1887

Chapter 18 : The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap18-2.gif

Abstract:

In the case of the aphtho- and cardioviruses, the primary cleavage in the region of the polyprotein was known to be different, occurring at the C terminus of 2A. Precursor forms spanning the 2A/2B junction are not observed in aphtho- or cardiovirus polyprotein processing. Deletions downstream of 2A did not appear to affect cleavage. Experiments analyzing the endogenous processing properties of recombinant aphthovirus indicated that the cleavage activity could be a property of the 2A oligopeptidic region alone. Consistent with this notion, studies on the endogenous processing properties of domains of the cardiovirus Theiler’s murine encephalomyelitis virus (TMEV) polyprotein localized the 2A/2B cleavage activity within the 2AB region. With artificial reporter polyprotein systems the 2A/2B cleavage activity of both EMCV and TMEV was subsequently mapped to the C-terminal 18 aa of their 2A proteins—these cardiovirus sequences being as efficient as the FMDV 2A in mediating cleavage. The molar excess of the translation product N terminal of 2A over that C-terminal of 2A is a product of inserting the 2A sequence into our artificial polyprotein systems. In summary, the authors and others have shown the aphtho- and cardiovirus 2A/2B cleavage is mediated by an oligopeptidic region, representing either the whole (aphthoviruses) or part (cardioviruses) of the 2A region.

Citation: Ryan M, Luke G, Hughes L, Cowton V, Ten Dam E, Li X, Donnelly M, Mehrotra A, Gani D. 2002. The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, p 213-223. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch18

Key Concept Ranking

Mobile Genetic Elements
0.46147588
Theiler's Murine Encephalomyelitis
0.41652572
0.46147588
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Picornavirus polyproteins. (A) The polyprotein organizations of entero-, rhino-, cardio-, and aphthoviruses are shown together (boxed areas) with the sites of primary polyprotein cleavage. (B) The sequences of the C-terminal region of cardioviruses and the 2A region of aphthoviruses are shown together with 2A-like sequences from other virus and cellular sequences.

Citation: Ryan M, Luke G, Hughes L, Cowton V, Ten Dam E, Li X, Donnelly M, Mehrotra A, Gani D. 2002. The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, p 213-223. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Translational analyses. Artificial reporter polyproteins (boxed areas) used to program in vitro translation systems are shown together with translation profiles obtained from rabbit reticulocyte lysates. (A) The FMDV region was either N-terminally extended by the incorporation of FMDV 1D sequences ot by stepwise deletion. (B) Cleavage activities (%) are shown. (C) Site-directed mutants of FMDV 2A were constructed and the cleavage activities analyzed with in vitro translation systems.

Citation: Ryan M, Luke G, Hughes L, Cowton V, Ten Dam E, Li X, Donnelly M, Mehrotra A, Gani D. 2002. The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, p 213-223. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

2A-like sequences. (A) Insect virus polyproteins are shown together with the location of the 2A-like sequence (shaded rectangle), picornavirus protein 2C-like domain (open circles), proteinase domain (open squares), and polymerase domains (open diamonds). (B) The position of the type C rotavirus 2A-like sequence (shaded rectangle) is shown. (C) The sequence and position of the 2A-like sequences from spp. repeated sequences are shown (shaded rectangle).

Citation: Ryan M, Luke G, Hughes L, Cowton V, Ten Dam E, Li X, Donnelly M, Mehrotra A, Gani D. 2002. The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, p 213-223. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Translational model of 2A-mediated “cleavage.” Step (i): The synthesis of the 2A peptide sequence is completed with the 2A-peptidyl-tRNA complex in the ribosomal A site. Step (ii): This complex is translocated from the A to P site by eEF2. Step (iii): Prolyl-tRNA is bound to the A site. Step (iv): Cleavage of the peptide-tRNA ester linkage occurs. Step (v): The nascent peptide is released from the ribosome. Step (vi): Prolyl-tRNA is translocated from the A to P site, the next aminoacyl-tRNA is bound to the A site, and translation of the downstream product continues.

Citation: Ryan M, Luke G, Hughes L, Cowton V, Ten Dam E, Li X, Donnelly M, Mehrotra A, Gani D. 2002. The Aphtho- and Cardiovirus “Primary” 2A/2B Polyprotein “Cleavage”, p 213-223. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap18
1. Ban, N.,, P. Nissen,, J. Hansen,, M. Capel,, P. B. Moore,, and T. A. Steitz. 1999. Placement of protein and RNA structures into a 5A-resolution map of the 50S ribosomal subunit. Nature 400:841847.
2. Batson, S.,, and K. Rundell. 1991. Proteolysis at the 2A/ 2B junction in Theiler's murine encephalomyelitis virus. Virology 181:764767.
3. Chaplin, P. J.,, E. B. Camon,, B. Villarreal-Ramos,, M. Flint,, M. D. Ryan,, and R. A. Collins. 1999. Production of intetleukin-12 as a self-processing polypeptide. J. Interferon Cytokine Res. 19:235241.
4. de Felipe, P.,, V. Martin,, M. L. Cortes,, M. D. Ryan,, and M. Izquierdo. 1999. Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy. Gene Ther. 6:198208.
5. Donnelly, M. L. L.,, D. Gani,, M. Flint,, S. Monoghan,, and M. D. Ryan. 1997. The cleavage activity of aphtho-and cardiovirus 2A proteins. J. Gen. Virol. 78:1321.
6. Donnelly, M. L. L.,, L. E. Hughes,, G. Luke,, X. Li,, H. Mendoza,, E. ten Dam,, D. Gani,, and M. D. Ryan. 2001. The 'cleavage' activities of FMDV 2A site-directed mutants and naturally-occurring '2A-like' sequences. J. Gen. Virol. 82:10271041.
7. Donnelly, M. L. L.,, G. Luke,, A. Mehrotra,, X. Li,, L. E. Hughes,, D. Gani,, and M. D. Ryan. 2001. Analysis of the aphthovirus 2A/2B polyprotein 'cleavage' mechanism indicates not a proteolytic reaction, but a novel translational effect: a putative ribosomal 'skip'. J. Gen. Virol. 82: 10131025.
8. Farabaugh, R. J. 1996. Programmed translational frame-shifting. Microbiol. Rev. 60:103134.
9. Gesteland, R. E.,, and J. E. Atkins. 1996. Recoding: dynamic teprogramming of translation. Annu. Rev. Biochem. 65:741768.
10. Gopinath, K.,, J. Wellink,, C. Porta,, K. M. Taylor,, G. P. Lomonossoff,, and A. van Kammen. 2000. Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267:159173.
11. Grubman, M. J.,, and B. Baxt. 1982. Translation of foot-and-mouth disease virion RNA and processing of the primary cleavage products in a rabbit reticulocyte lysate. Virology 116:1930.
12. Gu, Z.,, R. Harrod,, E. J. Rogers,, and P. S. Lovett. 1994. Anti-peptidyl transferase leader peptides of attenuation-tegulated chloramphenicol-resistance genes. Proc. Natl. Acad. Sci. USA 91:56125616.
13. Hackett, P. B.,, E. Egberts,, and P. Traub. 1978. Translation of ascites and mengovirus RNA in fractionated cell free systems from uninfected and mengovirus-infected Ehrlich-ascites-tumor cells. Eur. J. Biochem. 83:341352.
14-. Hahn, H.,, and A. C. Palmenberg. 1996. Mutational analysis of the encephalomyocarditis virus primary cleavage. J. Virol. 70:68706875.
15. Halpin, C.,, S. E. Cooke,, A. Barakate,, A. El Amrani,, and M. D. Ryan. 1999. Self-processing polyproteins—a system for co-ordinate expression of multiple proteins in transgenic plants. Plant J. 17:453459.
16. Harrod, R.,, and P. S. Lovett. 1995. Peptide inhibitors of peptidyltransferase alter the conformation of domains IV and V of large subunit iRNA: a model for nascent peptide control of translation. Proc. Natl. Acad. Sci. USA 92: 86508654.
17. Karimi, R.,, M. Y. Pavlov,, V. Heurgue-Hamard,, R. H. Buckingham,, and M. Ehrenberg. 1998. Initiation factors IF1 and IF2 synergistically remove peptidyl-tRNAs with short polypeptides from the P-site of translating Escherichia coli tibosomes. J. Mo!. Biol. 281:241252.
18. Kokuho, T.,, S. Watanabe,, Y. Yokomizo,, and S. Inumaru. 1999. Production of biologically active, heterodimeric porcine interleukin-12 using a monocistronic baculoviral expression system. Jap. Vet. Immunol, lmmunopathol. 72: 289302.
19. Martin, E.,, C. Maranon,, M. Olivares,, C. Alonso,, and M. C. Lopez. 1995. Characterization of a non-long terminal repeat retrotransposon cDNA (L1Tc) from Trypanosoma cruzj.: homology of the first ORF with the ape family of DNA repair enzymes. J. Mol. Biol. 247:4959.
20. Mattion, N. M.,, E. C. Harnish,, J. C. Crowley,, and P. A. Reilly. 1996. Foot-and-mouth disease virus 2A protease mediates cleavage in attenuated Sabin 3 poliovirus vectors engineered for delivery of foreign antigens. J. Virol. 70:81248127.
21. Medvedkina, O. A.,, I. V. Scarlat,, N. O. Kalinina,, and V. I. Agol. 1974. Virus-specific proteins associated with ribosomes of Krebs-II cells infected with encephalomyo-carditis virus. FEBS Lett. 39:48.
22. Michiels, T.,, V. Dejong,, R. Rodrigus,, and C. Shaw-Jackson. 1997. Protein 2A is not required for Theiler's virus replication. J. Virol. 71:95499556.
23. Nathans, D.,, and A. Niedle. 1963. Structural requirements for puromycin inhibition of protein synthesis. Nature 197:10761077.
24. Palmenberg, A. C.,, G. D. Parks,, D. J. Hall,, R. H. Ingraham,, T. W. Seng,, and P. V. Pallai. 1992. Proteolytic processing of the cardioviral P2 region: primary 2A/2B cleavage in clone-derived precursors. Virology 190:754762.
25. Percy, N.,, W. S. Barclay,, A. Garcia-Sastre,, and P. Palese. 1994. Expression of a foreign protein by influenza A vitus. J. Virol. 68:44864492.
26. Picking, W. D.,, O. W. Odom,, T. Tsalkova,, I. Serdyuk,, and B. Hardesty. 1991. The conformation of nascent polylysine and polyphenylalanine peptides on ribosomes. J. Biol. Chem. 266:15341542.
27. Polacek, N.,, M. Gaynor,, A. Yassin,, and A. S. Mankin. 2001. Ribosomal peptidyl ttansfetase can withstand mutations at the putative catalytic nucleotide. Nature 411: 498501.
28. Precious, B.,, D. F. Young,, A. Bermingham,, R. Fearns,, M. D. Ryan,, and R. E. Randall. 1995. Inducible expression of the P, V, and NP genes of the paramyxovirus simian virus 5 in cell lines and an examination of the NP-P and NP-V intetactions. J. Virol. 69:80018010.
29. Pringle, F. M.,, K. H. J. Gordon,, T. N. Hanzlik,, J. Kalmakoff,, P. D. Scotti,, and V. K. Ward. 1999. A novel capsid expression strategy for Thosea asigna virus (Tetra-viridae).J. Gen. Virol. 80:18551863.
30. Ramabhadran, T. V.,, and R. E. Thatch. 1981. Translational elongation tate changes in encephalomyocarditis vims-infected and interferon-treated cells. J. Virol. 39: 573583.
31. Robertson, B. H.,, M. J. Grubman,, G. N. Weddell,, D. M. Moore,, J. D. Welsh,, T. Fischer,, D. J. Dowbenko,, D. G. Yansura,, B. Small,, and D. G. Kleid. 1985. Nucleotide and amino acid sequence coding for polypeptides of foot-and-mouth disease virus type A12. J. Virol. 54:651660.
32. Rogers, E. J.,, and P. S. Lovett. 1994. The cis-effect of a nascent peptide on its translating ribosome: influence of the cat-86 leader pentapeptide on translation at leadet codon 6. Mol. Microbiol. 12:181186.
33. Ryan, M. D.,, G. J. Belsham,, and A. M. Q. King. 1989. Specificity of substrate-enzyme interactions in foot-and-mouth disease vitus polyprotein processing. Virology 173: 3545.
34. Ryan, M. D.,, A. M. Q. King,, and G. P. Thomas. 1991. Cleavage of foot-and-mouth disease virus polyprotein is mediated by residues located within a 19 amino acid sequence. J. Gen. Virol. 72:27272732.
35. Ryan, M. D.,, and J. Drew. 1994. Foot-and-mouth disease virus 2A oligopeptide mediated cleavage of an artificial polyprotein. EMBO J. 13:928933.
36. Ryan, M. D.,, M. L. L. Donnelly,, A. Lewis,, A. R Mehrotra,, J. Wilkie,, and D. Gani. 1999. A model for non-stoichiometric, co-translational protein scission in eukaryotic tibosomes. Bioorganic Chem. 27:5579.
37. Rychlik, I.,, J. Cerna,, S. Chladek,, P. Pulkrabek,, and J. Zemlicka. 1970. Substrate specificity of ribosomal peptidyl ttansferase. Eur. J. Biochem. 16:136142.
38. Schmidt, M.,, and A. Rethwilm. 1995. Replicating foamy virus-based vectors directing high-level expression of foreign genes. Virology 210:167178.
39. Smerdou, C.,, and P. Liljestrom. 1999. Two-helper RNA system for production of recombinant Semliki Forest virus particles. J. Virol. 73:10921098.
40. Smolenska, L.,, L. M. Roberts,, D. Learmonth,, A. J. Porter,, W. J. Harris,, T. M. A. Wilson,, and S. S. Cruz. 1998. Production of a functional single chain antibody attached to the surface of a plant virus. FEBS Lett. 441:379382.
41. Summers, D. E.,, J. V. Maizel,, and J. E. Darnell. 1967. Decrease in size and synthetic activity of poliovitus polysomes late in the infectious cycle. Virology 31:427435.
42. Suzuki, N.,, L. M. Geletka,, and D. L. Nuss. 2000. Essential and dispensable virus-encoded replication elements revealed by efforts to develop hypovituses as gene expression vectors. J. Virol. 74:75687577.
43. Svitkin, Y. V.,, and V. I. Agol. 1983. Translational barrier in central region of encephalomyocarditis vims genome. Eur. J. Biochem. 133:145154.
44. Toyoda, H.,, M. J. H. Nicklin,, M. G. Murray,, C. W. Anderson,, J. J. Dunn,, E. W. Studier,, and E. Wimmer. 1986. A second vims-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell 45:761770.
45. van der Ryst, E.,, T. Nakasone,, A. Habel,, A. Venet,, E. Gomard,, R. Altmeyer,, M. Girard,, and A. M. Borman. 1998. Study of the immunogenicity of different recombinant mengo viruses expressing HIV1 and SIV epitopes. Res. Virol. 149:520.
46. Varnavski, A. N.,, and A. A. Khromykh. 1999. Noncytopathic flavivims replicon RNA-based system for expression and delivery of heterologous genes. Virology 255: 366375.
47. Weiss, R.,, W. Huang,, and D. Dunn. 1990. A nascent peptide is required for ribosomal bypass of the coding gap in bacteriophage T4 gene 60. Cell 62:117126.
48. Wright, H. T. 1991. Nonenzymatic deamidation of asparaginyl and glutaminyl residues in proteins. Crit. Rev. Biochem. Mol. Biol. 26:152.
49. Zoll, J.,, E J. M. van Kuppeveld,, J. M. D. Galama,, and W. J. G. Melchers. 1998. Genetic analysis of mengovirus protein 2A: its function in polyprotein processing and in virus production. J. Gen. Virol. 79:1725.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error