol. Cell. Biol. 13:48604874.
23. Gradi, A.,, H. Imataka,, Y. V. Svitkin,, E. Rom,, B. Raught,, S. Morino,, and N. Sonenberg. 1998. A novel functional human eukaryotic translation initiation factor eIF4G. Mol. Cell. Biol. 18:334342.
24. Graumann, P. L.,, and M. A. Marahiel. 1998. A super-family of proteins that contain the cold-shock domain. Trends Biochem. Sci. 23:286290.
25. Hambridge, S. J.,, and P. Sarnow. 1992. Translational enhancement of the poliovirus 5' noncoding region mediated by virus-encoded polypeptide 2A. Proc. Natl. Acad. Sci. USA 89:1027210276.
26. Hershey, J. W. B., and W. C. Merrick,. 2002. The pathway and mechanism of initiation of protein synthesis, p. 3388. In N. Sonenberg,, J. W. B. Hershey,, and M. B. Mathews (ed.), Translational Control of Gene Expression, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
27. Hung, S. L.,, and R. J. Jackson. 1999. Polypyrimidine tract binding protein (PTB) is necessary, but not sufficient, for efficient internal initiation of translation of human rhinovirus-2 RNA. RNA 5:344359.
28. Hunt, S. L.,, J. J. Hsuan,, N. Totty,, and R. J. Jackson. 1999. unr, a cellular cytoplasmic RNA-binding protein with five cold-shock domains, is required for internal initiation of translation of human rhinovirus RNA. Genes Dev. 13:437448.
29. Imataka, H.,, and N. Sonenberg. 1997. Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol. Cell. Biol. 17:69406947.
30. Jackson, R. J. 1991. The ATP requirement for initiation of eukaryotic translation varies according to the mRNA species. Eur. J. Biochem. 200:285294.
31. Jacquemin-Sablon, H.,, G. Triqueneaux,, S. Deschamps,, M. le Maire,, J. Doniger,, and F. Dautry. 1994. Nucleic acid binding and intracellular localization of unr, a protein with five cold shock domains. Nucleic Acids Res. 22: 26432650.
32. Jang, S. K.,, and E. Wimmer. 1990. Cap-independent translation of encephalomyocarditis virus RNA-structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA binding protein. Genes Dev. 4:15601572.
33. Jang, S. K.,, H.-G. Krausslich,, M. J. H. Nicklin,, G. M. Duke,, A. C. Palmenberg,, and E. Wimmer. 1988. A segment of the 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:26362643.
34. Jaramillo, M.,, T. E. Dever,, W. C. Merrick,, and N. Sonenberg. 1991. RNA unwinding in translation: assembly of helicase complex intermediates comprising eukaryotic initiation factors eIF-4F and eIF-4B. Mol. Cell. Biol. 11: 59925997.
35. Kaminiski, A.,, G. J. Belsham,, and R. J. Jackson. 1994. Translation of encephalomyocarditis virus RNA; parameters influencing the selection of the internal initiation site. EMBO J. 13:16731681.
36. Kaminski, A.,, M. T. Howell,, and R. J. Jackson. 1990. Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J. 9:37533759.
37. Kaminski, A.,, S. L. Hunt,, J. G. Patton,, and R. J. Jackson. 1995. Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of encephalomyocarditis virus RNA translation. RNA 1: 924938.
38. Kaminski, A.,, and R. J. Jackson. 1998. The polypyrimidine tract binding protein (PTB) requirement for internal initiation of translation of cardiovirus RNAs is conditional rather than absolute. RNA 4:626638.
39. Kolupaeva, V. G.,, C. U. T. Hellen,, and I. N. Shatsky. 1996. Structural analysis of the interaction of the pyrimidine tract binding protein with the internal ribosome entry segment of encephalomyocarditis virus and foot-and-mouth disease virus. RNA 2:11991212.
40. Kolupaeva, V. G.,, T. V. Pestova,, C. U. T. Hellen,, and I. N. Shatsky. 1998. Translation eukaryotic initiation factor 4G recognizes a specific structural element within the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol. Chem. 273:1859918604.
41. Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229241.
42. Lamphear, B. J.,, R. Kirchweger,, T. Skern,, and R. E. Rhoads. 1995. Mapping of functional domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with picornaviral proteases. J. Biol. Chem. 270:2197521983.
43. Laskey, R. A.,, J. B. Gurdon,, and L. V. Crawford. 1972. Translation of encephalomyocarditis viral RNA in oocytes of Xenopus laevis. Proc. Natl. Acad. Sci. USA 69:36653669.
44. Leffers, H.,, K. Dejgaard,, and J. E. Celis. 1995. Characterisation of two major cellular poly(rC)-binding human proteins each containing three K-homologous (KH) domains. Eur. J. Biochem. 230:447453.
45. Liebig, H. D.,, E. Ziegler,, R. Yan,, K. Hartmuth,, H. Klump,, H. Kowalski,, D. Blaas,, W. Sommergruber,, L. Frasel,, B. Lamphear,, R. Rhoads,, E. Kuechler,, and T. Skern. 1993. Purification of 2 picornaviral 2A proteinases: interaction with eIF4γ and influence on in vitro translation. Biochemistry 32:75817588.
46. Meerovitch, K.,, Y. V. Svitkin,, H. S. Lee,, F. Lejbkowicz,, D. J. Kenan,, E. K. L. Chan,, V. I. Agol,, J. D. Keene,, and N. Sonenberg. 1993. La autoantigen enhances and corrects aberrant translation of poliovirus RNA in reticulocyte lysate. J. Virol. 67:37983807.
47. Meyer, K.,, A. Petersen,, M. Niepmann,, and E. Beck. 1995. Interaction of eukaryotic initiation factor eIF4B with a picornavirus internal translation site. J. Virol. 69: 28192824.
48. Morley, S. J.,, P. S. Curtis,, and V. M. Pain. 1997. eIF4G: translation's mystery factor begins to yield its secrets. RNA 3:10851104.
49. Niepmann, M.,, A. Petersen,, K. Meyer,, and E. Beck. 1997. Functional involvement of polypyrimidine tract binding protein in translation initiation complexes with the internal ribosome entry site of foot-and-mouth-disease virus. J. Viroi. 71:83308339.
50. O'Brien, C. A.,, K. Margelot,, and S. L. Wolin. 1993. Xenopus Ro ribonucleoproteins: members of an evolutionary conserved class of cytoplasmic ribonucleoproteins. Proc. Natl. Acad. Sci. USA 90:72507254.
51. Ohlmann, T.,, M. Rau,, S. J. Morley,, and V. M. Pain. 1995. Proteolytic cleavage of initiation factor eIF-47 in the reticulocyte lysate inhibits translation of capped mRNAs but enhances that of uncapped mRNAs. Nucleic Acids Res. 23:334340.
52. Ohlmann, T.,, M. Rau,, V. M. Pain,, and S. J. Morley. 1996. The C-terminal domain of eukaryotic protein synthesis initiation factor (elF) 4G is sufficient to support cap-independent translation in the absence of eIF4E. EMBO J. 15:13711382.
53. Patton, J. G.,, S. A. Mayer,, P. Tempst,, and B. Nadal-Ginard. 1991. Characterization and molecular cloning of polypyrimidine tract-binding protein: a component of a complex necessary for pre-mRNA splicing. Genes Dev. 5: 12371251.
54. Pause, A.,, G. J. Belsham,, A. C. Gingras,, O. Donze,, T. A. Lin,, J. C. Lawrence,, and N. Sonenberg. 1994. Insulin dependent stimulation of protein synthesis by phosphorylation of a regulator of 5' cap function. Nature 371:762767.
55. Pause, A.,, N. Methot,, Y. V. Svitkin,, W. C. Merrick,, and N. Sonenberg. 1994. Dominant negative mutants of mammalian translation initiation factor eIF4A define a critical role for eIF4F in cap-dependent and cap-independent initiation of translation. EMBO J. 13: 12051215.
56. Pelham, H. R. B.,, and R. J. Jackson. 1976. An efficient mRNA-dependent translation system from rabbit reticulocyte lysates. Eur. J. Biochem. 67:247256.
57. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320325.
58. Perez, I.,, J. G. McAfee,, and J. G. Patton. 1997. Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36:1188111890.
59. Pestova, T. V.,, S. I. Borukhov,, and C. U. T. Hellen. 1998. Eukaryotic ribosomes require initiation factors 1 and 1A to locate initiation codons. Nature 394:854859.
60. Pestova, T. V.,, C. U. T. Hellen,, and I. N. Shatsky. 1996. Canonical eukaryotic initiation-factors determine initiation of translation by internal ribosomal entry. Mol. Cell. Biol. 16:68596869.
61. Pestova, T. V.,, I. B. Lomakin,, J. H. Lee,, S. K. Choi,, T. E. Dever,, and C. U. T. Hellen. 2000. The joining of ribosomal subunits in eukaryotes requires eIF5B. Nature 403:332335.
62. Pestova, T. V.,, I. N. Shatsky,, S. P. Fletcher,, R. J. Jackson,, and C. U. T. Hellen. 1998. A prokaryotic-like mode of cytoplasmic eukaryotic ribosome binding to the initiation codon during internal translation initiation of hepatitis C and classical swine fever virus RNAs. Genes Dev. 12:6783.
63. Pestova, T. V.,, I. N. Shatsky,, and C. U. T. Hellen. 1996. Functional dissection of eukaryotic initiation-factor 4F— the 4A subunit and the centtal domain of the 4G subunit are sufficient to mediate internal entry of 43S preinitiation complexes. Mol. Cell. Biol. 16:68706878.
64. Phillips, B. A.,, and A. Emmert. 1986. Modulation of the expression of poliovirus proteins in reticulocyte lysates. Virology 148:255267.
65. Pilipenko, E. V.,, V. M. Blinov,, B. K. Chernov,, T. M. Dmitrieva,, and V. 1. Agol. 1989. Conservation of the secondary structure elements in the 5' nonttanslated region of cardio- and aphthovirus RNAs. Nucleic Acids Res. 17:57015711.
66. Pilipenko, E. V.,, V. M. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova,, and V. I. Agol. 1989. Conserved structural domains in the 5'-untranslated region of picornaviral genomes. Virology 168:201209.
67. Poyry, T.,, L. Kinnunen,, and T. Hovi. 1992. Genetic variation in vivo and proposed functional domains of the 5' noncoding region of poliovirus RNA. J. Virol. 66:53135319.
68. Roberts, L. O.,, R. A. Seamons,, and G. J. Belsham. 1998. Recognition of picornavirus internal ribosome entry sites within cells; influence of cellular and viral proteins. RNA 4:520529.
69. Rozen, E.,, I. Edery,, K. Meerovitch,, T. E. Dever,, W. C. Merrick,, and N. Sonenberg. 1990. Bidirectional RNA helicase activity of eucaryotic initiation factors 4A and 4F. Mol. Cell. Biol. 10:11341144.
70. Rust, R. C.,, K. Ochs,, K. Meyer,, E. Beck,, and M. Niepmann. 1999. Interaction of eukaryotic initiation factor eIF4B with the internal ribosome entry site of foot-and-mouth disease virus is independent of the polypyrimidine tract-binding protein. J. Virol. 73:61116113.
71. Shiroki, K.,, S. Isoyama,, S. Kuge,, T. Ishii,, S. Ohmi,, S. Hata,, Y. Takasaki,, and A. Nomoto. 1999. Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J. Virol. 73:21932200.
72. Silvera, D.,, A. V. Gamarnik,, and R. Andino. 1999. The N-terminal K-homology domain of the poly(rC) binding protein is a major determinant for binding to the poliovirus 5'-untranslated region and acts as an inhibitor of viral translation. J. Biol. Chem. 274:3816338170.
73. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, J. Cooper,, P. D. Minor,, and J. W. Almond. 1989. New model for the secondary structure of the 5' noncoding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 207:379392.
74. Svitkin, Y. V.,, K. Meerovitch,, H. S. Lee,, J. N. Dholakia,, D. J. Kenan,, V. I. Agol,, and N. Sonenberg. 1994. Internal translation initiation on poliovirus RNA: further characterization of La function in poliovirus translated in vitro. J. Virol. 68:15441550.
75. Timmer, R. T.,, L. A. Benkowksi,, D. Schodin,, S. R. Lax,, A. M. Metz,, J. M. Ravel,, and K. S. Browning. 1993. The 5' and 3' untranslated regions of satellite tobacco necrosis virus RNA affect translational efficiency and dependence on 5' cap structure. J. Biol. Chem. 268:95049510.
76. Valcarcel, J.,, and F. Gebauer. 1997. Post-transcriptional regulation: the dawn of PTB. Curr. Biol. 7:R705R708.
77. Walter, B. L.,, J. H. C. Nguyen,, E. Ehrenfeld,, and B. L. Semler. 1999. Differential utilization of poly(rC) binding protein 2 in translation directed by picornavirus IRES elements. RNA 5:15701585.
78. Whetter, L. E.,, S. P. Day,, O. Elroy-Stein,, E. A. Brown,, and S. M. Lemon. 1994. Low efficiency of the 5' non-translated region of hepatitis A virus RNA in directing cap-independent translation in permissive monkey kidney cells. J. Virol. 68:52535263.
79. Wigle, D. T.,, and A. E. Smith. 1973. Specificity in initiation in a fractionated mammalian cell-free system. Nat. New Biol. 242:136140.
80. Yamamoto, H.,, K. Tsukahara,, Y. Kanaoka,, S. Jinno,, and H. Okayama. 1999. Isolation of a mammalian homologue of a fission yeast differentiation regulator. Mol. Cell. Biol. 19:38293841.

Tables

Generic image for table
TABLE 1

Canonical mammalian initiation factors and their roles

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15
Generic image for table
TABLE 2

Characteristics of different mechanisms of initiation of translation of eukaryotic cellular and viral RNAs

It is thought likely that the same pattern of requirements will be shown by all picornavirus IRESs except the HAV IRES.

Although initiation dependent on the EMCV IRES requires ATP hydrolysis ( ), significantly lower ATP concentrations are needed than for scanning-dependent initiation ( ).

Answers given in parentheses are considered to be the most probable outcome, but the issue has not yet been put to a direct test.

Citation: Jackson R. 2002. Proteins Involved in the Function of Picornavirus Internal Ribosomal Entry Sites, p 171-183. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error