1887

Chapter 17 : Structure and Function of Picornavirus Proteinases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Structure and Function of Picornavirus Proteinases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap17-2.gif

Abstract:

This chapter summarizes the implications of three-dimensional structures on the proteolytic mechanisms, the substrate specificities, and the functions of the proteinases in infected cells. The picornaviral polyproteins can be divided into three regions, designated P1, P2, and P3. These correspond to the N-terminal capsid protein precursor (P1, containing the four capsid proteins 1A-1D), the middle of the polyprotein containing three of the nonstructural proteins (P2, the three proteins 2A-2C), and the most C-terminal segment of the polyprotein containing four nonstructural proteins (P3, proteins 3A-3D). In the cardio- and aphthoviruses, a protein known as the leader protein precedes P1. The hepato- and parechoviruses encode only a single proteolytic enzyme and are therefore proteolytically the simplest of the picornaviruses. During the replication of a picornavirus, the physiology and ultrastructure of the infected cells are drastically modified. Thus, cellular RNA and protein synthesis as well as protein trafficking are inhibited. The chapter discusses crystal structures in terms of their mechanisms of action and specificities and how the proteinases have evolved to be able to carry out their specific roles in the replication of the respective viruses. Like protease B (SGPB) and the 3C proteinases, HRV2 2A comprises two subdomains, built up by β-strands as found in chymotrypsin.

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17

Key Concept Ranking

Hepatitis C virus
0.47986114
Foot-and-mouth disease virus
0.47655177
Protein Synthesis RNAs
0.432201
0.47986114
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Proteolytic processing in picornaviruses. Variations in primary cleavage events among six picornavirus genera. The polyproteins of the indicated viruses are shown schematically as open boxes. Primary cleavages are indicated. The different shadings of the 2A protein reflect the differences in mechanism and size in this protein. The 2A protein of hepato- and parecho-viruses has not been shown to possess proteolytic activity.

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

(A) Proteolytic processing map of poliovirus. The RNA genome of the virus is shown at the top as a black line. The positions of the IRES, the initiating AUG and stop codons, and the poly(A) tail are indicated. The polyprotein is indicated as an open box. Positions of the proteinases and their cleavage sites are indicated. 2A cleavages are indicated by an open arrow, 3C cleavages by a closed arrow. An open circle indicates the secondary 2A cleavage; an asterisk indicates cleavages carried out by 3CD. (B) Proteolytic processing map of FMDV. The cleavages are keyed as in (A) except that the fat closed arrow depicts the site of L processing. No cleavage sites for 3CD have been determined. Adapted from reference .

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Structural alignments of the 3C proteinases from HAV, PV1, and HRV2. Asterisks under the residue symbols of the sequence for HRV 3C indicate identical residues in all three proteins. Dots indicate that highly similar residues are in the same positions in all three proteins. The alignments are based on the structural superpositions done in Table 4 .

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Sequence alignment based on the structures of PV1 3C and HRV2 2A.

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap17
1. Allaire, M.,, M. M. Chernaia,, B. A. Malcolm,, and M. N. G. James. 1994. picornaviral 3C cysteine proteinases have a fold similar to chymotrypsin-like serine proteinases. Nature 369:7276.
2. Andino, R.,, G. E. Rieckhof,, R. L. Achacoso,, and D. Baltimore. 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5' -end of viral RNA. EMBO J. 12:35873598.
3. Andino, R.,, G. E. Rieckhof,, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63:369380.
4. 4. Argos, P.,, G. Kamer,, M. J. H. Nickelin,, and E. Wimmer. 1984. Similarity in gene organisation and homology between proteins of animal picornaviruses and a plant comovirus suggest a common ancestry of these virus families. Nucleic Acids Res. 12:72517267.
5. Arnold, E.,, M. Luo,, G. Vriend,, M. G. Rossmann,, A. C. Palmenberg,, G. D. Parks,, M. J. Nicklin,, and E. Wimmer. 1987. Implications of the picornavirus capsid structure for polyprotein processing. Proc. Natl. Acad. Sci. USA 84:2125.
6. Badorff, C.,, G. H. Lee,, B. J. Lamphear,, M. E. Martone,, K. P. Campbell,, R. E. Rhoads,, and K. U. Knowlton. 1999. Enteroviral protease 2A cleaves dystrophin: evidence of cytoskeletal disruption in an acquired cardiomyopathy. Nat. Med. 5:320326.
7. Bazan, J. E.,, and R. J. Fletterick. 1988. Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc. Natl. Acad. Sci USA 85:78727876.
8. Belsham, G. J. 1993. Distinctive features of foot-and-mouth disease virus, a member of the picornavirus family; aspects of virus protein synthesis, protein processing and structure. Prog. Biophys. Mol. Biol. 60:241260.
9. Belsham, G. J.,, G. M. Mclnerney,, and N. Ross Smith. 2000. Foot-and-mouth disease virus 3C protease induces cleavage of translation initiation factors eIF4A and eIF4G within infected cells. J. Virol. 74:272280.
10. Berger, A.,, and I. Schechter. 1970. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos. Trans. R. Soc. London Ser. B 257:249264.
11. Bergmann, E. M., 1998. Hepatitis A virus picornain 3C, p. 713715. In A. Barrett,, N. Rawlings,, and J. F. Woessner (ed.), Handbook of Proteolytic Enzymes. Academic Press, London, United Kingdom.
12. Bergmann, E. M.,, and M. N. G. James,. 1999. Proteolytic enzymes of the viruses of the family picornaviridae, p. 139163. In B. Dunn (ed.), Proteinases of Infectious Agents. Academic Press, San Diego, Calif..
13. Bergmann, E. M.,, and M. N. G. James,. 2000. The 3C proteinases of picornaviruses and other positive-sense, single-stranded viruses, p. 117143. In K. von der Helm, and B. Korant (ed.), Handbook of Experimental Pharmacology, vol. XXVIII. Proteases as Targets for Therapy. Springer Verlag, Heidelberg, Germany.>
14. Bergmann, E. M.,, S. C. Mosimann,, M. M. Chernaia,, B. A. Malcolm,, and M. N. G. James. 1997. The refined crystal structure of the 3C gene product from hepatitis A virus: specific proteinase activity and RNA recognition. J. Virol. 71:24362448.
15. Berti, P. J.,, and A. C. Storer. 1995. Alignment/phylogeny of the papain superfamily of cysteine proteases. J. Mol. Biol. 246:273283.
16. Bovee, M. L.,, B. J. Lamphear,, R. E. Rhoads,, and R. E. Lloyd. 1998. Direct cleavage of elF4G by poliovirus 2A protease is inefficient in vitro. Virology 245:241249.
17. Bovee, M. L.,, W. E. Marissen,, M. Zamora,, and R. E. Lloyd. 1998. The predominant elF4G-specific cleavage activity in poliovirus-infected HeLa cells is distinct from 2A protease. Virology 245:229240.
18. Clark, M. E.,, T. Hammerle,, E. Wimmer,, and A. Dasgupta. 1991. Poliovirus proteinase-3C converts an active form of transcription factor-IIIC to an inactive form—a mechanism for inhibition of host cell polymerase-III transcription by poliovirus. EMBO J. 10:29412947.
19. Clark, M. E.,, P. M. Lieberman,, A. J. Berk,, and A. Dasgupta. 1993. Direct cleavage of human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol. Cell. Biol. 13:12321237.
20. Curry, S.,, E. Fry,, W. Blakemore,, R. Abu-Ghazaleh,, T. Jackson,, A. King,, S. Lea,, J. Newman,, and D. Stuart. 1997. Dissecting the roles of VPO cleavage and RNA packaging in picornavirus capsid stabilization: the structure of empty capsids of foot-and-mouth disease virus. J. Virol. 71:97439752.
21. Davies, M. V.,, J. Pelletier,, K. Meerovitch,, N. Sonen-berg,, and R. J. Kaufman. 1991. The effect of poliovirus proteinase 2Apro expression on cellular metabolism—inhibition of DNA replication, RNA polymerase-II transcription, and translation. J. Biol. Chem. 266:1471414720.
22. Devaney, M. A.,, V. N. Vakharia,, R. E. Lloyd,, E. Ehrenfeld,, and M. J. Grubman. 1988. Leader protein of foot-and-mouth disease virus is required for cleavage of the p220 component of the cap-binding protein complex. J. Virol. 62:44074409.
23. Dougherty, W. G.,, and B. L. Semler. 1993. Expression of virus-encoded proteinases—functional and structural similarities with cellular enzymes. Microbiol. Rev. 57:781822.
24. Esnouf, R. 1997. An extensively modified version of Molscript that includes greatly enhanced colouring capacities. J. Mol. Graphics 15:133138.
25. Falk, M. M.,, P. R. Grigera,, I. E. Bergmann,, A. Zibert,, G. Multhaup,, and E. Beck. 1990. Foot-and-mouth disease virus protease-3C induces specific proteolytic cleavage of host cell histone-H3. J. Virol. 64:748756.
26. Fradkin, L. G.,, S. K. Yoshinaga,, A. J. Berk,, and A. Dasgupta. 1987. Inhibition of host cell RNA polymerase Ill-mediated transcription by poliovirus: inactivation of specific transcription factors. Mol. Cell. Biol. 7:38803887.
27. Gamarnik, A. V.,, and R. Andino. 1997. Two functional complexes formed by KH domain containing proteins with the 5' noncoding region of poliovirus RNA. RNA 3:882892.
28. Glaser, W.,, R. Cencic,, and T. Skern. 2001. Foot-and-mouth disease leader proteinase: involvement of C-terminal residues in self-processing and cleavage of eIF4GI. J. Biol. Chem. 276:3547335481.
29. Glaser, W.,, and T. Skern. 2000. Extremely efficient cleavage of eIF4G by picornaviral proteinases L and 2A in vitro. FEBS Lett. 480:151155.
30. Gorbalenya, A. E.,, and Y. V. Svitkin. 1983. Protease of encephalomyocarditis virus: purification and role of the SH groups in processing of the structural proteins precursor. Biochemistry (USSR) 48:385395.
31. Gorbalenya, A. E.,, V. M. Blinov,, and A. P. Donchenko. 1986. Poliovirus-encoded proteinase 3C: a possible evolutionary link between cellular serine and cysteine proteinase families. FEBS Lett. 194:253257.
32. Gorbalenya, A. E.,, A. P. Donchenko,, V. M. Blinov,, and E. V. Koonin. 1989. Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett. 243:103114.
33. Gorbalenya, A. E.,, E. V. Koonin,, and M. M. Lai. 1991. Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha-, and coronaviruses. FEBS Lett. 288:201205.
34. Gradi, A.,, Y. V. Svitkin,, H. Imataka,, and N. Sonenberg. 1998. Proteolysis of human eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the shutoff of host protein synthesis after poliovirus infection. Proc. Natl. Acad. Sci. USA 95:1108911094.
35. Guarné, A.,, B. Hampoelz,, W. Glaser,, X. Carpena,, J. Tormo,, I. Fita,, and T. Skern. 2000. Structural and biochemical features distinguish the foot-and-mouth disease virus leader proteinase from other papain-like enzymes. J. Mol. Biol. 302:12271240.
36. Guarné, A.,, J. Tormo,, K. Kirchweger,, D. Pfistermueller,, I. Fita,, and T. Skern. 1998. Structure of the foot-and-mouth disease virus leader protease: a papain-like fold adapted for self-processing and eIF4G recognition. EMBO J. 17:74697479.
37. Guex, N.,, and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PDBViewer: an environment for comparative protein modeling. Electrophoresis 18:27142723.
38. Hanecak, R.,, B. L. Semler,, C. W. Anderson,, and E. Wimmer. 1982. Proteolytic processing of poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at glutamine-glycine pairs. Proc. Natl. Acad. Sci. USA 79: 39733977.
39. Huang, H.,, A. Alexandrov,, X. Chen,, I. T. Barnes,, H. Zhang,, K. Dutta,, and S. M. Pascal. 2001. Structure of an RNA hairpin from HRV-14. Biochemistry 40:80558064.
40. Imataka, H.,, A. Gradi,, and N. Sonenberg. 1998. A newly identified N-terminal amino acid sequence of human eIF4G binds poly(A)-binding protein and functions in poly(A)-dependent translation. EMBO J. 17:74807489.
41. Ivanoff, L. A.,, T. Towatari,, J. Ray,, B. D. Korant,, and S. R. Petteway, Jr. 1986. Expression and site-specific mutagenesis of the poliovirus 3C protease in Escherichia coli. Proc. Natl Acad. Sci. USA 83:53925396.
42. Joachims, M.,, K. S. Harris,, and D. Etchison. 1995. Poliovirus protease 3C mediates cleavage of microtubule-associated protein 4. Virology 211:451461.
43. Joachims, M.,, P. C. Van Breugel,, and R. E. Lloyd. 1999. Cleavage of poly(A)-binding protein by enterovirus proteases concurrent with inhibition of translation in vitro. J. Virol. 73:718727.
44. Jore, J.,, B. De Geus,, R. J. Jackson,, P. H. Pouwels,, and B. E. Enger-Valk. 1988. Poliovirus protein 3CD is the active protease for processing of the precursor protein P1 in vitro. J. Gen. Virol. 69:16271636.
45. Kerekatte, V.,, B. D. Keiper,, C. Badorff,, A. Cai,, K. U. Knowlton,, and R. E. Rhoads. 1999. Cleavage of poly(A)-binding protein by coxsackievirus 2A protease in vitro and in vivo: another mechanism for host protein synthesis shutoff? J. Virol. 73:709717.
46. Kim, J. L.,, K. A. Morgenstern,, C. Lin,, T. Fox,, M. D. Dwyer,, J. A. Landro,, S. P. Chambers,, W. Markland,, C. A. Lepre,, E. T. O'Malley,, S. L. Harbeson,, C. M. Rice,, M. A. Murcko,, P. R. Caron,, and J. A. Thomson. 1996. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 87:343355.
47. Kirchweger, R.,, E. Ziegler,, B. J. Lamphear,, D. Waters,, H. D. Liebig,, W. Sommergruber,, F. Sobrino,, C. Hohenadl,, D. Blaas,, R. E. Rhoads,, and T. Skern. 1994. Foot-and-mouth disease virus leader proteinase: purification of the Lb form and determination of its cleavage site on eIF-4 gamma. J. Virol. 68:56775684.
48. Kitamura, N.,, B. L. Sender,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson,, and E. Wimmer. 1981. Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature 291:547553.
49. Koenig, H.,, and B. Rosenwirth. 1988. Purification and partial characterization of poliovirus protease 2A by means of a functional assay. J. Virol. 62:12431250.
50. Kraulis, P. J. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystattogr. 24:946950.
51. Lamphear, B. J.,, R. Yan,, F. Yang,, D. Waters,, H. D. Liebig,, H. Klump,, E. Kuechler,, T. Skern,, and R. E. Rhoads. 1993. Mapping the cleavage site in protein synthesis initiation factor eIF-4 gamma of the 2A proteases from human coxsackievirus and rhinovirus. J. Biol. Chem. 268:1920019203.>
52. Lee, C.-K.,, and E. Wimmer. 1988. Proteolytic processing of poliovirus polyprotein: elimination of 2Apro mediated alternative cleavage of polypeptide 3CD by in vitro mutagenesis. Virology 166:405414.
53. Leong, L. E. C.,, P. A. Walker,, and A. G. Porter. 1993. Human rhinovirus-14 protease-3C (3Cpro) binds specifically to the 5' -noncoding region of the viral RNA—evidence that 3Cpro has different domains for the RNA binding and proteolytic activities. J. Biol. Chem. 268:2573525739.
54. Lloyd, R. E.,, M. J. Grubman,, and E. Ehrenfeld. 1988. Relationship of p220 cleavage during picornavirus infection to 2A proteinase sequencing. J. Virol. 62:42164223.
55. Love, R. A.,, H. E. Parge,, J. A. Wickersham,, Z. Hostomsky,, N. Habuka,, E. W. Moomaw,, T. Adachi,, and Z. Hostomska. 1996. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 87:331342.
56. Martin, A.,, N. Escriou,, S. F. Chao,, M. Girard,, S. M. Lemon,, and C. Wychowski. 1995. Identification and site-directed mutagenesis of the primary (2A/2B) cleavage site of the hepatitis A virus polyprotein: functional impact on the infectivity of HAV RNA transcripts. Virology 213: 213222.
57. Matthews, D. A.,, P. S. Dragovich,, S. E. Webber,, S. A. Fuhrman,, A. K. Patick,, L. S. Zalman,, T. F. Hendrickson,, R. A. Love,, T. J. Prins,, J. T. Marakovits,, R. Zhou,, J. Tikhe,, C. E. Ford,, J. W. Meador,, R. A. Ferre,, E. L. Brown,, S. L. Binford,, M. A. Brothers,, D. M. DeLisle,, and S. T. Worland. 1999. Structure-assisted design of mechanism-based irreversible inhibitors of human rhinovirus 3C protease with potent antiviral activity against multiple rhinovirus serotypes. Proc. Natl. Acad. Sci. USA 96:1100011007.
58. Matthews, D. A.,, W. W. Smith,, R. A. Ferre,, B. Condon,, G. Budahazi,, W. Sisson,, J. E. Villafranca,, C. A. Janson,, H. E. McElroy,, C. L. Gribskov,, and S. Worland. 1994. Structure of human rhinovirus 3C protease reveals a trypsin-like polypeptide fold, RNA-binding site, and means for cleaving precursor polyprotein. Cell 77:761771.
59. McLean, C.,, T. J. Matthews,, and R. R. Rueckert. 1976. Evidence of ambiguous processing and selective degradation in the noncapsid proteins of rhinovirus 1A. J. Virol. 19:903914.
60. Medina, M.,, E. Domingo,, J. K. Brangwyn,, and G. J. Belsham. 1993. The 2 species of the foot-and-mouth disease virus leader protein, expressed individually, exhibit the same activities. Virology 194:355359.
61. Merrit, E.,, and M. Murphy. 1994. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D50:869873.
62. Mosimann, S. C.,, M. M. Cherney,, S. Sia,, S. Plotch,, and M. N. G. James. 1997. Refined X-ray crystallographic structure of the poliovirus 3C gene product. J. Mol. Biol. 273:10321047.
63. Palmenberg, A. C. 1990. Proteolytic processing of picornaviral polyprotein. Annu. Rev. Microbiol. 44:603623.
64. Palmenberg, A. C., 1989. Sequence alignments of picornaviral capsid proteins, p. 211241. In B. L. Semler, and E. Ehrenfeld (ed.), Molecular Aspects of picornavirus Infection and Detection. American Society for Microbiology, Washington, D.C..
65. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld,, and B. L. Semler. 1997. Poly (rC) binding protein 2 forms a ternary complex with the 5' -terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3: 11241134.
66. Pelham, H. R. B. 1978. Translation of encephalomyocarditis virus RNA in vitro yields an active proteolytic processing enzyme. Eur. J. Biochem. 85:457462.
67. Petersen, J. F.,, M. M. Cherney,, H. D. Liebig,, T. Skern,, E. Kuechler,, and M. N. James. 1999. The structure of the 2A proteinase from a common cold virus: a proteinase responsible for the shut-off of host-cell protein synthesis. EMBO J. 18:54635475.
68. Qasim, M. A.,, M. R. Ranjbar,, R. Wynn,, S. Anderson,, and M. Laskowski. 1995. lonizable P1 residues in serine proteinase inhibitors undergo large pKa shifts on complex formation. J. Biol. Chem. 270:2741927422.
69. Rubinstein, S. J.,, and A. Dasgupta. 1989. Inhibition of rRN A synthesis by poliovirus-specific inactivation of transcription factors. J. Virol. 63:46894696.
70. Rueckert, R., 1996. The picornaviruses, p. 609654. In B. Fields,, D. Knipe,, and P. Howley (ed.), Fields Virology, vol. 1. Lippincott-Raven, Philadelphia, Pa..
71. Rueckert, R. R.,, and E. Wimmer. 1984- Systematic nomenclature of picornavirus proteins. J. Virol. 50:957959.
72. Ryan, M.,, and M. Flint. 1997. Virus-encoded proteinases of the picornavirus super-group. J. Gen. Virol. 78:699723.
73. Ryan, M. D.,, A. M. Q. King,, and G. P. Thomas. 1991. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72:27272732.
74. Sangar, D. V.,, S. E. Newton,, D. J. Rowlands,, and B. E. Clarke. 1987. All foot and mouth disease virus serotypes initiate protein synthesis at two separate AUGs. Nucleic Acids Res. 15:33053315.
75. Sarkany, Z.,, T. Skern,, and L. Polgar. 2000. Characterization of the active site thiol group of rhinovirus 2A proteinase. FEBS Lett. 481:289292.
76. Schroeder, E.,, C. Phillips,, E. Garman,, K. Harlos,, and C. Crawford. 1993. X-ray crystallographic structure of a papain leupeptin complex. FEBS Lett. 315:3842.
77. Seipelt, J.,, H. D. Liebig,, W. Sommergruber,, C. Gerner,, and E. Kuechler. 2000. 2A proteinase of human rhinovirus cleaves cytokeratin 8 in infected HeLa cells. J. Biol. Chem. 275:2008420089.
78. Sommergruber, W.,, H. Ahorn,, A. Zophel,, I. Maurer-Fogy,, F. Fessl,, G. Schnorrenberg,, H. D. Liebig,, D. Blaas,, E. Kuechler,, and T. Skern. 1992. Cleavage specificity on synthetic peptide substrates of human rhinovirus-2 proteinase-2A. J. Biol. Chem. 267:2263922644.
79. Sommergruber, W.,, G. Casari,, F. Fessl,, J. Seipelt,, and T. Skern. 1994. The 2A proteinase of human rhinovirus is a zinc containing enzyme. Virology 204:815818.
80. Strebel, K.,, and E. Beck. 1986. A second protease of foot-and mouth disease virus. J. Virol. 58:893899.
81. Svitkin, Y. V.,, A. Gradi,, H. Imataka,, S. Morino,, and N. Sonenberg. 1999. Eukaryotic initiation factor 4GII (eIF4GII), but not eIF4GI, cleavage correlates with inhibition of host cell protein synthesis after human rhinovirus infection. J. Virol. 73:34673472.
82. Tesar, M.,, and O. Marquardt. 1990. Foot-and-mouth disease virus protease 3C inhibits cellular transcription and mediates cleavage of histone H3. Virology 174:364374.
83. Toyoda, H.,, M. J. H. Nicklin,, M. G. Murray,, C. W. Anderson,, J. J. Dunn,, F. W. Studier,, and E. Wimmer. 1986. A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761770.
84. Voss, T.,, R. Meyer,, and W. Sommergruber. 1995. Spectroscopic characterization of rhinoviral protease 2A: Zn is essential for the structural integrity. Protein Sci. 4:25262531.
85. Yalamanchili, P.,, R. Banerjee,, and A. Dasgupta. 1997. Poliovirus-encoded protease 2Apro cleaves the TATA-binding protein but does not inhibit host cell RNA polymerase II transcription in vitro. J. Virol. 71:68816886.
86. Yalamanchili, P.,, U. Datta,, and A. Dasgupta. 1997. Inhibition of host cell transcription by poliovirus: cleavage of transcription factor CREB by poliovirus-encoded protease 3Cpro. J. Virol. 71:12201226.
87. Yalamanchili, P.,, K. Harris,, E. Wimmer,, and A. Dasgupta. 1996. Inhibition of basal transcription by poliovirus: a virus-encoded protease (3Cpro) inhibits formation of TBP-TATA box complex in vitro. J. Virol. 70:29222929.
88. Yalamanchili, P.,, K. Weidman,, and A. Dasgupta. 1997. Cleavage of transcriptional activator Oct-1 by poliovirus encoded protease 3Cpro. Virology 239:176185.
89. Ypma-Wong, M. E.,, P. G. Dewalt,, V. H. Johnson,, J. G. Lamb,, and B. L. Semler. 1988. Protein 3CD is the major poliovirus proteinase responsible for cleavage of the P1 capsid precursor. Virology 166:265270.
90. Ziegler, E.,, A. M. Borman,, F. G. Deliat,, H. D. Liebig,, D. Jugovic,, K. M. Kean,, T. Skern,, and E. Kuechler. 1995. picornavirus 2A proteinase-mediated stimulation of internal initiation of translation is dependent on enzymatic activity and the cleavage products of cellular proteins. Virology 213:549557.

Tables

Generic image for table
TABLE 1

Cellular proteins cleaved by picornaviral proteinases

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Generic image for table
TABLE 2

Published structures of picornaviral proteinases

The structure is that of the native protein unless otherwise stated.

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Generic image for table
TABLE 3

The sequences of the cleavage sites of the 3C of HAV and PV1

Reference .

Reference .

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17
Generic image for table
TABLE 4

Pairwise structural comparisons among 3C proteinases and SGPB

The upper triangular matrix gives the root main square differences for common C atoms (Å). The PDB accession codes for the coordinate data sets used here are: PV1 3C molecule B, available from M. James; HRV2 3C, 1CQQ; HAV 3C molecule A, 1HAV; SGPB, 3SGB. The numbers in parentheses refer to the number of pairs of C atoms in each superposition. The lower part of the matrix contains the percentages of identical residues in the overlapped pairs. The superpositions were done using Swiss PDB Viewer (http://www.expasy.ch/spdbv/) ( ).

Citation: Skern T, Hampölz B, Guarné A, Fita I, Bergmann E, James M, Petersen J. 2002. Structure and Function of Picornavirus Proteinases, p 199-212. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error