1887

Chapter 19 : Possible Unifying Mechanism of Picornavirus Genome Replication

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Possible Unifying Mechanism of Picornavirus Genome Replication, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap19-2.gif

Abstract:

This chapter summarizes all the pertinent experimental evidence that is currently available and proposes a unified model for picornavirus RNA replication. These data are derived from three types of experiments. In the simplest type, purified enzymes are used to study biochemical reactions in vitro. The second in complexity are those studies that use crude replication complexes isolated either from infected cells or from coupled translation/replication reactions of viral RNA. Finally, the most difficult method involves studying reactions in the infected cell itself. The proteins of the P3 domain are those that are most directly involved in the process of RNA synthesis. During translation of poliovirus RNA the P3 precursor is generated from the polyprotein by a fast cleavage event at the amino terminus of the 3A-coding region. The RNA polymerases of poliovirus and human rhinoviruses (HRV)2 are dependent in vitro on an RNA template and on a primer, either RNA, DNA, or VPg. Properties and functions of proteins encoded by the P3 domain of the poliovirus polyprotein are discussed. Mutational analysis of the heteropolymeric sequences in the 3 ' nontranslated region (NTR) of entero- and rhinoviruses indicated that this region is important for RNA replication. Prior to the initiation of minus-strand RNA synthesis, the RNA polymerase has to recognize its own viral RNA in a pool of cellular mRNAs and then select it as the only template for transcription.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19

Key Concept Ranking

Protein Synthesis RNAs
0.6451867
Foot-and-mouth disease virus
0.4680419
Plasma Membrane
0.46110973
0.6451867
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Structure of poliovirus genomic RNA and processing of the polyprotein. The single-stranded RNA of poliovirus is shown with the terminal protein VPg at its 5′ end and the 3′ NTR with the poly(A) tail at its 3′ end. The 5′ NTR consists of the cloverleaf and the large IRES element. The location of the cre(2C) hairpin in the coding region of 2C is indicated. The attachment site of the 5′-terminal UMP to the tyrosine of VPg is shown enlarged. The polyprotein contains structural (P1) and nonstructural (P2, P3) domains. Processing of the P2 and P3 precursors of the polyprotein by 3C/3CD is shown enlarged, with vertical lines indicating the proteinase cleavage sites.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Predicted secondary structures of picornaviral -replicating elements. (A) The PV1(M) 5′ cloverleaf. (B) The PV1(M) 3′ NTR-poly(A). (C) The PV1(M) (2C), HRV14 (VP1), and HRV2 (2A) RNAs. The conserved sequences in the loops are shown with bold letters. Also shown (boxed in) is the conserved sequence in all the known internal -replicating elements of picornaviral RNAs. See Note Added in Proof.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Proposed model of picornaviral minus-strand RNA synthesis. An RNP complex formed around the 5′ cloverleaf interacts with the PABP bound to the 3′ NTR-poly(A) resulting in a circularized genome ( ). Proteinase 3CD cleaves membrane-bound 3AB to yield VPg and 3A. 3D, 3CD, and VPg form a complex with the cre RNA hairpin. The polymerase synthesizes VPgpU and VPgpUpU using the AAACA sequence in the loop as template, and the complex is transferred to the 3′ end of the poly(A) tail. The VPg-linked precursors then serve as primer for 3Dduring the elongation step, a reaction possibly stimulated by membrane-bound 3AB.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Slide-back model of VPgpUpU synthesis by PV1(M) 3D. Proteins 3D, 3CD, and VPg form a complex with the PV1(M) (2C) RNA hairpin. Using A, in the A1A2CA sequence of the loop as template, the complementary nucleotide is selected and 3Dpol catalyzes the formation of a phosphodiester bond between UMP and the hydroxyl group of tyrosine in VPg. VPgpU then slides back and hydrogen bonds with A and the second UMP is added on the A template nucleotide.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Comparison of protein-primed RNA and DNA synthesis. (A) Initiation of picornaviral minus-strand RNA synthesis and phage Φ29 DNA synthesis. The slide-back mechanism is used by the picornaviral RNA polymerase and by phage Φ29 DNA polymerase ( ) for the synthesis of the dinucleotidylylated protein precursors. Details of the mechanism are described in the text. (B) Picornaviral minus-strand RNA synthesis and HBV cDNA synthesis. Both viral polymerases use an internal RNA hairpin as the template for the protein-priming reaction and the nucleotidylylated proteins are translocated to the 3′ end of the plus strand where they are elongated into the complementary strands ( ). (C) Picornaviral plus-strand RNA synthesis and phage Φ29 DNA synthesis ( ). The end of the double-stranded template is first unwound by the binding of proteins to the plus and minus strands. The viral polymerases use the 3′ end of their RNA/DNA strand as template for the nucleotidylylation teaction. The precursors are elongated into complementary RNA/DNA strands. RT, reverse transcriptase; DP, DNA polymerase; TP, terminal protein.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Proposed model of picornaviral plus-strand RNA synthesis. The end of the RF is unwound by the binding of PCBP2/3CD and 3AB/3CD to the plus strand and of 2C to the minus strand of the 5′ cloverleaf. 3CD catalyzes the cleavage of membrane-bound 3AB to 3A and VPg, and 3CD undergoes autoprocessing. The polymerase synthesizes VPgpUpU using the 3′-terminal two As of the minus strand as template. The precursors are elongated into plus strands by the polymerase, possibly using the stimulatory activity of membrane-bound 3AB.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap19
1. Agol, V. I.,, A. V. Paul,, and E. Wimmer. 1999. Paradoxes of the replication of picornaviral genomes. Virus Res. 62: 129147.
2. Aldabe, R.,, A. Barco,, and L. Carrasco. 1996. Membrane permeabilization by poliovirus proteins 2B and 2BC. J. Biol. Chem. 271:2313423137.
3. Aldabe, R.,, and L. Carrasco. 1995. Induction of membrane proliferation by poliovirus protein 2C and 2BC. Biochem. Biophys. Res. Commun. 206:6476.
4. Ambros, V.,, and D. Baltimore. 1978. Protein is linked to the 5' end of poliovirus RNA by a phosphodiester linkage to tyrosine. J. Biol. Chem. 253:52635266.
5. Andino, R.,, G. E. Rieckhof,, P. L. Achacoso,, and D. Baltimore. 1993. Poliovirus RNA synthesis utilizes an RNP complex formed around the 5' end of viral RNA. EMBO J. 12:35873598.
6. Andino, R.,, G. E. Rieckhof,, and D. Baltimore. 1990. A functional ribonucleoprotein complex forms around the 5' end of poliovirus RNA. Cell 63:369380.
7. Arnold, J. J.,, and C. E. Cameron. 1999. Poliovirus RNA-dependent RNA polymerase (3Dpo1) is sufficient for template switching in vitro. J. Biol. Chem. 274:27062716.
8. Arnold, J. J.,, S. K. B. Ghosh,, and C. E. Cameron. 1999. Poliovirus RNA-dependent RNA polymerase (3Dpol). Divalent cation modulation of primer, template, and nucleotide selection. J. Biol. Chem. 274:3706037069.
9. Banerjee, R.,, A. Echeverri,, and A. Dasgupta. 1997. Poliovirus-encoded 2C polypeptide specifically binds to the 3'-terminal sequences of viral negative-strand RNA. J. Virol. 71:95709578.
10. Baron, M. H.,, and D. Baltimore. 1982. In vitro copying of viral positive strand RNA by poliovirus replicase. Characterization of the reaction and its products. J. Biol. Chem. 257:1235912366.
11. Barton, D. J.,, E. P. Black,, and J. B. Flanegan. 1995. Complete replication of poliovirus in vitro: preinitiation RNA replication complexes require soluble cellular factors for the synthesis of VPg-linked RNA. J. Virol. 69:55165527.
12. Barton, D. J.,, and J. B. Flanegan. 1997. Synchronous replication of poliovirus RNA: initiation of negative-strand RNA synthesis requires the guanidine-inhibited activity of protein 2C. J. Virol. 71:84828489.
13. Barton, D. J.,, B. J. Morasco,, and J. B. Flanegan. 1999. Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J. Virol. 73:1010410112.
14. Bienz, K.,, D. Egger,, Y. Rasser,, and W. Bossart. 1983. Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131:3948.
15. Bienz, K.,, D. Egger,, M. Troxler,, and L. Pasamontes. 1990. Structural organization of poliovirus RNA replication is mediated by viral proteins of the P2 genomic region. J. Virol. 64:11561163.
16. Bienz, K.,, D. Egger,, T. Pfister,, and M. Troxler. 1992. Structural and functional characterization of the poliovirus replication complex. J. Virol. 66:27402747.
17. Blyn, L. B.,, K. M. Swiderek,, O. Richards,, D. C. Stahl,, B. L. Semler,, and E. Ehrenfeld. 1996. Poly(rC) binding protein 2 binds to stem-loop IV of the poliovirus RNA 5' noncoding region: identification by automated liquid chromatography-tandem mass spectrometry. Proc. Natl. Acad. Sci. USA 93:1111511120.
18. Borman, A. M.,, F. G. Deliat,, and K. M. Kean. 1994. Sequences within the poliovirus internal ribosome entry segment control viral RNA synthesis. EMBO J. 13:31493157.
19. Cao, X.,, R. J. Kuhn,, and E. Wimmer. 1993. Replication of poliovirus RNA containing two VPg coding sequences leads to a specific deletion event. J. Virol. 67:55725578.
20. Cho, M. W.,, O. C. Richards,, T. M. Dmitrieva,, V. Agol,, and E. Ehrenfeld. 1993. RNA duplex unwinding activity of poliovirus RNA-dependent RNA polymerase 3Dpol. J. Virol. 67:30103018.
21. Cho, M. W.,, N. Teterina,, D. Egger,, K. Bienz,, and E. Ehrenfeld. 1994. Membrane rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in human cells. Virology 202:129145.
22. Crawford, N. M.,, and D. Baltimore. 1983. Genome-linked protein VPg of poliovirus is present as free VPg and VPgpUpU in poliovirus-infected cells. Proc. Natl. Acad. Sci. USA 80:74527455.
23. Crowther, D.,, and J. L. Melnick. 1961. Studies on the inhibitory action of guanidine on poliovirus multiplication in cell cultures. Virology 15:6574.
24. Cuconati, A.,, W. Xiang,, F. Lahser,, T. Pfister,, and E. Wimmer. 1998. A protein linkage map of the P2 nonstructural proteins of poliovirus. J. Virol. 72:12971307.
25. Cui, T.,, and A. G. Porter. 1995. Localization of binding site for encephalomyocarditis virus RNA polymerase in the 3'-noncoding region of the viral RNA. Nucleic Acids Res. 23:377382.
26. Cui, T.,, S. Sankar,, and A. G. Porter. 1993. Binding of encephalomyocarditis virus RNA polymerase to the 3'-noncoding region of the viral RNA is specific and requires the 3'-poly(A) tail. J. Biol. Chem. 268:2609326098.
27. Das, S.,, and A. Dasgupta. 1993. Identification of the cleavage site and determinants required for poliovirus 3Cpro-catalyzed cleavage of human TATA-binding transcription factor TBP. J. Virol. 67:33263331.
28. Datta, U.,, and A. Dasgupta. 1994. Expression and subcellular localization of poliovirus VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. J. Virol. 68:44684477..
28a.. De Groot, R. J.,, R. G. Van Der Most,, and W. J. M. Spaan. 1992. The fitness of defective interfering murine coronavirus DI-a and its derivatives is decreased by nonsense and frameshift mutations. J. Virol. 66:58985905.
29. Doedens, J. R.,, T. H. Giddings, Jr.,, and K. Kirkegaard. 1997. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrasound analysis. J. Virol. 71:90549064.
30. Doedens, J. R.,, and K. Kirkegaard. 1995. Inhibition of cellular protein secretion by poliovirus proteins 2B and 2BC. EMBO J. 14:894907.
31. Dorsch-Haesler, K.,, Y. Yogo,, and E. Wimmer. 1975. Evidence from in vitro RNA synthesis that poly(A) of the poliovirus genome is genetically encoded. J. Virol. 16: 15121517.
32. Echeverri, A. C.,, and A. Dasgupta. 1995. Amino terminal regions of poliovirus 2C protein mediate membrane binding. Virology 208:540553.
33. Egger, D.,, N. Teterina,, E. Ehrenfeld,, and K. Bienz. 2000. Formation of the poliovirus replication complex requires coupled viral translation, vesicle production, and viral RNA synthesis. J. Virol. 74:65706580.
34. Flanegan, J. B.,, and D. Baltimore. 1977. Poliovirus-specific primer-dependent RNA polymerase able to copy poly(A). 1977. Proc. Natl. Acad. Sci. USA 74:36773680.
35. Forss, S.,, and H. Schaller. 1982. A tandem repeat gene in a picornavirus. Nucleic Acids Res. 10:64416450.
36. Gamarnick, A.V.,, and R. Andino. 1996. Replication of poliovirus in Xenopus oocytes requires two human factors. EMBO J. 15:59885998.
37. Gamarnik, A. V.,, and R. Andino. 1998. Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev. 12:22932304.
38. Gamarnik, A. V.,, and R. Andino. 2000. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. J. Virol. 74:22192226.
39. Gamarnik, A. V.,, N. Boddeker,, and R. Andino. 2000. Translation and replication of human rhinovirus type 14 and mengovirus in Xenopus oocytes. J. Virol. 74:1198311987.
39a.. Gerber, K.,, E. Wimmer,, and A. V. Paul. 2001. Biochemical and genetic studies of the initiation of human rhino-virus 2 RNA replication: purification and enzymatic analysis of the RNA-dependent RNA polymerase 3Dpol. J. Virol. 75:1096910978.
39b.. Gerber, K.,, E. Wimmer,, and A. V. Paul. 2001. Biochemical and genetic studies of the initiation of human rhino-virus 2 RNA replication: identification of a cts-replicating element in the coding sequence of 2Apr°. J. Virol. 75: 1097910990.
40. Giachetti, C.,, S. S. Hwang,, and B. L. Semler. 1992. Cis-acting lesions targeted to the hydrophobic domain of a poliovirus membrane protein involved in RNA replication. J. Virol. 66:60456057.
41. Goodfellow, I.,, Y. Chaudhry,, A. Richardson,, J. Meredith,, J. W. Almond,, W. Barclay,, and D. J. Evans. 2000. Identification of a cis-acting replication element within the poliovirus coding region. J. Virol. 74:45904600.
42. Gorbalenya, A. E.,, E. V. Koonin,, and Y. I. Wolf. 1990. A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett. 262:145148.
43. Gromeier, M.,, E. Wimmer,, and A. E. Gorbalenya,. 1999. Genetics, pathogenesis and evolution of picornaviruses, p. 287343. In E. Domingo,, R. Webster,, and J. Holland (ed.), Origin and Evolution of Viruses. Academic Press, San Diego, Calif..
44. Haldeman-Cahill, R.,, J.-A. Daros,, and J. C. Carrington. 1998. Secondary structures in the capsid coding sequence and 3' nontranslated region involved in amplification of the tobacco etch vims genome. J. Virol. 72:40724079.
45. Hansen, J. L.,, A. M. Long,, and S. C. Schultz. 1997. Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:11091122.
46. Harmon, S. A.,, S. U. Emerson,, Y. K. Huang,, D. F. Summers,, and E. Ehrenfeld. 1995. Hepatitis A viruses with deletions in the 2A gene are infectious in cultured cells and marmosets. J. Virol. 69:55765581.
47. Harmon, S. A.,, O. C. Richards,, D. F. Summers,, and E. Ehrenfeld. 1991. The 5'-terminal nucleotides of hepatitis A virus RNA, but not poliovirus RNA, are required for infectivity J. Virol. 65:27572760.
48. Harris, K. S.,, C. U. T. Hellen,, and E. Wimmer. 1990. Proteolytic processing in the replication of picornaviruses. Semin. Virol. 1:323333.
49. Harris, K. S.,, W. Xiang,, L. Alexander,, W. S. Lane,, A. V. Paul,, and E. Wimmer. 1994. Interaction of poliovirus polypeptide 3CDprowith the 5' and 3' termini of the poliovirus genome. J. Biol. Chem. 269:2700427014.
50. Heinz, B. A.,, and L. M. Vance. 1995. The antiviral compound enviroxime targets the 3A coding region of rhinovirus and poliovirus. J. Virol. 69:41894197.
51. Herold, J.,, and R. Andino. 2000. Poliovirus requires a precise 5' end for efficient positive-strand RNA synthesis. J. Virol. 74:63946400.
51a.. Herold, J.,, and R. Andino. 2001. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Mol. Cell 7:581591.
52. Hope, D. A.,, S. E. Diamond,, and K. Kirkegaard. 1997. Genetic dissection of interaction between poliovirus 3D polymerase and viral protein 3AB. J. Virol. 71:94909498.
53. Hu, J.,, and C. Seeger. 1997. RNA signals that control DNA replication in hepadnaviruses. Semin. Virol. 8:205211.
54. Hughes, P. J.,, and G. Stanway. 2000. The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev 107 family of proteins involved in the control of cell proliferation. J. Gen. Virol. 81:201207.
55. Ishii, T.,, K. Shiroki,, A. Iwai,, and A. Nomoto. 1999. Identification of a new element for RNA replication within the internal ribosome entry site of poliovirus RNA. J. Gen. Virol. 80:917920.
56. Jacobson, S. J.,, D. A. M. Konings,, and P. Sarnow. 1993. Biochemical and genetic evidence for a pseudoknot structure at the 3' terminus of the poliovirus RNA genome and its role in viral RNA amplification. J. Virol. 67:29612971.
57. Jang, S. K.,, H. G. Krausslich,, M. J. H. Nicklin,, G. M. Duke,, A. C. Palmenberg,, and E. Wimmer. 1988. A segment of the nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. J. Virol. 62:26362643.
58. Jang, S. K.,, M. V. Davies,, R. J. Kaufman,, and E. Wimmer. 1989. Initiation of protein synthesis by internal entry of ribosomes into the 5' nontranslated region of encephalomyocarditis virus RNA in vivo. J. Virol. 63:16511660.
59. King, A. J.,, and P. C. van der Vliet. 1994>- A precursor terminal protein-trinucleotide intermediate during initiation of adenovirus DNA replication: regeneration of molecular ends in vitro by a jumping back mechanism. EMBO J. 13:57865792.
60. Kitamura, N.,, B. L. Semler,, P. G. Rothberg,, G. R. Larsen,, C. J. Adler,, A. J. Dorner,, E. A. Emini,, R. Hanecak,, J. J. Lee,, S. van der Werf,, C. W. Anderson,, and E. Wimmer. 1981. Primary structure, gene organization, polypeptide expression of poliovirus RNA. Nature 291:547553.
61. Klump, W. M.,, I. Bergmann,, B. C. Muller,, D. Ameis,, and R. Kandolf. 1990. Complete nucleotide sequence of infectious coxsackievirus B3 cDNA: two initial 5' uridine residues are regained during plus strand synthesis. J. Virol. 64:15731583.
62. Kuhn, R. J.,, H. Tada,, M. R Ypma-Wong,, B. L. Semler,, and E. Wimmer. 1988. Mutational analysis of the genome-linked protein VPg of poliovirus. J. Virol. 62: 42074215.
63. Kusov, Y. Y.,, and V. Gauss-Muller. 1997. In vitro RNA binding of the hepatitis A virus proteinase 3C(HAV 3C"°) to secondary structure elements within the 5' terminus of the HAV genome. RNA 3:291302.
64. Kusov, Y. Y.,, G. Morace,, C. Probst,, and V. Gauss-Muller. 1997. Interaction of hepatitis A virus (HAV) precursor proteins 3AB and 3ABC with the 5' and 3' termini of the HAV RNA. Virus Res. 51:151157.
65. Kusov, Y.,, M. Weitz,, G. Dollenmeier,, and V. Gauss-Muller. 1996. RNA-protein interactions at the 3' end of the hepatitis A virus RNA. J. Virol. 70:18901897.>
66. Lai, M. C. 1998. Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent transcription. Virology 244:112.
67. Lama, J.,, A. V. Paul,, K. S. Harris,, and E. Wimmer. 1994. Properties of purified recombinant poliovirus protein 3AB as substrate for viral proteinases and as co-factor for RNA polymerase 3Dpol. J. Biol. Chem. 269:6670.
68. Lee, Y. E.,, A. Nomoto,, B. M. Detjen,, and E. Wimmer. 1977. A protein covalently linked to poliovirus genome RNA. Proc. Natl. Acad. Sci. USA 74:5963.
69. Leong, L. E.-C.,, P. A. Walker,, and A. G. Porter. 1993. Human rhinovirus-14 protease 3C (3Cpr°) binds specifically to the 5' noncoding region of the viral RNA. J. Biol. Chem. 268:2573525739.
70. Li, J. P.,, and D. Baltimore. 1990. An intragenic revertant of poliovirus 2C mutant has an uncoating defect. J. Virol. 64:11021107.
71. Li, X.,, H. H. Lu,, S. Muller,, and E. Wimmer. 2001. The C-terminal residues of poliovirus proteinase 2Apol are critical for viral RNA replication but not for cis- and transproteolytic cleavage. J. Gen. Virol. 82:397408.
72. Lobert, P.-E.,, N. Escriou,, J. Ruelle,, and T. Michiels. 1999. A coding RNA sequence acts as a replication signal in cardioviruses. Proc. Natl. Acad. Sci. USA 96:1156011565.
73. Mahajan, S.,, V. V. Dolja,, and J. C. Carrington. 1996. Roles of the sequence encoding tobacco etch virus capsid protein in genome amplification: requirements for the translation process and a cis-active element. J. Virol. 70: 43704379.
74. Martin, A. C.,, L. Blanco,, P. Garcia,, M. Salas,, and J. Mendez. 1996. In vitro protein-primed initiation of pneumococcal phage Cp-1 DNA replication occurs at the third 3' nucleotide of the linear template: a stepwise sliding-back mechanism. J. Mol. Biol. 260:369377.
75. McBride, A. E.,, A. Schlegel,, and K. Kirkegaard. 1996. Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc. Natl. Acad. Sci. USA 93:22962301.
76. McKnight, K. L.,, and S. L. Lemon. 1996. Capsid coding sequence is required for efficient replication of human rhinovirus 14 RNA. J. Virol. 70:19411952.
77. McKnight, K. L.,, and S. M. Lemon. 1998. The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4: 15691584.
78. Melchers, W. J. G.,, J. G. J. Hoenderop,, H. J. Bruins Slot,, C. W. A. Pleij,, E. V. Pilipenko,, V. I. Agol,, and J. M. D. Galama. 1997. Kissing of the two predominant hairpin loops in the coxsackie B virus 3' untranslated region is the essential structural feature of the origin of replication required for negative-strand RNA synthesis. J. Virol. 71:686696.
79. Mellits, K. H.,, J. M. Meredith,, J. B. Rohll,, D. J. Evans,, and J. W. Almond. 1998. Binding of a cellular factor to the 3' untranslated region of the RNA genomes of entero-and rhinoviruses plays a role in virus replication. J. Gen. Virol. 79:17151723.
80. Mendez, J.,, L. Blanco,, J. A. Esteban,, A. Bernad,, and M. Salas. 1992. Initiation of Φ29 DNA replication occurs at the second 3' nucleotide of the linear template: a sliding back mechanism for protein-primed DNA replication. Proc. Natl. Acad. Sci. USA 89:95799583.
81. Meredith, J. M.,, J. B. Rohll,, J. W. Almond,, and D. J. Evans. 1999. Similar interactions of the poliovirus and rhinovirus 3D polymerases with the 3' untranslated region of rhinovirus 14. J. Virol. 73:99529958.
82. Michiels, T.,, V. Dejong,, R. Rodrigus,, and C. Shaw-Jackson. 1997. Protein 2A is not required for Theiler's virus replication. J. Virol. 71:95499556.
83. Molla, A.,, K. S. Harris,, A. V. Paul,, S. H. Shin,, J. Mugavero,, and E. Wimmer. 1994. Stimulation of poliovirus proteinase 3Cpro-related proteolysis by the genome-linked VPg and its precursor 3AB. J. Biol. Chem. 269:2701527020.
84. Molla, A.,, A. V. Paul,, M. Schmid,, S. K. Jang,, and E. Wimmer. 1993. Studies on dicistronic polioviruses implicate viral proteinase 2Apr° in RNA replication. Virology 196:739747.
85. Molla, A.,, A. V. Paul,, and E. Wimmer. 1991. Cell-free de novo synthesis of poliovirus. Science 254:16471651.
86. Montagnier, L.,, and F. K. Sanders. 1963. Replicative form of encephalomyocarditis virus ribonucleic acid, Nature 199:664.
87. Morgan-Detjen, B.,, J. Lucas,, and E. Wimmer. 1978. Poliovirus single-stranded RNA and double-stranded RNA: differential infectivity in enucleate cells. J. Virol. 27:582586.
88. Neufeld, K. L.,, J. M. Galarza,, O. C. Richards,, D. F. Summers,, and E. Ehrenfeld. 1994. Identification of terminal adenylyl transferase activity of the poliovirus polymerase 3Dpo1. J. Virol. 68:58115818.
89. Nomoto, A.,, B. Detjen,, R. Pozzatti,, and E. Wimmer. 1977. The location of the polio genome protein in viral RNAs and its implication for RNA synthesis. Nature 268: 208213.
90. Nomoto, A.,, N. Kitamura,, F. Golini,, and E. Wimmer. 1977. The 5'-terminal structures of poliovirion RNA and poliovirus mRNA differ only in the genome-linked protein VPg. Proc. Natl. Acad. Sci. USA 74:53455349.
91. Novak, J. E.,, and K. Kirkegaard. 1994. Coupling between genome translation and replication in an RNA virus. Genes Dev. 8:17261737.
92. Novak, J. E.,, and K. Kirkegaard. 1991. Improved method for detecting poliovirus negative strands used to demonstrate specificity of positive-strand encapsidation and the ratio of positive to negative strands in infected cells. J. Virol. 65:33843387.
93. Parsley, T. B.,, C. T. Cornell,, and B. L. Semler. 1999. Modulation of the RNA binding and protein processing activities of poliovirus polypeptide 3CD by the viral RNA polymerase domain. J. Biol. Chem. 274:1286712876.
94. Parsley, T. B.,, J. S. Towner,, L. B. Blyn,, E. Ehrenfeld,, and B. L. Semler. 1997. Poly(rC) binding protein 2 forms a ternary complex with the 5'-terminal sequences of poliovirus RNA and the viral 3CD proteinase. RNA 3: 11241134.
95. Pata, J. D.,, S. C. Schultz,, and K. Kirkegaard. 1995. Functional oligomerization of poliovirus RNA-dependent RNA polymerase. RNA 1:466477.
96. Paul, A. V.,, X. Cao,, K. S. Harris,, J. Lama,, and E. Wimmer. 1994. Studies with poliovitus polymerase 3Dpol. Stimulation of poly(U) synthesis in vitro by purified poliovirus protein 3AB. J. Biol. Chem. 269:2917329181.
97. Paul, A. V.,, A. Molla,, and E. Wimmer. 1994. Studies of a putative amphipathic helix in the N-terminus of poliovirus protein 2C. Virology 199:188199.
98. Paul, A. V.,, J. Mugavero,, J. Yin,, S. Hobson,, S. Schultz,, J. H. van Boom,, and E. Wimmer. 2000. Studies on the attenuation phenotype of polio vaccines: poliovirus RNA polymerase derived from Sabin type 1 sequence is temperature sensitive in the uridylylation of VPg. Virology 272:7284.
99. Paul, A. V.,, E. Rieder,, D. W. Kim,, J. H. van Boom,, and E. Wimmer. 2000. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J. Virol. 74:1035910370.
100. Paul, A. V.,, J. H. van Boom,, D. Fillipov,, and E. Wimmer. 1998. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature 393:280284.
101. Pelletier, J.,, and N. Sonenberg. 1988. Internal initiation of translation of eukaryotic mRNA directed by a sequence derived from poliovirus RNA. Nature 334:320325.
102. Pfister, X.,, K. W. Jones,, and E. Wimmer. 2000. A cysteine-rich motif in poliovirus protein 2CATPase is involved in RNA replication and binds zinc in vitro. J. Virol. 74:334343.
103. Pfister, T.,, and E. Wimmer. 1999. Characterization of the nucleoside triphosphatase activity of poliovirus protein 2C reveals a mechanism by which guanidine inhibits poliovirus replication. J. Biol. Chem. 274:69927001.
104. Pilipenko, E. V.,, S. V. Maslova,, A. N. Sinyakov,, and V. I. Agol. 1992. Towards identification of cis-acting elements involved in the replication of enterovirus and rhinovirus RNAs: a proposal for the existence of tRNA-like terminal structures. Nucleic Acids Res. 20:17391745.
105. Pilipenko, E. V.,, K. V. Poperechny,, S. V. Maslova,, W. J. G. Melchers,, H. J. Slot,, and V. I. Agol. 1996. Cis-element, oriR, involved in the initiation of ( —) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary ("kissing") interactions. EMBO J. 15:54285436.
106. Plotch, S. J.,, and O. Palant. 1995. Poliovirus protein 3AB forms a complex with and stimulates the activity of the viral RNA polymerase, 3Dpol. J. Virol. 69:71697179.
107. Richards, O. C.,, and E. Ehrenfeld. 1998. Effects of poliovirus 3AB protein on 3D polymetase-catalyzed reaction. J. Biol. Chem. 273:1283212840.
108. Richards, O. C.,, and E. Ehrenfeld. 1990. Poliovirus RNA replication. Curr. Top. Microbiol. Immunol. 161: 90119.
109. Rieder, E.,, A. V. Paul,, D. W. Kim,, J. H. van Boom,, and E. Wimmer. 2000. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to VPg uridylylation. J. Virol. 74:1037110380.
110. Rivera, V. M.,, J. D. Welsh,, and J. V. Maizel. 1988. Comparative sequence analysis of the 5' noncoding region of the enteroviruses and rhinoviruses. Virology 165: 4250.
111. Rodriguez, P. L.,, and L. Carrasco. 1993. Poliovirus protein 2C has ATP-ase and GTP-ase activities. J. Biol. Chem. 268:81058110.
112. Rodriguez, P. L.,, and L. Carrasco. 1995. Poliovirus 2C contains two regions involved in RNA binding activity. J. Biol. Chem. 270:1010510112.
113. Roehl, H. H.,, T. B. Parsley,, T. V. Ho,, and B. L. Semler. 1997. Processing of a cellular polypetide by 3CD proteinase is required for poliovirus ribonucleoprotein complex formation. J. Virol. 71:578585.
114. Roehl, H. H.,, and B. L. Semler. 1995. Poliovirus infection enhances the formation of two ribonucleoprotein complexes at the 3' end of viral negative-strand RNA. J. Virol. 69:29542961.
115. Rohll, J. B.,, D. H. Moon,, D. J. Evans,, and J. W. Almond. 1995. The 3' untranslated region of picornavirus RNA: features required for efficient genome replication. J. Virol. 69:78357844.
116. Romanova, L. I.,, and V. I. Agol. 1979. Interconversion of linear and circular forms of double-stranded RNA of encephalomyocarditis virus. J. Virol. 93:574577.
117. Rothberg, R. G.,, T. J. R. Harris,, A. Nomoto,, and E. Wimmer. 1978. 04-(5'-uridylyl)tyrosine is the bond between the genome-linked protein and the RNA of poliovirus. Proc. Natl. Acad. Sci. USA 75:48684872.
118. Rueckert, R. R., 1996. Picornaviridae: the viruses and their replication, p. 609654. In B. N. Fields,, D. M. Knipe,, and P. M. Howley (ed.), Fields Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, Pa..>
119. Salas, M.,, J. T. Miller,, J. Leis,, and M. L. DePamphilis,. 1996. Mechanism for priming DNA synthesis, p. 131176. In M. L. DePamphilis (ed.), DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
120. Sandoval, I. V.,, and L. Carrasco. 1997. Poliovirus infection and expression of the poliovirus protein 2B provoke the disassembly of the Golgi complex, the organelle target for the antipoliovirus drug Ro-090179. J. Virol. 71:46794693.
121. Sarnow, P. 1989. Role of 3'-end sequences in infectivity of poliovirus transcripts made in vitro. J. Virol. 63:467470.
122. Seeger, C.,, and W. S. Mason,. 1996. Replication of the hepatitis virus genome, p. 815831. In M. L. DePamphilis (ed.), DNA Replication in Eukaryotic Cells. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y..
123. Seipelt, J.,, A. Guarne,, E. Bergmann,, M. James,, W. Sommergruber,, I. Fita,, and T. Skern. 1999. The structures of picornaviral proteinases. Virus Res. 62:159168.
124. Semler, B. L.,, C. W. Anderson,, R. Hanecak,, L. F. Dorner,, and E. Wimmer. 1982. A membrane-associated precursor to poliovirus VPg identified by immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 28:405412.
125. Shaw, J. G., 1996. Plant viruses, p. 499532. In B. N. Fields,, D. M. Knipe,, and P. M. Howley (ed.), Fields Virology, 3rd ed. Lippincott-Raven Publishers, Philadelphia, Pa..
126. Spector, D. H.,, and D. Baltimore. 1974. Requirement of 3'-terminal poly(adenylic acid) for the infectivity of poliovirus RNA. Proc. Natl. Acad. Sci. USA 71:29832987.
127. Takeda, N.,, R. J. Kuhn,, C. F. Yang,, T. Takegami,, and E. Wimmer. 1986. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells. J. Virol. 60:4353.
128. Takegami, T.,, R. J. Kuhn,, C. W. Anderson,, and E. Wimmer. 1983. Membrane-dependent uridylylation of the genome-linked protein VPg of poliovirus. Proc. Natl. Acad. Sci. USA 80:74477451.
129. Teterina, N. L.,, K. Bienz,, D. Egger,, A. E. Gorbalenya,, and E. Ehrenfeld. 1997. Induction of intracellular membrane rearrangements by HAV proteins 2C and 2BC. Virology 237:6677.
130. Tobin, G. J.,, D. C. Young,, and J. B. Flanegan. 1989. Self-catalyzed linkage of poliovirus terminal protein VPg to poliovirus RNA. Cell 59:511519.
131. Todd, S.,, J. H. C. Nguyen,, and B. L. Semler. 1995. RNA-protein interactions directed by the 3' end of human rhinovirus genomic RNA. J. Virol. 69:36053614.
132. Todd, S.,, J. S. Towner,, D. M. Brown,, and B. L. Semler. 1997. Replication-competent picornaviruses with complete genomic RNA 3' noncoding region deletions. J. Virol. 71:88688874.
133. Towner, J. S.,, T. V. Ho,, and B. L. Semler. 1996. Determinants of membrane association for poliovirus protein 3AB. J. Biol. Chem. 271:2681026818.
134. Towner, J. S.,, M. M. Mazanet,, and B. L. Semler. 1998. Rescue of defective poliovirus RNA replication by 3AB-containing precursor polyproteins. J. Virol. 72:71917200.
135. Toyoda, H.,, C. F. Yang,, N. Takeda,, A. Nomoto,, and E. Wimmer. 1987. Analysis of RNA synthesis of type 1 poliovirus by using an in vitro molecular genetic approach. J. Virol. 61:28162822.
136. Van Bokhoven, H.,, O. L. Gall,, D. Kasteel,, J. Verver,, J. Wellink,, and A. V. Kammen. 1993. Cis- and transacting elements in cowpea mosaic virus RNA replication. Virology 195:377386.
136a.. Vance, L. M.,, N. Moscufo,, M. Chow,, and B. A. Heinz. 1997. Poliovirus 2C region functions during encapsidation of viral RNA. J. Virol. 71:87598765.
137. Ventoso, I.,, A. Barco,, and L. Carrasco. 1998. Mutational analysis of poliovirus 2Apro. Distinct inhibitory functions of 2Apro on translation and transcription. J. Biol. Chem. 273:2796027967.
138. Waggoner, S.,, and P. Sarnow. 1998. Viral ribonucleo-protein complex formation and nucleolar-cytoplasmic re-localization of nucleolin in poliovirus-infected cells. J. Virol. 72:66996709.
139. Walker, P. A.,, L. E.-C. Leong,, and A. G. Porter. 1995. Sequence and structural determinants of the interaction between the 5'-noncoding region of picornavirus RNA and rhinovirus protease 3C. J. Biol Chem. 270:1451014516.
140. Wimmer, E. 1982. Genome-linked proteins of viruses. Cell 28:199201.
141. Wimmer, E.,, C. U. T. Hellen,, and X. Cao. 1993. Genetics of poliovirus. Annu. Rev. Genet 27:353436.
142. Xiang, W.,, A. Cuconati,, D. Hope,, K. Kirkegaard,, and E. Wimmer. 1998. Complete protein linkage map of poliovirus P3 proteins: interaction of polymerase 3Dpol with VPg and with genetic variants of 3AB. J. Virol. 72: 67326741.
143. Xiang, W.,, A. Cuconati,, A. V. Paul,, X. Cao,, and E. Wimmer. 1995. Molecular dissection of the multifunctional poliovirus RNA-binding protein 3AB. RNA 1: 892904.
144. Xiang, W.,, K. S. Harris,, L. Alexander,, and E. Wimmer. 1995. Interaction between the 5'-terminal cloverleaf and 3AB/3CDpro of poliovirus is essential for RNA replication. J. Virol. 69:36583667.
145. Xiang, W.,, A. V. Paul,, and E. Wimmer. 1997. RNA signals in entero- and rhinovirus genome replication. Semin. Virol. 8:256273.
146. Yogo, Y.,, and E. Wimmer. 1972. Polyadenylic acid at the 3'-terminus of poliovirus RNA. Proc. Natl. Acad. Sci. USA 69:18771882.
147. Yu, S. E.,, P. Benton,, M. Bovee,, J. Sessions,, and R. E. Lloyd. 1995. Defective RNA replication by poliovirus mutants deficient in 2A protease cleavage activity. J. Virol. 69:247252.
148. Zell, R.,, K. Klingel,, M. Sauter,, U. Fortmuller,, and R. Kandolf. 1995. Coxsackieviral proteins functionally recognize the polioviral cloverleaf structure of the 5' NTR of a chimeric enterovirus RNA: influence of species-specific host cell factors in virus growth. Virus Res. 39: 87103.

Tables

Generic image for table
TABLE 1

Properties and functions of proteins encoded by the P3 domain of the poliovirus polyprotein

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19
Generic image for table
TABLE 2

Viral and cellular proteins binding to picornaviral -replicating RNA elements

Brackets indicate references.

Citation: Paul A. 2002. Possible Unifying Mechanism of Picornavirus Genome Replication, p 227-246. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error