1887

Chapter 30 : Poliovirus Vaccines: Molecular Biology and Immune Response

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Poliovirus Vaccines: Molecular Biology and Immune Response, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap30-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap30-2.gif

Abstract:

The pathogenesis of poliomyelitis is central to understanding the effectiveness of the vaccines that are likely to eradicate the wild-type virus from the world over the next few years. Studies of the molecular biology of the Sabin live polio vaccines have so far concentrated on their virulence or attenuation for primates or transgenic mice carrying the human receptor for poliovirus where the virus is given directly into the central nervous system or parentally. The basis of attenuation or reversion of the Sabin vaccine strains has been studied by comparing the vaccine strain of each serotype with a closely related strain, either the precursor of the vaccine strain or an isolate from a vaccine-associated case of poliomyelitis. Monoclonal antibodies can recognize neutralization sites specific for vaccine rather than wild-type strains, and the most strain-specific antibodies for any serotype are directed against site 3 (Nag III), composed of sequences from VP3 and VPl. A study was conducted in 1962 to assess the ability of immune deficient hypogammaglobulinemic patients to mount an immune response to vaccines, including polio vaccine. A strain of virus with a completely stable phenotype excreted for a brief period that was still sufficient to immunize the recipient would be valuable, and there have been attempts to develop such strains, based on both classical methods and current understanding of the molecular biology of the virus.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30

Key Concept Ranking

Inactivated Polio Vaccine
0.48708463
Humoral Immune Response
0.46815932
Sabin Polio Vaccine
0.45850182
0.48708463
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Incidence of poliomyelitis in the United States between 1951 and 1980 showing the effect of inactivated and oral (Sabin) vaccine.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Derivation of the Sabin vaccine strains from the original isolates.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Organization of the poliovirus genome.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Comparison of sequences of strains used in the analysis of the attenuated phenotype of the Sabin vaccine strains, (a) type 1, Mahoney and Sabin type 1; (b) type 2, 117 and Sabin type 2; (c) type 3, Leon and Sabin type 3.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Predicted secondary structure of the 5′ noncoding region of the poliovirus genome.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Structure of domain V showing mutations involved in the attenuated phenotype of the Sabin vaccine strains (A) type 1, (B) type 2, and (C) type 3.

Citation: Minor P, Almond J. 2002. Poliovirus Vaccines: Molecular Biology and Immune Response, p 381-390. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch30
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap30
1. Agol, V. I.,, S. G. Drozdou,, T. A. Ivannikova,, M. S. Kolesnikova,, M. B. Kordev,, and E. A. Tolskaya. 1989. Restricted growth of attenuated poliovirus strains in cultured cells of a human neuroblastoma. J. Virol. 63: 4034 4308.
2. Agol, V. I.,, E. V. Pilipenko,, and O. R. Slobodskaya. 1996. Modification of translational control elements as a new approach to design of attenuated picornavirus strains. J. Biotechnol. 44: 119 128.
3. Alexander, J. P., Jr.,, H. E. Gary,, and M. A. Pallansch. 1997. Duration of poliovirus excretion and its implications for acute flaccid paralysis surveillance: a review of the literature. J. Infect. Dis. 175: 176 182.
4. Beale, A. J.,, S. Biberi-Moroeanu,, L. R. Boulger,, P. N. Burgasov,, W. C. Cockburn,, M. P. Chumakov,, A. De Barbieri,, and I. Domok. 1969. USOL-D-bac (type 3 poliovirus) vaccine studies. Bull. W. H. O. 40: 295 300.
5. Bellmunt, A.,, G. May,, R. Zell,, A. Pring,, P. Kerblom,, V. Vergagen,, and A. Heim. 1999. Evolution of poliovirus type 1 during 5.5 years of prolonged enteral replication in an immunodeficient patient. Virology 265: 178 184.
6. Bouchard, M. J.,, D. H. Lam,, and V. R. Racaniello. 1995. Determinants of attenuation and temperature sensitivity in the type 1 poliovirus Sabin vaccine. J. Virol. 69: 4972 4978.
7. Cammack, N.,, A. Phillips,, G. Dunn,, V. Patel,, and P. D. Minor. 1988. Intertypic genomic rearrangements of poliovirus strains in vaccinees. Virology 167: 507 514.
8. Christodoulou, C.,, F. Colbere-Garapin,, A. Macadam,, L. F. Taffs,, S. Marsden,, P. D. Minor,, and F. Horaud. 1990. Mapping of mutations associated with neurovirulence in monkeys infected with Sabin 1 poliovirus revertants selected at high temperature. J. Virol. 64: 4922 4929.
9. Contreras, G.,, K. Dimmock,, J. Furesz,, C. Gardell,, D. Hazlett,, K. Korpinski,, G. McCorkle,, and L. Wu. 1992. Genetic characterisation of Sabin types 1 and 3 polio-vaccine virus following serial passage in the human intestinal tract. Biologicals 20: 15 26.
10. Dunn, G.,, N. T. Begg,, N. Cammack,, and P. D. Minor. 1990. Virus excretion and mutation by infants following primary vaccination with live oral poliovaccine from two sources. J. Med. Virol. 32: 92 95.
11. Elbert, L. B.,, M. P. Chumakov,, N. M. Ralf,, G. D. Krutyanshaya,, V. P. Grachyov,, L. I. Avdeyeva,, S. G. Dzagurov,, L. A. Grachyova,, A. V. Tyufanov,, L. B. Tsypkin,, and L. I. Ravkina. 1967. Comparative study of two vaccine strains of type 3 poliovirus (USOL-D-bac and Leon 12alb). Acta Virol. 11: 89 99.
12. Evans, D. M.,, G. Dunn,, P. D. Minor,, G. C. Schild,, A. J. Cann,, G. Stanway,, J. W. Almond,, K. Currey,, and J. V. Maizel, Jr. 1985. Increased neurovirulence associated with a single nucleotide change in a non-coding region of Sabin type 3 poliovaccine genome. Nature 314: 548 550.
13. Gromeier, M.,, L. Alexander,, and E. Wimmer. 1996. Internal ribosomal entry site substitution eliminates neurovirulence in intergeneric poliovirus recombinants. Proc. Natl. Acad. Sci. USA 93: 2370 2375.
14. Hammon, W. M.,, L. L. Coriell,, P. F. Wehrle,, and J. Stokes. 1953. Evaluation of Red Cross gammagloblin as a prophylactic agent for poliomyelitis. F. Final report of results based on clinical diagnoses. JAMA 151: 1272 1285.
15. Kew, O. M.,, R. W. Sutter,, B. K. Nottay,, M. J. Mc-Donough,, D. R. Prévois,, L. Quick,, and M. A. Pallansch. 1998. Prolonged replication of a type 1 vaccine derived poliovirus in an immunodeficient patient. J. Clin. Microbiol. 36: 2893 2899.
16. Kinnunnen, L.,, T. Poyry,, and T. Hovi. 1991. Generation of virus genetic lineages during an outbreak of poliomyelitis. J. Gen. Virol. 72: 2483 2489.
17. Kohara, M.,, S. Abe,, T. Komatsu,, K. Tago,, M. Ariata,, and A. Nomoto. 1988. A recombinant virus between the Sabin 1 and Sabin 3 vaccine strains of poliovirus as a possible candidate for a new type 3 poliovirus live vaccine strain. J. Virol. 62: 2828 2835.
18. Kostrezewski, J.,, A. Kulesza,, and A. Abgarowicz. 1970. The epidemic of type 3 poliomyelitis in Poland in 1968. Epidem. Rev. (Warsaw) 24: 89 103.
19. La Monica, N.,, and V. R. Racaniello. 1989. Difference in replication of attenuated and neurovirulent polioviruses in human neuroblastoma cell line SH-SYSY. J. Virol. 63: 2357 2360.
20. Li, C. P.,, and M. Schaeffer. 1953. Adaptation of type 1 poliovirus to mice. Proc. Soc. Exp. Biol. Med. 82: 477 481.
21. Lipskaya, G. Y.,, A. R. Muzychenko,, O. K. Kutilova,, S. V. Maslona,, M. Equeste,, S. G. Drozdov,, R. Perez-Beroff,, and V. I. Agol. 1991. Frequent isolation of intertypic poliovirus recombinants with serotype 2 specificity from vaccine-associated polio cases. J. Med. Virol. 35: 290 296.
22. Macadam, A. J.,, C. Arnold,, J. Howlett,, A. John,, S. Marsden,, F. Taffs,, P. Reeve,, N. Hamada,, K. Wareham,, J. Almond,, N. Cammack,, and P. D. Minor. 1989. Reversion of the attenuated and temperature-sensitive phenotypes of the Sabin type 3 strain of poliovirus in vaccinees. Virology 172: 408 414.
23. Macadam, A. J.,, R. Pollard,, G. Ferguson,, R. Skuce,, D. Wood,, J. W. Almond,, and P. D. Minor. 1993. Genetic basis of attenuation of the Sabin type 2 vaccine strain of poliovirus in primates. Virology 192: 18 26.
24. Macadam, A. J.,, D. M. Stone,, J. W. Almond,, and P. D. Minor. 1994. Role for poliovirus protease 2A in cap independent translation. EMBO J. 13: 924 927.
25. Martin, J.,, G. Dunn,, R. Hull,, V. Patel,, and P. D. Minor. 2000. Evolution of the Sabin strain of type 3 poliovirus in an immunodeficient patient during the entire 637-day period of virus excretion. J. Virol. 74: 3001 3010.
26. McGoldrich, A.,, A. J. Macadam,, G. Dunn,, A. Rowe,, J. Burlison,, P. D. Minor,, J. Meredith,, D. J. Evans,, and J. W. Almond. 1995. Role of mutations G-480 and C-6203 in the attenuation phenotype of Sabin type 1 poliovirus. J. Virol. 69: 7601 7605.
27. Minor, P. D. 1990. Antigenic structure of picornaviruses. Curr. Top. Microbiol. Immunol. 161: 121 154.
28. Minor, P. D. 1992. The molecular biology of poliovaccines. J. Gen. Virol. 73: 3065 3077.
29. Minor, P. D.,, G. Dunn,, D. M. A. Evans,, D. I. Magrath,, A. John,, J. Howlett,, A. Phillips,, G. Westrop,, K. Wareham,, J. W. Almond,, and J. M. Hogle. 1989. The temperature sensitivity of the Sabin type 3 vaccine strain of poliovirus: molecular and structural effects of a mutation in the capsid protein VP3. J. Gen. Virol. 70: 1117 1123.
30. Minor, P. D.,, M. Ferguson,, A. Phillips,, D. I. Magrath,, A. Huovilainen,, and T. Hovi. 1987. Conservation in vivo of protease cleavage sites in antigenic sites of polio-virus. J. Gen. Virol. 68: 1857 1865.
31. Minor, P. D.,, A. John,, M. Ferguson,, and J. P. Icenogle. 1986. Antigenic and molecular evolution of the vaccine strain of type 3 poliovirus during the period of excretion by a primary vaccinée. J. Gen. Virol. 67: 693 706.
32. Nkowane, B. U.,, S. G. Wassilak,, W. A. Oversteen,, K. J. Bart,, L. B. Schonberger,, A. R. Hinman,, and O. M. Kew. 1987. Vaccine associated paralytic poliomyelitis in the United States: 1973 through 1984. JAMA 257: 1385 1390.
33. Omata, T.,, M. Kohara,, S. Kuge,, T. Komatsu,, S. Abe,, B. L. Semler,, A. Kameda,, H. Ithoh,, M. Arita,, E. Wimmer,, and A. Nomoto. 1986. Genetic analysis of the attenuation phenotype of poliovirus type 1. J. Virol. 58: 348 358.
34.. Pilipenko, E. V.,, V. Blinov,, L. I. Romanova,, A. N. Sinyakov,, S. V. Maslova,, and V. I. Agol. 1989. Conserved structural domains in the 5' untranslated region of picornaviral genomes. An analysis of the segment controlling translation and neurovirulence. Virology 168: 201 209.
35. Ren, R.,, E. G. Moss,, and V. R. Racaniello. 1991. Identification of two determinants that attenuate vaccine-related type 2 poliovirus. J. Virol. 65: 1377 1382.
36. Rezapkin, G. V.,, L. Fan,, D. M. Asher,, M. R. Fibi,, E. M. Dragunsky,, and K. M. Chumakov. 1999. Mutations in Sabin 2 strain of poliovirus and stability of attenuation phenotype. Virology 258: 152 160.
37. Rowe, A.,, G. L. Ferguson,, P. D. Minor,, and A. J. Macadam. 2000. Coding changes in the poliovirus protease 2A compensate for 5'NCR domain V disruptions in a cell-specific manner. Virology 269: 284 293.
38. Sabin, A. B. 1955. Characteristics and genetic potentialities of experimentally produced and naturally occurring variants of poliomyelitis virus. Ann. N. Y. Acad. Sci. 61: 924 938.
39. Sabin, A. B.,, and L. R. Boulger. 1973. History of Sabin attenuated poliovirus oral live vaccines. J. Biol. Stand. 1: 115 118.
40. Savilahti, E.,, T. Klemola,, B. Carlsson,, L. Mellander,, M. Stenvik,, and T. Hovi. 1988. Inadequacy of mucosal IgM antibodies in selective IgA deficiency: excretion of attenuated polioviruses is prolonged. J. Clin. Immunol. 8: 89 94.
41. Skinner, M. A.,, V. R. Racaniello,, G. Dunn,, G. Cooper,, P. D. Minor,, and J. W. Almond. 1989. New model for the secondary structure of the 5′ non-coding RNA of poliovirus is supported by biochemical and genetic data that also show that RNA secondary structure is important in neurovirulence. J. Mol. Biol. 207: 379 392.
42. Svitkin, Y.,, N. Cammack,, R. D. Minor,, and J. W. Almond. 1990. Translation deficiency of the Sabin type 3 poliovirus genome: association with an attenuating mutation C472-V. Virology 175: 103 109.
43. Svitkin, Y. V.,, S. V. Maslova,, and V. I. Agol. 1985. The genomes of attenuated and virulence poliovirus strains differ in their in vitro translation efficiencies. Virology 147: 243 252.
44. Svitkin, Y. V.,, T. V. Pestova,, S. V. Maslova,, and V. I. Agol. 1988. Point mutations modify the response of poliovirus RNA to a translation initiation factor: a comparison of neurovirulent and attenuated strains. Virology 166: 394 404.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error