Chapter 4 : Antibody Interactions with Rhinovirus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Antibody Interactions with Rhinovirus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap04-2.gif


This chapter discusses the possible mechanisms of antibody-mediated neutralization of human rhinovirus to better understand how antibodies recognize their targets and neutralize viral infectivity. Understanding these fundamental processes is crucial for future vaccine development and new antibody therapeutics. This is especially true for viruses like the human immunodeficiency virus (HIV), where the more traditional approach of using attenuated viral strains appears to be risky and insufficiently efficacious. The rhinoviruses, of which there are more than 100 serotypes, are major causative agents of the common cold in humans. The major difference in human rhinovirus 14 (HRV14) preparation between two crystals is the polyethylene glycol (PEG) 400 that was added as a cryoprotectant. This strongly suggests that the pocket factor found in the HRV14-Fab complex came from PEG 400. Since there has been no direct evidence that pocket factors are derived from the host cell, these results further suggest that pocket factors found in the other viruses might also be compounds used in purification or crystallization. For poliovirus and rhinovirus, interactions with their receptors appear to be essential for the proper release of the genomic RNA into the cytoplasm of the host cell. When antibody-poliovirus complexes enter cells, the viral RNA is quickly digested. Vaccine design strategies might, therefore, benefit by focusing on the production of high-affinity antibodies rather than on a particular in vitro neutralization property.

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4

Key Concept Ranking

Enzyme-Linked Immunosorbent Assay
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Aggregation and neutralization profiles for several ΝΙm-IΑ antibodies. Panel A shows the neutralization profile of mAb17 and mAb12 at increasing concentrations of antibody. Panel Β shows the amount of virus that is aggregated and pelleted upon addition of antibody. Neither of these strongly neutralizing antibodies precipitates the virions. The aggregation and neutralization profiles of other NIm-IA antibodies are shown in panels C to E. Reprinted from the ( ) with permission from publisher.

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Acharya, R.,, E. Fry,, E. Stuart,, G. Fox,, E. Rowlands,, and F. Brown. 1989. The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution. Nature 327:709716.
2. Belnap, D. M.,, B. M. McDermott,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:7378.
3. Bizebard, T.,, B. Gigant,, P. Rigolet,, B. Rasmussen,, O. Diat,, P. Bosecke,, S. A. Wharton,, J. J. Skehel,, and M. Knossow. 1995. Structure of influenza virus haemagglutinin complexed with a neutralizing antibody. Nature 376: 9294.
4. Brioen, P.,, D. Dekegel,, and A. Boeye. 1983. Neutralization of poliovirus by antibody-mediated polymerization. Virology 127:463468.
5. Brioen, P.,, B. Rombaut,, and A. Boeye. 1985. Hit-and-run neutralization of poliovirus. J. Gen. Virol. 66:24952499.
6. Brioen, P.,, A. A. M. Thomas,, and A. Boeye. 1985. Lack of quantitative correlation between the neutralization of poliovirus and the antibody-mediated pI shift of the virions. J. Gen. Virol. 66:609613.
7. Burnet, F. M.,, E. V. Keogh,, and D. Lush. 1937. The immunological reactions of the filterable viruses. Aust. J. Exp. Biol. Med. Sci. 15:227368.
7a. Burton, D. R.,, E. O. Saphire,, and P. W. H. I. Parren,.2001. A model for neutralization of viruses based on antibody coating of the virion surface, p. 109143.In D. R. Burton (ed.), Current Topics in Microbiology and Immunology. Springer-Verlag, New York, N.Y.
8. Burton, D. R.,, R. A. Williamson,, and P. W. Parren. 2000. Antibody and virus: binding and neutralization. Virology 270:13.
9. Che, Z.,, N. H. Olson,, D. Leippe,, W.-M. Lee,, A. Mosser,, R. R. Rueckert,, T. S. Baker,, and T. J. Smith. 1998. Antibody-mediated neutralization of human rhinovirus 14 explored by means of cryo-electron microscopy and X-ray crystallography of virus-Fab complexes. J. Virol. 72:46104622.
10. Colman, P. M. 1997. Virus versus antibody. Structure 5: 591593.
11. Colman, P. M.,, J. N. Varghese,, and W. G. Laver. 1983. Structure of the catalytic and antigenic sites in influenza virus neuraminidase. Nature (London) 303:4144.
12. Colonno, R. J.,, P. L. Callahan,, D. M. Leippe,, and R. R. Rueckert. 1989. Inhibition of rhinovirus attachment by neutralizing monoclonal antibodies and their Fab fragments. J. Virol. 63:3642.
13. Colonno, R. J.,, J. H. Condra,, S. Mizutani,, P. L. Callahan,, M. E. Davies,, and M. A. Murcko. 1988. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc. Natl. Acad. Sci. USA 85:54495453.
14. Delaet, I.,, and A. Boeye. 1993. Monoclonal antibodies that disrupt poliovirus only at fever temperatures. J. Virol. 67:52995302.
15. Diez, J.,, M. Davila,, C. Escarmis,, M. G. Mateu,, J. Dominguez,, J. J. Perez,, E. Giralt,, J. A. Melero,, and E. Domingo. 1990. Unique amino acid substitutions in the capsid proteins of foot-and-mouth disease virus from a persistent infection in cell culture. J. Virol. 64:55195528.
16. Dulbecco, R.,, M. Vogt,, and A. G. R. Strickland. 1956. A study of the basic aspects of neutralization of two animal viruses, western equine encephalitis and poliomyelitis virus. Virology 2:162205.
17. Emini, E. A.,, P. Ostapchuk,, and E. Wimmer. 1983. Bivalent attachment of antibody onto poliovirus leads to conformational alteration and neutralization. J. Virol. 48: 547550.
18. Fry, E. E.,, S. M. Lea,, T. Jackson,, J. W. I. Newman,, F. M. Ellard,, W. E. Blakemore,, R. Abu-Ghazaleh,, A. Samuel,, A. M. Q. King,, and D. I. Stuart. 1999. The structure and function of a foot-and-mouth disease virus—oligosaccharide receptor complex. EMBO J. 18:543554.
19. Harber, J.,, G. Bernhardt,, H. H. Lu,, J. Y. Sgro,, and E. Wimmer. 1995. Canyon rim residues, including antigenic determinants, modulate serotype-specific binding of polioviruses to mutants of the poliovirus receptor. Virology 214: 559570.
20. Heinz, B. A.,, R. R. Rueckert,, D. A. Shepard,, F. J. Dutko,, M. A. McKinlay,, M. Francher,, M. G. Rossmann,, J. Badger,, and T. J. Smith. 1989. Genetic and molecular analysis of spontaneous mutants of human rhinovirus 14 resistant to an antiviral compound. J. Virol. 63:24762485.
21. Hewat, E. A.,, and D. Blaas. 1996. Structure of a neutralizing antibody bound bivalently to human rhinovirus 2. EMBO J. 15:15151523.
22. Hewat, E. A.,, N. Verdaguer,, I. Fita,, W. Blakemore,, S. Brookes,, A. King,, J. Newman,, E. Domingo,, M. G. Mateau,, and D. I. Stuart. 1997. Structure of the complex of an Fab fragment of a neutralizing antibody with foot-and-mouth disease virus: positioning of a highly mobile antigenic loop. EMBO J. 16:14921500.
23. Icenogle, J.,, H. Shiwen,, G. Duke,, S. Gilbert,, R. Rueckert,, and J. Anderegg. 1983. Neutralization of poliovirus by a monoclonal antibody, kinetics and stoichiometry. Virology 127:412425.
24. Jackson, T.,, F. M. Ellard,, R. Abu-Ghazaleh,, S. M. Brookes,, W. E. Blakemore,, A. H. Corteyn,, D. I. Stuart,, J. W. I. Newman,, and A. M. Q. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70:52825287.
25. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 18:62496259.
26. Lee, W. M. 1992. Human rhinovirus 14: synthesis and characterization of a molecular cDNA clone which makes highly infectious transcripts. Ph.D. Thesis. Department of Biochemistry, University of Wisconsin, Madison.
27. Leippe, D. M. 1991. Stoichiometry of Picornavirus neutralization by murine monoclonal antibodies. Ph.D. thesis. University of Wisconsin, Madison.
28. Lewis, J. K.,, B. Bothner,, T. J. Smith,, and G. Siuzdak. 1998. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. USA 95:67746778.
29. Li, Q.,, A. G. Yafal,, Y. M. H. Lee,, J. Hogle,, and M. Chow. 1994. Poliovirus neutralization by antibodies to internal epitopes of VP4 and VP1 results from reversible exposure of the sequences at physiological temperatures. J. Virol. 68:39653970.
30. Mandel, B. 1967. The interaction of neutralized poliovirus with HeLa cells. II. Elution, penetration, uncoating. Virology 31:247259.
31. Mandel, B. 1976. Neutralization of poliovirus: a hypothesis to explain the mechanism and the one-hit character of the neutralization reaction. Virology 69:500510.
32. Mason, P. W.,, B. Baxt,, F. Brown,, J. Harber,, A. Murdin,, and E. Wimmer. 1993. Antibody-complexed foot-and-mouth disease vims, but not poliovirus, can infect normally insusceptible cells via the Fc receptor. Virology 192: 568577.
33. Matthews, B. W. 1993. Structural and genetic analysis of protein folding and stability. Curr. Opin. Struct. Biol. 3: 589593.
34. McCray, J.,, and G. Werner. 1987. Different rhinovirus serotypes neutralized by antipeptide antibodies. Nature 329:736738.
35. McCullough, K. C.,, F. De Simone,, E. Brocchi,, L. Capucci,, J. R. Crowther,, and U. Kihm. 1992. Protective immune response against foot-and-mouth disease. J. Virol. 66:18351840.
36. Meyer, W. J.,, S. Gidwitz,, V. K. Ayers,, R. J. Schoepp,, and R. E. Johnston. 1992. Conformational alteration of Sindbis virion glycoproteins induced by heat, reducing agents, or low pH. J. Virol. 66:35043513.
37. Mosser, A. G.,, D. M. Leippe,, and R. R. Rueckert,. 1989. Neutralization of picomaviruses: support for the pentamer bridging hypothesis, p. 155167. In B. L. Semler, and E. Ehrenfeld (ed.), Molecular Aspects of Picornavirus Infection and Detection. American Society for Microbiology, Washington, D.C..
38. Mosser, A. G.,, and R. R. Rueckert. 1993. WIN 51711-dependent mutants of poliovirus type 3: evidence that virions decay after release from cells unless drug is present. J. Virol. 67:12461254.
39. Mosser, A. G.,, J. Y. Sgro,, and R. R. Rueckert. 1994. Distribution of drug resistance mutations in type 3 poliovirus identifies three regions involved in uncoating functions. J. Virol. 68:81938201.
40. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovims complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90:507511.
41. Parren, P. W.,, I. Mondor,, D. Naniche,, H. J. Ditzel,, P. J. Masse,, D. R. Burton,, and Q. J. Sattentau. 1998. Neutralization of human immunodeficiency vims type 1 by antibody to gp120 is determined primarily by occupancy of sites on the virion irrespective of epitope specificity. J. Virol. 72:35123519.
42.[See reference 7a.].
43. Porta, C.,, R. H. Cheng,, Z. Chen,, T. S. Baker,, and J. E. Johnson. 1994. Direct imaging of interactions between an icosahedral vims and conjugate Fab fragments by cryoelectron microscopy and X-ray crystallography. Virology 204: 777788.
44. Rieder, E.,, B. Baxt,, and P. W. Mason. 1994. Animal-derived antigenic variants of foot-and-mouth disease virus type A12 have low affinity for cells in culture. J. Virol. 68:52965299.
45. Roivainen, M.,, L. Piirainen,, T. Rysa,, A. Narvanen,, and T. Hovi. 1993. An immunodominant N-terminal region of VP1 protein of poliovirion that is buried in crystal structure can be exposed in solution. Virology 195:762765.
46. Rossmann, M. G. 1989. The canyon hypothesis. J. Biol. Chem. 264:1458714590.
47. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold vims and functional relationship to other picomaviruses. Nature (London) 317:145153.
48. Rueckert, R. R., 1996. Picornaviridae and their replication, p. 609654. In B. N. Fields, and D. M. Knipe (ed.), Fundamental Virology. Raven Press, New York, N.Y..
49. Schmaljohn, A. L.,, E. D. Johnson,, J. M. Dalrymple,, and G. A. Cole. 1982. Nonneutralizing monoclonal antibodies can prevent lethal alphavims encephalitis. Nature 297:7072.
50. Schulman, J. L., 1975. Immunology of influenza, p. 373393. In E. D. Kilbourne (ed.), The Influenza Viruses and Influenza. Academic Press, New York, N.Y..
51. Sherry, B.,, A. G. Mosser,, R. J. Colonno,, and R. R. Rueckert. 1986. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold Picornavirus, human rhinovirus 14. J. Virol. 57:246257.
52. Sherry, B.,, and R. R. Rueckert. 1985. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53:137143.
53. Shoichet, B. K.,, W. A. Baase,, R. Kuroki,, and B. W. Matthews. 1995. A relationship between protein stability and protein function. Proc. Natl. Acad. Sci. USA 92:452456.
54. Smith, T. J.,, E. S. Chase,, T. J. Schmidt,, N. H. Olson,, and T. S. Baker. 1996. Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon. Nature (London) 383:350354.
55. Smith, T. J.,, R. H. Cheng,, N. H. Olson,, P. Peterson,, E. Chase,, R. J. Kuhn,, and T. S. Baker. 1995. Putative receptor binding sites on alphaviruses as visualized by cryo-electron microscopy. Proc. Natl. Acad. Sci. USA 92: 1064810652.
56. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, E. S. Chase,, and T. S. Baker. 1993. Structure of a human rhinovirus-bivalently bound antibody complex: implications for virus neutralization and antibody flexibility. Proc. Natl. Acad. Sci. USA 90:70157018.
57. Smith, T. J.,, N. H. Olson,, R. H. Cheng,, H. Liu,, E. Chase,, W. M. Lee,, D. M. Leippe,, A. G. Mosser,, R. R. Rueckert,, and T. S. Baker. 1993. Structure of human rhinovirus complexed with Fab fragments from a neutralizing antibody. J. Virol. 67:11481158.
58. Thomas, A. A. M.,, P. Brioen,, and A. Boeyé. 1985. A monoclonal antibody that neutralizes poliovirus by cross-linking virions. J. Virol. 54:713.
59. Thouvenin, E.,, S. Laurent,, M. F. Madelaine,, D. Rasschaert,, J. F. Vautherot,, and E. A. Hewat. 1997. Bivalent binding of a neutralising antibody to a calicivirus involves the torsional flexibility of the antibody hinge. J. Mol. Biol. 270:238246.
60. Verdaguer, N.,, M. G. Mateu,, D. Andreu,, E. Giralt,, E. Domingo,, and I. Fita. 1995. Structure of the major antigenic loop of foot-and-mouth disease virus complexed with a neutralizing antibody: direct involvement of the Arg-Gly-Asp motif in the interaction. EMBO J. 14: 16901696.
61. Wade, R. H.,, J. C. Taveau,, and J. N. Lamy. 1989. Concerning the axial rotational flexiblity of the Fab regions of immunoglobulin G. J. Mol. Biol. 206:349356.
62. Wang, K.-S.,, A. L. Schmaljohn,, R. J. Kuhn,, and J. H. Strauss. 1991. Antiidiotypic antibodies as probes for the Sindbis virus receptor. Virology 181:694702.
63. Wang, R.,, C. Porta,, Z. Chen,, T. S. Baker,, and J. E. Johnson. 1992. Identification of a Fab interaction site (footprint) on an icosahedral virus by cryo-electron microscopy and X-ray crystallography. Nature 355:275278.
64. Wetz, K.,, P. Willingmann,, H. Zeichhardt,, and K. O. Habermehl. 1986. Neutralization of poliovirus by polyclonal antibodies requires binding of a single IgG molecule per virion. Arch. Virol. 91:207220.
65. Wien, M. W.,, S. Curry,, D. J. Filman,, and J. M. Hogle. 1997. Structural studies of poliovirus mutants that overcome receptor defects. Nat. Struct. Biol. 4:666674.
66. Wien, M. W.,, D. J. Filman,, E. A. Stura,, S. Guillot,, F. Delpeyroux,, R. Crainic,, and J. M. Hogle. 1995. Structure of the complex between the Fab fragment of a neutralizing antibody for type 1 poliovirus and its viral epitope. Nat. Struct. Biol. 2:232243.
67. Wikoff, W. R.,, G. Wang,, C. R. Parrish,, R. H. Cheng,, M. L. Strassheim,, T. S. Baker,, and M. G. Rossmann. 1994. The structure of a neutralized virus: canine parvovirus complexed with neutralizing antibody fragment. Structure 2:595607.
68. Yongning, H.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97: 7984.


Generic image for table
Table 1

Residual infectivity (% of residual plaques) of HRV14 wild-type and mutant viruses after treatment with NIm-IA antibodies

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4
Generic image for table
Table 2

Fab17-HRV14 contacts

Citation: Smith T. 2002. Antibody Interactions with Rhinovirus, p 39-49. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error