1887

Chapter 4 : Antibody Interactions with Rhinovirus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Antibody Interactions with Rhinovirus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap04-2.gif

Abstract:

This chapter discusses the possible mechanisms of antibody-mediated neutralization of human rhinovirus to better understand how antibodies recognize their targets and neutralize viral infectivity. Understanding these fundamental processes is crucial for future vaccine development and new antibody therapeutics. This is especially true for viruses like the human immunodeficiency virus (HIV), where the more traditional approach of using attenuated viral strains appears to be risky and insufficiently efficacious. The rhinoviruses, of which there are more than 100 serotypes, are major causative agents of the common cold in humans. The major difference in human rhinovirus 14 (HRV14) preparation between two crystals is the polyethylene glycol (PEG) 400 that was added as a cryoprotectant. This strongly suggests that the pocket factor found in the HRV14-Fab complex came from PEG 400. Since there has been no direct evidence that pocket factors are derived from the host cell, these results further suggest that pocket factors found in the other viruses might also be compounds used in purification or crystallization. For poliovirus and rhinovirus, interactions with their receptors appear to be essential for the proper release of the genomic RNA into the cytoplasm of the host cell. When antibody-poliovirus complexes enter cells, the viral RNA is quickly digested. Vaccine design strategies might, therefore, benefit by focusing on the production of high-affinity antibodies rather than on a particular in vitro neutralization property.

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4

Key Concept Ranking

Enzyme-Linked Immunosorbent Assay
0.44592747
0.44592747
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Aggregation and neutralization profiles for several ΝΙm-IΑ antibodies. Panel A shows the neutralization profile of mAb17 and mAb12 at increasing concentrations of antibody. Panel Β shows the amount of virus that is aggregated and pelleted upon addition of antibody. Neither of these strongly neutralizing antibodies precipitates the virions. The aggregation and neutralization profiles of other NIm-IA antibodies are shown in panels C to E. Reprinted from the ( ) with permission from publisher.

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap4
1. Acharya, R.,, E. Fry,, E. Stuart,, G. Fox,, E. Rowlands,, and F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 327: 709 716.
2. Belnap, D. M.,, B. M. McDermott,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97: 73 78.
3. Bizebard, T.,, B. Gigant,, P. Rigolet,, B. Rasmussen,, O. Diat,, P. Bosecke,, S. A. Wharton,, J. J. Skehel,, and M. Knossow. 1995. Structure of influenza virus haemagglutinin complexed with a neutralizing antibody. Nature 376: 92 94.
4. Brioen, P.,, D. Dekegel,, and A. Boeye. 1983. Neutralization of poliovirus by antibody-mediated polymerization. Virology 127: 463 468.
5. Brioen, P.,, B. Rombaut,, and A. Boeye. 1985. Hit-and-run neutralization of poliovirus. J. Gen. Virol. 66: 2495 2499.
6. Brioen, P.,, A. A. M. Thomas,, and A. Boeye. 1985. Lack of quantitative correlation between the neutralization of poliovirus and the antibody-mediated pI shift of the virions. J. Gen. Virol. 66: 609 613.
7. Burnet, F. M.,, E. V. Keogh,, and D. Lush. 1937. The immunological reactions of the filterable viruses. Aust. J. Exp. Biol. Med. Sci. 15: 227 368.
7a. Burton, D. R.,, E. O. Saphire,, and P. W. H. I. Parren,. 2001. A model for neutralization of viruses based on antibody coating of the virion surface, p. 109 143. In D. R. Burton (ed.), Current Topics in Microbiology and Immunology. Springer-Verlag, New York, N.Y.
8. Burton, D. R.,, R. A. Williamson,, and P. W. Parren. 2000. Antibody and virus: binding and neutralization. Virology 270: 1 3.
9. Che, Z.,, N. H. Olson,, D. Leippe,, W.-M. Lee,, A. Mosser,, R. R. Rueckert,, T. S. Baker,, and T. J. Smith. 1998. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryo-electron microscopy and X-ray crystallography of virus-Fab complexes. J. Virol. 72: 4610 4622.
10. Colman, P. M. 1997. Virus versus antibody. Structure 5: 591 593.
11. Colman, P. M.,, J. N. Varghese,, and W. G. Laver. 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature (London) 303: 41 44.
12. Colonno, R. J.,, P. L. Callahan,, D. M. Leippe,, and R. R. Rueckert. 1989. Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. J. Virol. 63: 36 42.
13. Colonno, R. J.,, J. H. Condra,, S. Mizutani,, P. L. Callahan,, M. E. Davies,, and M. A. Murcko. 1988. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc. Natl. Acad. Sci. USA 85: 5449 5453.
14. Delaet, I.,, and A. Boeye. 1993. Monoclonal antibodies that disrupt poliovirus only at fever temperatures. J. Virol. 67: 5299 5302.
15. Diez, J.,, M. Davila,, C. Escarmis,, M. G. Mateu,, J. Dominguez,, J. J. Perez,, E. Giralt,, J. A. Melero,, and E. Domingo. 1990. Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. J. Virol. 64: 5519 5528.
16. Dulbecco, R.,, M. Vogt,, and A. G. R. Strickland. 1956. A study of the basic aspects of neutralization of two animal viruses, western equine encephalitis and poliomyelitis virus. Virology 2: 162 205.
17. Emini, E. A.,, P. Ostapchuk,, and E. Wimmer. 1983. Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. J. Virol. 48: 547 550.
18. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. I. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. Q. King,, and D. I. Stuart. 1999. The structure and function of a foot-and-mouth disease virus—oligosaccharide receptor complex. EMBO J. 18: 543 554.
19. Harber, J.,, G. Bernhardt,, H. H. Lu,, J. Y. Sgro,, and E. Wimmer. 1995. Canyon rim residues, including antigenic determinants, modulate serotype-specific binding of polioviruses to mutants of the poliovirus receptor. Virology 214: 559 570.
20. Heinz, B. A.,, R. R. Rueckert,, D. A. Shepard,, F. J. Dutko,, M. A. McKinlay,, M. Francher,, M. G. Rossmann,, J. Badger,, and T. J. Smith. 1989. Genetic and molecular analysis of spontaneous mutants of human rhinovirus 14 resistant to an antiviral compound. J. Virol. 63: 2476 2485.
21. Hewat, E. A.,, and D. Blaas. 1996. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 15: 1515 1523.
22. Hewat, E. A.,, N. Verdaguer,, I. Fita,, W. Blakemore,, S. Brookes,, A. King,, J. Newman,, E. Domingo,, M. G. Mateau,, and D. I. Stuart. 1997. Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J. 16: 1492 1500.
23. Icenogle, J.,, H. Shiwen,, G. Duke,, S. Gilbert,, R. Rueckert,, and J. Anderegg. 1983. Neutralization of poliovirus by a monoclonal antibody, kinetics and stoichiometry. Virology 127: 412 425.
24. Jackson, T.,, F. M. Ellard,, R. Abu-Ghazaleh,, S. M. Brookes,, W. E. Blakemore,, A. H. Corteyn,, D. I. Stuart,, J. W. I. Newman,, and A. M. Q. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70: 5282 5287.
25. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 18: 6249 6259.
26. Lee, W. M. 1992. Human rhinovirus 14: synthesis and characterization of a molecular cDNA clone which makes highly infectious transcripts. Ph.D. Thesis. Department of Biochemistry, University of Wisconsin, Madison.
27. Leippe, D. M. 1991. Stoichiometry of Picornavirus neutralization by murine monoclonal antibodies. Ph.D. thesis. University of Wisconsin, Madison.
28. Lewis, J. K.,, B. Bothner,, T. J. Smith,, and G. Siuzdak. 1998. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. USA 95: 6774 6778.
29. Li, Q.,, A. G. Yafal,, Y. M. H. Lee,, J. Hogle,, and M. Chow. 1994. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of the sequences at physiological temperatures. J. Virol. 68: 3965 3970.
30. Mandel, B. 1967. The interaction of neutralized poliovirus with HeLa cells. II. Elution, penetration, uncoating. Virology 31: 247 259.
31. Mandel, B. 1976. Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology 69: 500 510.
32. Mason, P. W.,, B. Baxt,, F. Brown,, J. Harber,, A. Murdin,, and E. Wimmer. 1993. Antibody-complexed foot-and-mouth disease vims, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192: 568 577.
33. Matthews, B. W. 1993. Structural and genetic analysis of protein folding and stability. Curr. Opin. Struct. Biol. 3: 589 593.
34. McCray, J.,, and G. Werner. 1987. Different rhinovirus serotypes neutralized by antipeptide antibodies. Nature 329: 736 738.
35. McCullough, K. C.,, F. De Simone,, E. Brocchi,, L. Capucci,, J. R. Crowther,, and U. Kihm. 1992. Protective immune response against foot-and-mouth disease. J. Virol. 66: 1835 1840.
36. Meyer, W. J.,, S. Gidwitz,, V. K. Ayers,, R. J. Schoepp,, and R. E. Johnston. 1992. Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH. J. Virol. 66: 3504 3513.
37. Mosser, A. G.,, D. M. Leippe,, and R. R. Rueckert,. 1989. Neutralization of picomaviruses: support for the pentamer bridging hypothesis, p. 155 167. In B. L. Semler, and E. Ehrenfeld (ed.), Molecular Aspects of Picornavirus Infection and Detection. American Society for Microbiology, Washington, D.C..
38. Mosser, A. G.,, and R. R. Rueckert. 1993. WIN 51711-dependent mutants of poliovirus type 3: evidence that virions decay after release from cells unless drug is present. J. Virol. 67: 1246 1254.
39. Mosser, A. G.,, J. Y. Sgro,, and R. R. Rueckert. 1994. Distribution of drug resistance mutations in type 3 poliovirus identifies three regions involved in uncoating functions. J. Virol. 68: 8193 8201.
40. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovims complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90: 507 511.
41. Parren, P. W.,, I. Mondor,, D. Naniche,, H. J. Ditzel,, P. J. Masse,, D. R. Burton,, and Q. J. Sattentau. 1998. Neutralization of human immunodeficiency vims type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol. 72: 3512 3519.
42.[See reference 7a.].
43. Porta, C.,, R. H. Cheng,, Z. Chen,, T. S. Baker,, and J. E. Johnson. 1994. Direct imaging of interactions between an icosahedral vims and conjugate Fab fragments by cryoelectron microscopy and X-ray crystallography. Virology 204: 777 788.
44. Rieder, E.,, B. Baxt,, and P. W. Mason. 1994. Animal-derived antigenic variants of foot-and-mouth disease virus type A12 have low affinity for cells in culture. J. Virol. 68: 5296 5299.
45. Roivainen, M.,, L. Piirainen,, T. Rysa,, A. Narvanen,, and T. Hovi. 1993. An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195: 762 765.
46. Rossmann, M. G. 1989. The canyon hypothesis. J. Biol. Chem. 264: 14587 14590.
47. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold vims and functional relationship to other picomaviruses. Nature (London) 317: 145 153.
48. Rueckert, R. R., 1996. Picornaviridae and their replication, p. 609 654. In B. N. Fields, and D. M. Knipe (ed.), Fundamental Virology. Raven Press, New York, N.Y..
49. Schmaljohn, A. L.,, E. D. Johnson,, J. M. Dalrymple,, and G. A. Cole. 1982. Nonneutralizing monoclonal antibodies can prevent lethal alphavims encephalitis. Nature 297: 70 72.
50. Schulman, J. L., 1975. Immunology of influenza, p. 373 393. In E. D. Kilbourne (ed.), The Influenza Viruses and Influenza. Academic Press, New York, N.Y..
51. Sherry, B.,, A. G. Mosser,, R. J. Colonno,, and R. R. Rueckert. 1986. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold Picornavirus, human rhinovirus 14. J. Virol. 57: 246 257.
52. Sherry, B.,, and R. R. Rueckert. 1985. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53: 137 143.
53. Shoichet, B. K.,, W. A. Baase,, R. Kuroki,, and B. W. Matthews. 1995. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92: 452 456.
54. Smith, T. J.,, E. S. Chase,, T. J. Schmidt,, N. H. Olson,, and T. S. Baker. 1996. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature (London) 383: 350 354.
55. Smith, T. J.,, R. H. Cheng,, N. H. Olson,, P. Peterson,, E. Chase,, R. J. Kuhn,, and T. S. Baker. 1995. Putative receptor binding sites on alphaviruses as visualized by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 92: 10648 10652.
56. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, E. S. Chase,, and T. S. Baker. 1993. Structure of a human rhinovirus-bivalently bound antibody complex: implications for virus neutralization and antibody flexibility. Proc. Natl. Acad. Sci. USA 90: 7015 7018.
57. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, H. Liu,, E. Chase,, W. M. Lee,, D. M. Leippe,, A. G. Mosser,, R. R. Rueckert,, and T. S. Baker. 1993. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J. Virol. 67: 1148 1158.
58. Thomas, A. A. M.,, P. Brioen,, and A. Boeyé. 1985. A monoclonal antibody that neutralizes poliovirus by cross-linking virions. J. Virol. 54: 7 13.
59. Thouvenin, E.,, S. Laurent,, M. F. Madelaine,, D. Rasschaert,, J. F. Vautherot,, and E. A. Hewat. 1997. Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. J. Mol. Biol. 270: 238 246.
60. Verdaguer, N.,, M. G. Mateu,, D. Andreu,, E. Giralt,, E. Domingo,, and I. Fita. 1995. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 14: 1690 1696.
61. Wade, R. H.,, J. C. Taveau,, and J. N. Lamy. 1989. Concerning the axial rotational flexiblity of the Fab regions of immunoglobulin G. J. Mol. Biol. 206: 349 356.
62. Wang, K.-S.,, A. L. Schmaljohn,, R. J. Kuhn,, and J. H. Strauss. 1991. Antiidiotypic antibodies as probes for the Sindbis virus receptor. Virology 181: 694 702.
63. Wang, R.,, C. Porta,, Z. Chen,, T. S. Baker,, and J. E. Johnson. 1992. Identification of a Fab interaction site (footprint) on an icosahedral virus by cryo-electron microscopy and X-ray crystallography. Nature 355: 275 278.
64. Wetz, K.,, P. Willingmann,, H. Zeichhardt,, and K. O. Habermehl. 1986. Neutralization of poliovirus by polyclonal antibodies requires binding of a single IgG molecule per virion. Arch. Virol. 91: 207 220.
65. Wien, M. W.,, S. Curry,, D. J. Filman,, and J. M. Hogle. 1997. Structural studies of poliovirus mutants that overcome receptor defects. Nat. Struct. Biol. 4: 666 674.
66. Wien, M. W.,, D. J. Filman,, E. A. Stura,, S. Guillot,, F. Delpeyroux,, R. Crainic,, and J. M. Hogle. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat. Struct. Biol. 2: 232 243.
67. Wikoff, W. R.,, G. Wang,, C. R. Parrish,, R. H. Cheng,, M. L. Strassheim,, T. S. Baker,, and M. G. Rossmann. 1994. The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure 2: 595 607.
68. Yongning, H.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97: 79 84.

Tables

Generic image for table
Table 1

Residual infectivity (% of residual plaques) of HRV14 wild-type and mutant viruses after treatment with NIm-IA antibodies

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4
Generic image for table
Table 2

Fab17-HRV14 contacts

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error