1887

Chapter 3 : Picornavirus Structure Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Picornavirus Structure Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap03-2.gif

Abstract:

In many cases, structures have been determined, often using the lower resolution cryo-electron microscopy (cryo-EM) technique, of picornaviruses in complex with their cellular receptors, neutralizing antibodies, antiviral compounds, or other, biologically significant ligands. Picornavirus capsids are assembled from 60 protomers, each composed of four structural proteins, viral protein 1 (VP1), VP2, VP3, and VP4. The first three of these proteins have molecular weights of around 30 kDa and form the external surface of the icosahedral shell. Conservation of three-dimensional structure is almost invariably greater than conservation of amino acid homology. Thus, structural comparisons can be used to trace divergent evolution over longer time spans than is possible by amino acid sequence comparisons. Assembly of picornaviruses proceeds from 6S protomers of VP1, VP3, and VP0, via 14S pentamers of five 6S protomers, to mature virions. The final step involves inclusion of the RNA into empty capsids or partially assembled shells with simultaneous cleavage of VP0 into VP2 and VP4. The mutant viruses that were able to grow were mostly single mutations and could be sorted into groups that were neutralized by the same set of antibodies. A variety of additional evidence all points to the ability of simple icosahedral viruses to be in constant flux or “breathing”. This unexpected and structurally difficult-to-understand phenomenon accounts for the virus being able to externalize the internal VP4 and amino-terminal region of VP1 in the initial stages of cell entry.

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3

Key Concept Ranking

Tomato bushy stunt virus
0.48026472
0.48026472
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Different virion capsids with icosahedral symmetry. The = 1 shell contains 60 subunits, each represented by a trapezoid that has the approximate shape of the -barrel. All subunits in the = 1 capsid are identical and are labeled A. The asymmetric unit of the = 3 capsid contains subunits A, B, and C, all of which have the same amino acid sequence but are in slightly different environments. The threefold axis relating A, B, and C is not exact. This quasi-threefold axis also relates the quasi-sixfold axes (left and right Vertexes of the triangle) to a fivefold axis (top vertex). Like the = 1 structure, the = 3 structures are formed by identical subunits with the same -barrel fold. The = 3 picornavirus shell, technically a = 1 particle, is closely related to the = 3 shell, being formed by 180 -barrel domains. The three subunits, labeled VP1, VP2, and VP3, are, however, distinct proteins. The deep, canyon-like depression, the site of receptor attachment in many picornaviruses, is shaded. One 6S protomer assembly intermediate is outlined with a thick black border. The comovirus shell is very similar to the picornavirus capsid, with 180 -barrels forming the shell. However, there are only two protein types. The large protein (labeled L) is composed of two -barrel domains (equivalent of VP2 and VP3) covalently linked together. The small subunit () is a single -barrel domain. Reprinted with permission from Rossmann and Johnson ( ).

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of the genome organization of CpMV and picornaviruses. RNA2 (left) and RNA1 (right) of CpMV are shown aligned with the RNA of picornaviruses. The molecular weight and function are marked for each gene product. Regions in the two genomes are shaded where the amino acid sequences had been recognized as homologous ( ). The 42-kDa structural protein in CpMV (L) contains -barrel domains that correspond in location to VP2 and VP3 in picornaviruses. The 24-kDa protein in CpMV () corresponds to protein VP1 in picornaviruses. The letters C, B, and A indicate the positions occupied by each of these -barrels in the = 3 quasi-equivalent surface lattice. Reprinted with permission from Rossmann and Johnson ( ).

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Diagrammatic representation of the polypeptide fold of one subunit of poliovirus found also in the shell-forming portion of most other viral subunit structures. Shown also is the nomenclature for the secondary structural elements B, C, . . . , I. Reprinted with permission from Hogle et al. ( ).

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Diagrammatic representation of the canyon hypothesis. It was suggested that the canyon would be too narrow to allow the binding of a neutralizing antibody. It was also hypothesized that a receptor would be a slender molecule able to bind to the conserved amino acids lining the canyon, thereby avoiding host immune surveillance. The hypothesis was later found to be correct in as far as the site of receptor attachment and shape of the receptor molecule was concerned. However, the footprints of neutralizing antibodies and of the receptor on the viral surface were found to be partially overlapping, which gave some concern as to whether the original hypothesis was based on a correct premise, even though the basic predictions turned out to be correct for rhino- and enteroviruses.

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Schematic representation of the competition between receptor binding and binding of a pocket factor within the hydrophobic pocket in VP1. The structures represented in gray have been determined crystallographically, and the dotted structure in the top panel has been determined by electron microscopy. When pocket factor binds into the pocket, it deforms the canyon roof, which is also the floor of the canyon. When receptor binds into the canyon, the pocket is presumed to be empty. Thus, the effect of receptor binding is to expel the pocket factor, thereby destabilizing the virus and initiating uncoating, as shown in the top panel. For this to be able to happen, it is necessary for the affinity between the ICAM-1 receptor and the viral surface to exceed that of the antiviral compound (WIN) or pocket factor to the virus. In the middle panel are shown some of the drug-resistant compensation mutations (black spheres) that are on the floor of the canyon. They have been shown to increase the affinity of ICAM-1 for the virus ( ). Thus, the binding affinity of ICAM-1 for the mutant virus would now be greater than that for the WIN compounds. Other compensation escape mutations, as shown in the bottom panel, are found lining the hydrophobic binding pocket. These have less bulk than the wild-type residues, thus reducing the affinity of the WIN compounds for the virus. Since the affinity of the receptor ICAM-1 for the virus is unchanged, the equilibrium is altered in favor of receptor binding rather than WIN compound binding. Reprinted with permission from Hadfield et al. ( ).

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

The pocket factor within the VP1 hydrophobic pocket of coxsackievirus B3 (CVB3) ( ). (a) Electron density in the middle of the figure represents the pocket factor in the VP1 pocket, whereas (b) shows the VP1 pocket of CVB3 occupied by antiviral compound WIN 66393. Comparison of the two electron density maps shows clearly that the longer pocket factor has been displaced by the shorter WIN compound. The large peak is the result of an iodine atom in the antiviral compound ( ). Reprinted with permission from Muckelbauer et al. ( ).

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap3
1. Abad-Zapatero, C.,, S. S. Abdel-Meguid,, J. E. Johnson,, A. G. W. Leslie,, I. Rayment,, M. G. Rossmann,, D. Suck,, and T. Tsukihara. 1980. Structure of southern bean mosaic virus at 2.8 Å resolution. Nature (London) 286:3339.
2. Abad-Zapatero, C.,, S. S. Abdel-Meguid,, J. E. Johnson,, A. G. W. Leslie,, I. Rayment,, M. G. Rossmann,, D. Suck,, and T. Tsukihara. 1981. A description of techniques used in the structure determination of southern bean mosaic virus at 2.8 Å resolution. Acta Crystaliogr. B37:20022018.
3. Acharya, R.,, E. Fry,, D. Stuart,, G. Fox,, D. Rowlands,, and F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature (London) 337:709716.
4. Argos, P.,, G. Kamer,, M. J. H. Nicklin,, and E. Wimmer. 1984. Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest common ancestry of these virus families. Nucleic Adds Res. 12:72517267.
5. Arnold, E.,, M. Luo,, G. Vriend,, M. G. Rossmann,, A. C. Palmenberg,, G. D. Parks,, M. J. H. Nicklin,, and E. Wimmer. 1987. Implications of the picornavirus capsid structure for polyprotein processing. Proc. Natl. Acad. Sci. USA 84:2125.
6. Arnold, E.,, and M. G. Rossmann. 1990. Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 Å. J. Mol. Biol. 211:763801.
7. Badger, J.,, S. Krishnaswamy,, M. J. Kremer,, M. A. Oliveira,, M. G. Rossmann,, B. A. Heinz,, R. R. Rueckert,, F. J. Dutko,, and M. A. McKinlay. 1989. Three-dimensional structures of drug-resistant mutants of human rhinovirus 14. J. Mol. Biol. 207:163174.
8. Badger, J.,, I. Minor,, M. J. Kremer,, M. A. Oliveira,, T. J. Smith,, J. P. Griffith,, D. M. A. Guerin,, S. Krishnaswamy,, M. Luo,, M. G. Rossmann,, M. A. McKinlay,, G. D. Diana,, F. J. Dutko,, M. Fancher,, R. R. Rueckert,, and B. A. Heinz. 1988. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc. Natl. Acad. Sci. USA 85:33043308.
9. Badger, J.,, I. Minor,, M. A. Oliveira,, T. J. Smith,, and M. G. Rossmann. 1989. Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses. Proteins 6:119.
10. Basavappa, R.,, R. Syed,, O. Flore,, J. P. Icenogle,, D. J. Filman,, and J. M. Hogle. 1994. Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 Å resolution. Protein Sci. 3:16511669.
11. Bella, J.,, P. R. Kolatkar,, C. W. Marlor,, J. M. Greve,, and M. G. Rossmann. 1998. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. USA 95:41404145.
12. Belnap, D. M.,, D. J. Filman,, B. L. Trus,, N. Cheng,, F. P. Booy,, J. F. Conway,, S. Curry,, C. N. Hiremath,, S. K. Tsang,, A. C. Steven,, and J. M. Hogle. 2000. Molecular tectonic model of virus structural transitions: the putative cell entry states of poliovirus. J. Virol. 74:13421354.
13. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:7378.
14. Bhuvaneshwari, M.,, H. S. Subramanya,, K. Gopinath,, H. S. Savithri,, M. V. Nayudu,, and M. R. N. Murthy. 1995. Structure of sesbania mosaic virus at 3 Å resolution. Structure 3:10211030.
15. Böttcher, B.,, and R. A. Crowther. 1996. Difference imaging reveals ordered regions of RNA in turnip yellow mosaic virus. Structure 4:387394.
16. Canady, M. A.,, S. B. Larson,, J. Day,, and A. McPherson. 1996. Crystal structure of turnip yellow mosaic virus. Nat. Struct. Biol. 3:771781.
17. Caspar, D. L. D.,, and A. Klug. 1962. Physical principles in the construction of regular viruses. Cold Spring Harbor Symp. Quant. Biol. 27:124.
18. Chandrasekar, V.,, and J. E. Johnson. 1998. The structure of tobacco ringspot virus: a link in the evolution of icosahedral capsids in the picornavirus superfamily. Structure 6:157171.
19. Chapman, M. S. 1993. Mapping the surface properties of macromolecules. Protein Sci. 2:459469.
20. Chapman, M. S.,, K. H. Kim,, and M. G. Rossmann. 1993. Structural comparisons of several antiviral agents complexed with human rhinoviruses of different serotypes, Int. Antivir. News 1:5354.
21. Chapman, M. S.,, I. Minor,, M. G. Rossmann,, G. D. Diana,, and K. Andries. 1991. Human rhinovirus 14 complexed with antiviral compound R 61837. J. Mol. Biol. 217:455463.
22. Chapman, M. S.,, and M. G. Rossmann. 1993. Structure, sequence and function correlations among parvoviruses. Virology 194:491508.
23. Che, Z.,, N. H. Olson,, D. Leippe,, W. Lee,, A. G. Mosser,, R. R. Rueckert,, T. S. Baker,, and T. J. Smith. 1998. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryoelectron microscopy and X-ray crystallography of virus-Fab complexes. J. Virol. 72:46104622.
24. Chen, Z.,, C. Stauffacher,, Y. Li,, T. Schmidt,, W. Bomu,, G. Kamer,, M. Shanks,, G. Lomonossoff,, and J. E. Johnson. 1989. Protein-RNA interactions in an icosahedral virus at 3.0 Å resolution. Science 245:154159.
25. Chen, Z.,, C. V. Stauffacher,, and J. E. Johnson. 1990. Capsid structure and RNA packaging in comoviruses. Semin. Virol. 1:453466.
26. Chow, M.,, R. Yabrov,, J. Bittie,, J. Hogle,, and D. Baltimore. 1985. Synthetic peptides from four separate regions of the poliovirus type 1 capsid protein VP1 induce neutralizing antibodies. Proc. Natl. Acad. Sci. USA 82:910914.
27. Colman, P. M. 1997. Virus versus antibody. Structure 5: 591593.
28. Curry, S.,, E. Fry,, W. Blakemore,, R. Abu-Ghazaleh,, T. Jackson,, A. King,, S. Lea,, J. Newman,, D. Rowlands,, and D. Stuart. 1996. Perturbations in the surface structure of A22 Iraq foot-and-mouth disease virus accompanying coupled changes in host cell specificity and antigenicity. Structure 4:135145.
29. Filman, D. J.,, R. Syed,, M. Chow,, A. J. Macadam,, P. D. Minor,, and J. M. Hogle. 1989. Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 8:15671579.
30. Filman, D. J.,, M. W. Wien,, J. A. Cunningham,, J. M. Bergelson,, and J. M. Hogle. 1998. Structure determination of echovirus I. Acta Crystallogr. D54:12611272.
31. Franssen, H.,, J. Leunissen,, R. Goldbach,, G. Lomonossoff,, and D. Zimmern. 1984. Homologous sequences in non-structural proteins from cowpea mosaic virus and picornaviruses. EMBO J. 3:855861.
32. Fricks, C. E.,, and J. M. Hogle. 1990. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64:19341945.
33. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. I. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. Q. King,, and D. I. Stuart. 1999. The structure and function of a foot-and-mouth disease virus-oligosaccharride receptor complex. EMBO J. 18:543554.
34. Giranda, V. L.,, B. A. Heinz,, M. A. Oliveira,, I. Minor,, K. H. Kim,, P. R. Kolatkar,, M. G. Rossmann,, and R. R. Rueckert. 1992. Acid-induced structural changes in human rhinovirus 14: possible role in uncoating. Proc. Natl. Acad. Sci. USA 89:1021310217.
35. Giranda, V. L.,, G. R. Susso,, P. J. Felock,, T. R. Bailey,, T. Draper,, D. J. Aldous,, J. Suiles,, F. J. Dutko,, G. D. Diana,, and D. C. Pevear. 1995. Structures of four methyltetrazole-containing antiviral compounds in human rhinovirus serotype 14. Acta Crystallogr. D51:496503.
36. Grant, R. A.,, D. J. Filman,, R. S. Fujinami,, J. P. Icenogle,, and J. M. Hogle. 1992. Three-dimensional structure of Theiler's virus. Proc. Natl. Acad. Sci. USA 89:20612065.
37. Grant, R. A.,, C. N. Hiremath,, D. J. Filman,, R. Syed,, K. Andries,, and J. M. Hogle. 1994. Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr. Biol. 4:784797.
38. Hadfield, A. T.,, G. D. Diana,, and M. G. Rossmann. 1999. Analysis of three structurally related antiviral compounds in complex with human rhinovirus 16. Proc. Natl. Acad. Sci. USA 96:1473014735.
39. Hadfield, A. T.,, W. Lee,, R. Zhao,, M. A. Oliveira,, I. Minor,, R. R. Rueckert,, and M. G. Rossmann. 1997. The refined structure of human rhinovirus 16 at 2.15 Å resolution: implication for the viral life cycle. Structure 5: 427441.
40. Hadfield, A. T.,, M. A. Oliveira,, K. H. Kim,, I. Minor,, M. J. Kremer,, B. A. Heinz,, D. Shepard,, D. C. Pevear,, R. R. Rueckert,, and M. G. Rossmann. 1995. Structural studies on human rhinovirus 14 drug-resistant compensation mutants. J. Mol. Biol. 253:6173.
41. Harrison, S. C.,, A. J. Olson,, C. E. Schutt,, F. K. Winkler,, and G. Bricogne. 1978. Tomato bushy stunt virus at 2.9 Å resolution. Nature (London) 276:368373.
42. He, Y.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97:7984.
43. Hendry, E.,, H. Hatanaka,, E. Fry,, M. Smyth,, J. Tate,, G. Stanway,, J. Santti,, M. Maaronen,, T. Hyypiä,, and D. Stuart. 1999. The crystal structure of coxsackievirus A9: new insights into the uncoating mechanisms of enterovirus. Structure 7:15271538.
44. Hewat, E. A.,, and D. Blaas. 1996. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 15:15151523.
45. Hewat, E. A.,, T. C. Mariovits,, and D. Blaas. 1998. Structure of a neutralizing antibody bound monovalently to human rhinovirus 2. J. Virol. 72:43964402.
46. Hewat, E. A.,, N. Verdaguer,, I. Fita,, W. Blakemore,, S. Brookes,, A. King,, J. Newman,, E. Domingo,, M. G. Mateu,, and D. I. Stuart. 1997. Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J. 16:14921500.
47. Hindiyeh, M.,, Q.-H. Li,, R. Basavappa,, J. M. Hogle,, and M. Chow. 1999. Poliovirus mutants at histidine 195 of VP2 do not cleave VP0 into VP2 and VP4. J. Virol. 73: 90729079.
48. Hiremath, C. N.,, D. J. Filman,, R. A. Grant,, and J. M. Hogle. 1997. Ligand-induced conformational changes in poliovirus-antiviral drug complexes. Acta Crystallogr. D53:558570.
49. Hiremath, C. N.,, R. A. Grant,, D. J. Filman,, and J. M. Hogle. 1995. The binding of the antiviral drug WIN51711 to the Sabin strain of type 3 poliovirus: structural comparison with drug binding in rhinovirus 14. Acta Crystallogr. D51:473489.
50. Hofer, F.,, M. Gruenberger,, H. Kowalski,, H. Machat,, M. Huettinger,, E. Kuechler,, and D. Blaas. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. USA 91:18391842.
51. Hogle, J. M.,, M. Chow,, and D. J. Filman. 1985. Three-dimensional structure of poliovirus at 2.9 Å resolution. Science 229:13581365.
52. Hoover-Litty, H.,, and J. M. Greve. 1993. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J. Virol. 67:390397.
53. Jackson, T.,, A. Sharma,, R. Abu-Ghazaleh,, W. E. Blakemore,, F. M. Ellard,, D. L. Simmons,, J. W. I. Newman,, D. I. Stuart,, and A. M. Q. King. 1997. Arginine-glycine-aspartic acid-specific binding by foot-and-mouth disease virus to the purified integrin αvβ3 in vitro. J. Virol. 71: 83578361.
54. Kim, S. H.,, P. Willingmann,, Z. X. Gong,, M. J. Kremer,, M. S. Chapman,, I. Minor,, M. A. Oliveira,, M. G. Rossmann,, K. Andries,, G. D. Diana,, F. J. Dutko,, M. A. McKinlay,, and D. C. Pevear. 1993. A comparison of the anti-rhinoviral drug binding pocket in HRV14 and HRV1A. J. Mol. Biol. 230:206226.
55. Kim, S.,, U. Boege,, S. Krishnaswamy,, I. Minor,, T. J. Smith,, M. Luo,, D. G. Scraba,, and M. G. Rossmann. 1990. Conformational variability of a picornavirus capsid: pH-dependent structural changes of Mengo virus related to its host receptor attachment site and disassembly. Virology 175:176190.
56. Kim, S.,, T. J. Smith,, M. S. Chapman,, M. G. Rossmann,, D. C. Pevear,, F. J. Dutko,, P. J. Felock,, G. D. Diana,, and M. A. McKinlay. 1989. The crystal structure of human rhinovirus serotype 1A (HRVIA). J. Mol. Biol. 210: 91111.
57. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 18:62496259.
58. Kraulis, P. 1991. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24:946950.
59. Krishnaswamy, S.,, and M. G. Rossmann. 1990. Structural refinement and analysis of Mengo virus. J. Mol. Biol. 211:803844.
60. Krol, M. A.,, N. H. Olson,, J. Tate,, J. E. Johnson,, T. S. Baker,, and P. Ahlquist. 1999. RNA-controlled polymorphism in the in vitro assembly of 180-subunit and novel 120-subunit virions from a single capsid protein. Proc. Natl. Acad. Sci. USA 96:1365013655.
61. Larson, S. B.,, S. Koszelak,, J. Day,, A. Greenwood,, J. A. Dodds,, and A. McPherson. 1993. Three-dimensional structure of satellite tobacco mosaic virus at 2.9 Å resolution. J. Mol. Biol. 231:375391.
62. Lea, S.,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, E. Fry,, T. Jackson,, A. King,, D. Logan,, J. Newman,, and D. Stuart. 1995. Structural comparison of two strains of foot-and-mouth disease virus subtype O1 and a laboratory antigenic variant, G67. Structure 3:571580.
63. Lea, S.,, J. Hernandez,, W. Blakemore,, E. Brocchi,, S. Curry,, E. Domingo,, E. Fry,, R. Abu-Ghazaleh,, A. King,, J. Newman,, D. Stuart,, and M. G. Mateu. 1994. The structure and antigenicity of a type C foot-and-mouth disease virus. Structure 2:123139.
64. Lentz, K. N.,, A. D. Smith,, S. C. Geisler,, S. Cox,, P. Buontempo,, A. Skelton,, J. DeMartino,, E. Rozhon,, J. Schwartz,, V. Girijavallabhan,, J. O'Connell,, and E. Arnold. 1997. Structure of poliovirus type 2 Lansing complexed with antiviral agent SCH48973: comparison of the structural and biological properties of the three poliovirus serotypes. Structure 5:961978.
65. Lewis, J. K.,, B. Bothner,, T. J. Smith,, and G. Siuzdak. 1998. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. USA 95:67746778.
66. Liljas, L. 1996. Viruses. Curr. Opin. Struct. Biol. 6:151156.
67. Lin, T.,, Z. Chen,, R. Usha,, C. V. Stauffacher,, J. Dai,, T. Schmidt,, and J. E. Johnson. 1999. The refined crystal structure of cowpea mosaic virus at 2.8 Å resolution. Virology 265:2034.
68. Lin, T.,, A. J. Clark,, Z. Chen,, M. Shanks,, J. Dai,, L. Ying,, T. Schmidt,, P. Oxelfelt,, G. P. Lomonossoff,, and J. E. Johnson. 2000. Structural fingerprinting: subgrouping of comoviruses by structural studies of red clover mottie virus to 2.4-Å resolution and comparisons with other comoviruses. J. Virol. 74:493504.
69. Lin, T.,, C. Porta,, G. Lomonossoff,, and J. E. Johnson. 1996. Structure-based design of peptide presentation on a viral surface: the structure of a plant/animal virus chimera at 2.8 Å resolution. Folding Des. 1:179187.
70. Logan, D.,, R. Abu-Ghazaleh,, W. Blakemore,, S. Curry,, T. Jackson,, A. King,, S. Lea,, R. Lewis,, J. Newman,, N. Parry,, D. Rowlands,, D. Stuart,, and E. Fry. 1993. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature (London) 362:566568.
71. Lomonossoff, G. P.,, and J. E. Johnson. 1991. The synthesis and structure of comovirus capsids. Prog. Biophys. Mol. Biol. 55:107137.
72. Luo, M.,, C. He,, K. S. Toth,, C. X. Zhang,, and H. L. Lipton. 1992. Three-dimensional structure of Theiler murine encephalomyelitis virus (BeAn strain). Proc. Natl. Acad. Sci. USA 89:24092413.
73. Luo, M.,, K. S. Toth,, L. Zhou,, A. Pritchard,, and H. L. Lipton. 1996. The structure of a highly virulent Theiler's murine encephalomyelitis virus (GDVII) and implications for determinants of viral persistence. Virology 220:246250.
74. Luo, M.,, G. Vriend,, G. Kamer,, I. Minor,, E. Arnold,, M. G. Rossmann,, U. Boege,, D. G. Scraba,, G. M. Duke,, and A. C. Palmenberg. 1987. The atomic structure of Mengo virus at 3.0 Å resolution. Science 235:182191.
75. Matthews, B. W.,, and M. G. Rossmann. 1985. Comparison of protein structures. Methods Enzymol. 115:397420.
76. Muckelbauer, J. K.,, M. Kremer,, I. Minor,, G. Diana,, F. J. Dutko,, J. Groarke,, D. C. Pevear,, and M. G. Rossmann. 1995. The structure of coxsackievirus B3 at 3.5 Å resolution. Structure 3:653668.
77. Murthy, M. R. N.,, M. Bhuvaneswari,, H. S. Subramanya,, K. Gopinath,, and H. S. Savithri. 1997. Structure of sesbania mosaic virus at 3 Å resolution. Biophys. Chem. 68:3342.
78. Oliveira, M. A.,, R. Zhao,, W. Lee,, M. J. Kremer,, I. Minor,, R. R. Rueckert,, G. D. Diana,, D. C. Pevear,, F. J. Dutko,, M. A. McKinlay,, and M. G. Rossmann. 1993. The structure of human rhinovirus 16. Structure 1: 5168.
79. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90:507511.
80. Page, G. S.,, A. G. Mosser,, J. M. Hogle,, D. J. Filman,, R. R. Rueckert,, and M. Chow. 1988. Three-dimensional structure of poliovirus serotype 1 neutralizing determinants. J. Virol. 62:17811794.
81. Pallansch, M. A.,, O. M. Kew,, B. L. Semler,, D. R. Omilianowski,, C. W. Anderson,, E. Wimmer,, and R. R. Rueckert. 1984. Protein processing map of poliovirus. J. Virol. 49:873880.
82. Parry, N.,, G. Fox,, D. Rowlands,, F. Brown,, E. Fry,, R. Acharya,, D. Logan,, and D. Stuart. 1990. Structural and serological evidence for a novel mechanism of antigenic variation in foot-and-mouth disease virus. Nature (London) 347:569572.
83. Pevear, D. C.,, M. J. Fancher,, P. J. Felock,, M. G. Rossmann,, M. S. Miller,, G. Diana,, A. M. Treasurywala,, M. A. McKinlay,, and F. J. Dutko. 1989. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J. Virol. 63:20022007.
84. Porta, C.,, G. Wang,, H. Cheng,, Z. Chen,, T. S. Baker,, and J. E. Johnson. 1994. Direct imaging of interactions between an icosahedral virus and conjugate Fab fragments by cryoelectron microscopy and X-ray crystallography. Virology 204:777788.
85. Rossmann, M. G. 1994. Viral cell recognition and entry. Protein Sci. 3:17121725.
86. Rossmann, M. G.,, and P. Argos. 1981. Protein folding. Ann. Rev. Biochem. 50:497532.
87. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature (London) 317:145153.
88. Rossmann, M. G.,, and J. E. Johnson. 1989. Icosahedral RNA virus structure. Ann. Rev. Biochem. 58:533573.
89. Rossmann, M. G.,, and A. C. Palmenberg. 1988. Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373382.
90. Rotbart, H. A.,, and K. Kirkegaard. 1992. Picornavirus pathogenesis: viral access, attachment and entry into susceptible cells. Semin. Virol. 3:483499.
91. Rueckert, R. R., 1996. Picornaviridae: the viruses and their replication, p. 609654. In B. N. Fields,, D. M. Knipe,, and P. M. Howley (ed.), Fields Virology. Lippincott-Raven Publishers, Philadelphia, Pa.
92. Schmugge, M.,, R. Lauener,, W. Bossart,, R. A. Seger,, and T. Güngör. 1999. Chronic enteroviral meningo-encephalitis in X-linked agammaglobulinaemia: favourable response to anti-enteroviral treatment. Eur. J. Pediatr. 158:10101011.
93. Schneemann, A.,, V. S. Reddy,, and J. E. Johnson. 1998. The structure and function of nodavirus particles: a paradigm for understanding chemical biology. Adv. Virus Res. 50:381445.
94. Sherry, B.,, A. G. Mosser,, R. J. Colonno,, and R. R. Rueckert. 1986. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold Picornavirus, human rhinovirus 14. J. Virol. 57: 246257.
95. Sherry, B.,, and R. Rueckert. 1985. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53:137143.
96. Smith, T. J.,, E. Chase,, T. Schmidt,, and K. L. Perry. 2000. The structure of cucumber mosaic virus and comparison to cowpea chlorotic mottle virus. J. Virol. 74: 75787586.
97. Smith, T. J.,, E. S. Chase,, T. J. Schmidt,, N. H. Olson,, and T. S. Baker. 1996. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature (London) 383:350354.
98. Smith, T. J.,, M. J. Kremer,, M. Luo,, G. Vriend,, E. Arnold,, G. Kamer,, M. G. Rossmann,, M. A. McKinlay,, G. D. Diana,, and M. J. Otto. 1986. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:12861293.
99. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, E. S. Chase,, and T. S. Baker. 1993. Structure of a human rhinovirus-bivalently bound antibody complex: implications for viral neutralization and antibody flexibility. Proc. Natl. Acad. Sci. USA 90:70157018.
100. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, H. Liu,, E. A. Chase,, W. Lee,, D. M. Leippe,, A. G. Mosser,, R. R. Rueckert,, and T. S. Baker. 1993. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J. Virol. 67:11481158.
101. Smyth, M.,, J. Tate,, E. Hoey,, C. Lyons,, S. Martin,, and D. Stuart. 1995. Implications for viral uncoating from the structure of bovine enterovirus. Nat. Struct. Biol. 2: 224231.
102. Speir, J. A.,, S. Munshi,, G. Wang,, T. S. Baker,, and J. E. Johnson. 1995. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure 3:6378.
103. Sri Krishna, S.,, C. N. Hiremath,, S. K. Munshi,, D. Prahadeeswaran,, M. Sastri,, H. S. Savithri,, and M. R. N. Murthy. 1999. Three-dimensional structure of physalis mottle virus: implications for the viral assembly. J. Mol. Biol. 289:919934.
104. Tate, J.,, L. Liljas,, P. Scotti,, P. Christian,, T. Lin,, and J. E. Johnson. 1999. The crystal structure of cricket paralysis virus: the first view of a new virus family. Nat. Struct. Biol. 6:765774.
105. Tormo, J.,, D. Blaas,, N. R. Parry,, D. Rowlands,, D. Stuart,, and I. Fita. 1994. Crystal structure of a human rhinovirus neutralizing antibody complexed with a peptide derived from viral capsid protein VP2. EMBO J. 13: 22472256.
106. Tormo, J.,, N. B. Centeno,, E. Fontana,, E. Bubendorfer,, I. Fita,, and D. Blaas. 1995. Docking of a human rhinovirus neutralizing antibody onto the viral capsid. Proteins 23:491501.
107. Tormo, J.,, E. Stadler,, T. Skern,, H. Auer,, O. Kanzler,, C. Betzel,, D. Blaas,, and I. Fita. 1992. Three-dimensional structure of the Fab fragment of a neutralizing antibody to human rhinovirus serotype 2. Protein Sci. 1: 11541161.
108. Verdaguer, N.,, D. Blaas,, and I. Fita. 2000. Structure of human rhinovirus serotype 2 (HRV2). J. Mol. Biol. 300: 11811196.
109. Verdaguer, N.,, M. G. Mateu,, D. Andreu,, E. Giralt,, E. Domingo,, and I. Fita. 1995. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 14: 16901696.
110. Verdaguer, N.,, G. Schoehn,, W. F. Ochoa,, I. Fita,, S. Brookes,, A. King,, E. Domingo,, M. G. Mateu,, D. Stuart,, and E. A. Hewat. 1999. Flexibility of the major antigenic loop of foot-and-mouth disease virus bound to a Fab fragment of a neutralising antibody: structure and neutralisation. Virology 255:260268.
111. Wery, J. P.,, V. S. Reddy,, M. V. Hosur,, and J. E. Johnson. 1994. The refined three-dimensional structure of an insect virus at 2.8 Å resolution. J. Mol. Biol. 235:565586.
112. Wien, M. W.,, S. Curry,, D. J. Filman,, and J. M. Hogle. 1997. Structural studies of poliovirus mutants that overcome receptor defects. Nat. Struct. Biol. 4:666674.
113. Wien, M. W.,, D. J. Filman,, E. A. Stura,, S. Guillot,, F. Delpeyroux,, R. Crainic,, and J. M. Hogle. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat. Struct. Biol. 2:232243.
113a. Xiao, C.,, C. M. Bator,, V. D. Bowman,, E. Rieder,, Y. He,, B. Hebert,, J. Bella,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2001. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J. Virol. 75:24442451.
114. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. G. Kaplan,, D. Feigelstock,, R. H. Cheng,, and J. M. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19:12071216.
115. Yeates, T. O.,, D. H. Jacobson,, A. Martin,, C. Wychowski,, M. Girard,, D. J. Filman,, and J. M. Hogle. 1991. Three-dimensional structure of a mouse-adapted type 2/type 1 poliovirus chimera. EMBO J. 10:23312341.
116. Zhang, A.,, R. G. Nanni,, T. Li,, G. F. Arnold,, D. A. Oren,, A. Jacobo-Molina,, R. L. Williams,, G. Kamer,, D. A. Rubenstein,, Y. Li,, E. Rozhon,, S. Cox,, P. Buontempo,, J. O'Connell,, J. Schwartz,, G. Miller,, B. Bauer,, R. Versace,, P. Pinto,, A. Ganguly,, V. Girijavallabhan,, and E. Arnold. 1993. Structure determination of antiviral compound SCH 38057 complexed with human rhinovirus 14. J. Mol. Biol. 230:857867.
117. Zhang, A.,, R. G. Nanni,, D. A. Oren,, E. J. Rozhon,, and E. Arnold. 1992. Three-dimensional structure-activity relationships for antiviral agents that interact with Picornavirus capsids. Semin. Virol. 3:453471.
118. Zhao, R.,, A. T. Hadfield,, M. J. Kremer,, and M. G. Rossmann. 1997. Cations in human rhinoviruses. Virology 227:1323.
119. Zhao, R.,, D. C. Pevear,, M. J. Kremer,, V. L. Giranda,, J. Kofron,, R. J. Kuhn,, and M. G. Rossmann. 1996. Human rhinovirus 3 at 3.0 Å resolution. Structure 4: 12051220.
120. Zhou, L.,, X. Lin,, T. J. Green,, H. L. Lipton,, and M. Luo. 1997. Role of sialyloligosaccharide binding in Theiler's virus persistence. J. Virol. 71:97019712.
121. Zhou, L.,, Y. Luo,, Y. Wu,, J. Tsao,, and M. Luo. 2000. Sialylation of the host receptor may modulate entry of demyelinating persistent Theiler's virus. J. Virol. 74: 14771485.
122. Zlotnick, A.,, V. S. Reddy,, R. Dasgupta,, A. Schneemann,, W. J. Ray, Jr.,, R. R. Rueckert,, and J. E. Johnson. 1994. Capsid assembly in a family of animal viruses primes an autoproteolytic maturation that depends on a single aspartic acid residue. J. Biol. Chem. 269:1368013684.

Tables

Generic image for table
TABLE 1a

Picornavirus structures (primary structural reports)

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3
Generic image for table
TABLE 1b

Picornavirus structures (primary structural reports)

Citation: Rossmann M. 2002. Picornavirus Structure Overview, p 27-38. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error