1887

Chapter 6 : Cellular Receptors of Picornaviruses: an Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Cellular Receptors of Picornaviruses: an Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap06-2.gif

Abstract:

The most surprising result of studies focused on early events in animal virus infection is the diversity of cell surface proteins serving as receptors. Two viruses belonging to two entirely different families, say, the small RNA coxsackievirus B and the large DNA adenovirus 2, have chosen the same small cell surface protein as receptor (CAR). Perhaps assembled the most diverse menu of cellular receptors. Most receptors belong to the immunoglobulin (Ig) superfamily or the integrin receptor family. Considering the many unresolved puzzles concerning enterovirus entry, and the steady expansion of picornavirus genera, the number of picornavirus receptors can increase significantly in the future. The cellular function of integrins includes binding extracellular matrix proteins, cell-cell interactions, and signal transduction. Decay accelerating factor (DAF) (CD55) is a member of the regulator of the complement activity protein family and protects the cell from autologous lysis. Heparan sulfate has been implicated in receptor function for certain strains of foot-and-mouth disease virus (FMDV) and clinical isolates of echovirus 6. The difference in receptor utilization not only yields host range phenotypes in vitro, but it has also a profound effect on pathogenesis in animals. The polypeptide chain of decay-accelerating factor (DAF) consists of four short consensus sequences (SCRs), some of which are involved in virus binding. Pathogenesis is determined by tissue tropism, spread of the virus to target tissues, and virulence.

Citation: Rieder E, Wimmer E. 2002. Cellular Receptors of Picornaviruses: an Overview, p 61-70. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch6

Key Concept Ranking

Foot-and-mouth disease virus
0.4879586
Major Histocompatibility Complex
0.46235743
Sodium Dodecyl Sulfate
0.4515208
MHC Class I
0.44067052
0.4879586
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Classes of molecules chat serve as cell receptor for picornaviruses. The structure shown for the integrins family is a generic representation. Abbreviations: PVR, poliovirus receptor; CAR, coxsackievirus-adenovirus receptor; DAF, decay-accelerating factor; GPI, glycosylphosphatidylinositol; HAVCR-1, hepatitis A virus cellular receptor type 1; ICAM-1, intercellular adhesion molecule type 1; VCAM-1, vascular cell adhesion molecule type 1; VLDL-R, very-low-density lipoprotein receptor. Other molecules of the LDL receptor gene superfamily also serve as receptor for minor group human rhinoviruses (see chapter 9). Adapted from Wimmer ( ). Numbers indicate domains implicated in virus binding.

Citation: Rieder E, Wimmer E. 2002. Cellular Receptors of Picornaviruses: an Overview, p 61-70. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap6
1. Agrez, M. V.,, D. R. Shafren,, X. Gu,, K. Cox,, D. Sheppard,, and R. D. Barry. 1997. Integrin alpha v beta 6 enhances coxsackievirus Bl lytic infection of human colon cancer cells. Virology 239:7177.
2. Allaway, G. P.,, and A. T. Burness. 1986. Site of attachment of encephalomyocarditis virus on human erythrocytes.;. Virol. 59:768770.
3. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Natl. Acad. Sci. USA 97:7378.
4. Bergelson, J. M.,, J. A. Cunningham,, G. Droguett,, E. A. Kurt-Jones,, A. Krithivas,, J. S. Hong,, M. S. Horwitz,, R. L. Crowell,, and R. W. Finberg. 1997. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:13201323.
5. Bergelson, J. M.,, M. Chan,, K. R. Solomon,, N. F. St. John,, H. Lin,, and R. W. Finberg. 1994. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Natl. Acad. Sci. USA 91: 62456249.
6. Bergelson, J. M.,, J. F. Modlin,, W. Wieland-Alter,, J. A. Cunningham,, R. L. Crowell,, and R. W. Finberg. 1997. Clinical coxsackievirus B isolates differ from laboratory strains in their interaction with two cell surface receptors. J. Infect. Dis. 175:697700.
7. Bergelson, J. M.,, J. G. Mohanty,, R. L. Crowell,, N. F. St. John,, D. M. Lublin,, and R. W. Finberg. 1995. Coxsackievirus B3 adapted to growth in RD cells binds to decay-accelerating factor (CD55)./. Virol 69:19031906.
8. Bergelson, J. M.,, M. P. Shepley,, B. M. Chan,, M. E. Hemler,, and R. W. Finberg. 1992. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science 255: 17181720.
9. Berinstein, A.,, M. Roivainen,, T. Hovi,, P. W. Mason,, and B. Baxt. 1995. Antibodies to the vitronectin receptor (integrin alpha V beta 3) inhibit binding and infection of foot-and-mouth disease vims to cultured cells. J. Virol. 69: 26642666.
10. Bernhardt, G.,, J. Harber,, A. Zibert,, M. deCrombrugghe,, and E. Wimmer. 1994. The poliovirus receptor: identification of domains and amino acid residues critical for virus binding. Virology 203:344356.
11. Carlos, T. M.,, B. R. Schwartz,, N. L. Kovach,, E. Yee,, M. Rosso,, L. Osborn,, G. Chi-Rosso,, B. Newman,, R. Lobb,, and J. M. Harlan. 1990. Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. Blood 76: 965970.
12. Colonno, R. J. 1986. Cell surface receptors for picornaviruses. Bioessays 5:270274.
13. Crowell, R. L.,, D. L. Krah,, J. Mapoles,, and B. J. Landau. 1983. Methods for assay of cellular receptors for picornaviruses. Methods Enzymol. 96:443452.
14-. Doms, R. W. 2001. Chemokine receptors and HIV entry. AIDS 15(Suppl. 1):S34S35.
15. Duechler, M.,, S. Ketter,, T. Skern,, E. Kuechler,, and D. Blaas. 1993. Rhinoviral receptor discrimination: mutational changes in the canyon regions of human rhinovirus types 2 and 14 indicate a different site of interaction. J. Gen. Virol. 74:22872291.
16. Freistadt, M. S.,, and K. E. Eberle. 1997. CD155 (poliovirus receptor) workshop panel report, p. 10751077. VI International Workshop and Conference on Human Leucocyte Differentiation Antigens. Garland, Cambridge, United Kingdom.
17. Fricks, C. E.,, and J. M. Hogle. 1990. Cell-induced conformational change in poliovirus: externalization of the amino terminus of VP1 is responsible for liposome binding. J. Virol. 64:19341945.
18. Gonzalez-Amaro, R.,, and F. Sanchez-Madrid. 1999. Cell adhesion molecules: selectins and integrins. Crit. Rev. Immunol 19:389429.
19. Goodfellow, J. G.,, R. M. Powell,, T. Ward,, O. B. Spiller,, J. W. Almond,, and D. J. Evans. 2000. Echovirus infection of rhabdomyosarcoma cells is inhibited by antiserum to the complement control protein CD59. J. Gen. Virol. 81(Pt. 5):13931401.
20. Goodfellow, I. G.,, A. B. Sioofy,, R. M. Powell,, and D. J. Evans. 2001. Echoviruses bind heparan sulfate at the cell surface. J. Virol. 75:49184921.
21. Greve, J. M.,, G. Davis,, A. M. Meyer,, C. P. Forte,, S. C. Yost,, C. W. Marlor,, M. E. Kamarck,, and A. McClelland. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839847.
21a.. Gromeier, M.,, S. Lachmann,, M. R. Rosenfeld,, P. H. Gutin,, and E. Wimmer. 2000. Intergenetic poliovirus recombinants for the treatment of malignant glioma. Proc. Natl. Acad. Sci. USA. 97:68036808.
22. Gromeier, M.,, D. Solecki,, D. D. Patel,, and E. Wimmer. 2000. Expression of the human poliovirus receptor/CD155 gene during development of the central nervous system: implications for the pathogenesis of poliomyelitis. Virology 273:248257.
22a.. Gromeier, M.,, E. Wimmer,, and A. E. Gorbalenya,. 1999. Genetics, pathogenesis, and evolution of picornaviruses, p. 287343. In E. Domingo,, R. G. Webster,, and J. J. Holland (ed.), Origin and Evolution of Viruses. Academic Press, Inc., New York, N.Y..
23. He, Y.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Natl. Acad. Sci. USA 97:7984.
24. He, Y.,, P. R. Chipman,, J. Howitt,, C. M. Bator,, M. A. Whitt,, T. S. Baker,, R. J. Kuhn,, C. W. Anderson,, P. Freimuth,, and M. G. Rossmann. 2001. Interaction of coxsackievirus B3 with the full-length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 10:874878.
25. Heim, A.,, C. Brehm,, M. Stille-Siegener,, G. Muller,, S. Hake,, R. Kandolf,, and H. R. Figulla. 1995. Cultured human myocardial fibroblasts of pediatric origin: natural human interferon-alpha is more effective than recombinant interferon-alpha 2a in carrier-state coxsackievirus B3 replication. J. Mai. Cell Cardiol. 27:21992208.
26. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits,, and D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 19:63176325.
27. Hidaka, C.,, E. Milano,, P. L. Leopold,, J. M. Bergelson,, N. R. Hackett,, R. W. Finberg,, T. J. Wickham,, I. Kovesdi,, P. Roelvink,, and R. G. Crystal. 1999. CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts. J. Clin. Invest. 103:579587.
28. Ho, M. 2000. Enterovirus 71: the virus, its infections and outbreaks. J. Microbiol. Immunol. Infect. 33:205216.
29. Hofer, E.,, M. Gruenberger,, H. Kowalski,, H. Machat,, M. Huettinger,, E. Kuechler,, and D. Blass. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. USA 91:18391842.
30. Honda, T.,, H. Saitoh,, M. Masuko,, T. Katagiri-Abe,, K. Tominaga,, J. Kozakai,, K. Kobayashi,, T. Kumanishi,, Y. G. Watanabe,, S. Odani,, and R. Kuwano. 2000. The coxsackievirus-adenovirus receptor protein as a cell adhesion molecule in the developing mouse brain. Brain Res. Mol. Brain Res. 77:1928.
31. Huber, S. A. 1994. VCAM-1 is a receptor for encephalo-myocarditis virus on murine vascular endothelial cells. J. Virol. 68:34533458.
32. Hughes, P. J.,, C. North,, P. D. Minor,, and G. Stanway. 1989. The complete nucleotide sequence of coxsackievirus AllJ. Gen. Virol. 70:29432952.
33. Hynes, R. O. 1992. Integrins: versatility, modulation, and signaling in cell adhesion. Cell> 69:1125.
33a.. Hyypia, T.,, T. Hovi,, N. J. Knowles,, and G. Stanway. 1997. Classification of enteroviruses based on molecular and biological properties. J. Gen. Virol. 78:111.
34. Jackson, T.,, F. M. Ellard,, R. A. Ghazaleh,, S. M. Brookes,, W. E. Blakemore,, A. H. Corteyn,, D. I. Stuart,, J. W. Newman,, and A. M. King. 1996. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 70:52825287.
35. Jackson, T.,, D. Sheppard,, M. Denyer,, W. Blakemore,, and A. M. King. 2000. The epithelial integrin αvβ6 is a receptor for foot-and-mouth disease virus. J. Virol. 74: 49494956.
36. Kaplan, G.,, A. Totsuka,, P. Thompson,, T. Akatsuka,, Y. Moritsugu,, and S. M. Feinstone. 1996. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15: 42824296.
37. Karnauchow, T. M.,, S. Dawe,, D. M. Lublin,, and K. Dimock. 1998. Short consensus repeat domain 1 of decay-accelerating factor is required for enterovirus 70 binding. J. Virol. 72:93809383.
38. Koike, S.,, H. Horie,, I. Ise,, A. Okitsu,, M. Yoshida,, N. Iizuka,, K. Takeuchi,, T. Takegami,, and A. Nomoto. 1990. The poliovirus receptor protein is produced both as membrane-bound and secreted forms. EMBO J. 9:32173224.
39. Lange, R.,, X. Peng,, E. Wimmer,, M. Lipp,, and G. Bernhardt. 2001. The poliovirus receptor cdl55 mediates cell-to-matrix contacts by specifically binding to vitronectin. Virology 285:218227.
40. Lonberg-Holm, K.,, L. B. Gosser,, and E. J. Shimshick. 1976. Interaction of liposomes with subviral particles of poliovirus type 2 and rhinovirus type 2. J. Virol. 19:746749.
41. Lublin, D. M.,, and J. P. Atkinson. 1989. Decay-accelerating factor: biochemistry, molecular biology, and function. Annu. Rev. Immunol. 7:3558.
42. McGeady, M. L.,, and R. L. Crowell. 1981. Proteolytic cleavage of VP1 in 'A' particles of coxsackievirus B3 does not appear to mediate virus uncoating by HeLa cells. J. Gen. Virol. 55:439450.
43. Mena, I.,, C. Fischer,, J. R. Gebhard,, C. M. Perry,, S. Harkins,, and J. L. Whitton. 2000. Coxsackievirus infection of the pancreas: evaluation of receptor expression, pathogenesis, and immunopathology. Virology 271:276288.
44. Mendelsohn, C. L.,, E. Wimmer,, and V. R. Racaniello. 1989. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell 56:855865.
45. Mueller, S.,, X. Cao,, R. Welker,, and E. Wimmer. 2002. Interaction of the poliovirus CD155 with the dynein light chain Tctex-1 and its implication for poliovirus pathogenesis. J. Biol. Chem. 277:78977904.
46. Neff, S.,, P. W. Mason,, and B. Baxt. 2000. High-efficiency utilization of the bovine integrin αvβ3 as a receptor for foot-and-mouth disease virus is dependent on the bovine beta(3) subunit. J. Virol. 74:72987306.
47. Nemerow, G. R. 2000. Cell receptors involved in adenovirus entry. Virology 274:14.
48. Powell, R. M.,, V. Schmitt,, T. Ward,, I. Goodfellow,, D. J. Evans,, and J. W. Almond. 1998. Characterization of echoviruses that bind decay accelerating factor (CD55): evidence that some haemagglutinating strains use more than one cellular receptor. J. Gen. Virol. 79:17071713.
49. Powell, R. M.,, T. Ward,, D. J. Evans,, and J. W. Almond. 1997. Interaction between echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a secondary cellular factor in A-particle formation. J. Virol. 71: 93069312.
50. Rieder, E.,, A. Berinstein,, B. Baxt,, A. Kang,, and P. W. Mason. 1996. Propagation of an attenuated virus by design: engineering a novel receptor for a noninfectious foot-and-mouth disease virus. Proc. Natl. Acad. Sci. USA 93:1042810433.
51. Rieder, E.,, A. E. Gorbalenya,, C. Xiao,, V. He,, T. S. Baker,, R. J. Kuhn,, M. G. Rossmann,, and E. Wimmer. 2001. Will the polio niche remain vacant? Dev. Biol. 105: 111122.
52. Roivainen, M.,, T. Hyypia,, L. Piirainen,, N. Kalkkinen,, G. Stanway,, and T. Hovi. 1991. RGD-dependent entry of coxsackievirus A9 into host cells and its bypass after cleavage of VP1 protein by intestinal proteases. J. Virol. 65:47354740.
53. Roivainen, M.,, L. Piirainen,, and T. Hovi. 1996. Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 141:19091919.
54. Roivainen, M.,, L. Piirainen,, T. Hovi,, I. Virtanen,, T. Riikonen,, J. Heino,, and T. Hyypia. 1994. Entry of coxsackievirus A9 into host cells: specific interactions with alpha v beta 3 integrin, the vitronectin receptor. Virology 203:357365.
55. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317:145153.
56. Rossmann, M. G.,, J. Bella,, P. R. Kolatkar,, Y. He,, E. Wimmer,, R. J. Kuhn,, and T. S. Baker. 2000. Cell recognition and entry by rhino- and enteroviruses. Virology 269:239247.
57. Sa-Carvalho, D.,, E. Rieder,, B. Baxt,, R. Rodarte,, A. Tanuri,, and P. W. Mason. 1997. Tissue culture adaptation of foot-and-mouth disease virus selects viruses that bind to heparin and are attenuated in cattle. J. Virol. 71:51155123.
58. Schmidtke, M.,, H. C. Selinka,, A. Heim,, B. Jahn,, M. Tonew,, R. Kandolf,, A. Stelzner,, and R. Zell. 2000. Attachment of coxsackievirus B3 variants to various cell lines: mapping of phenotypic differences to capsid protein VP1. Virology 275:7788.
59. Selinka, H. C.,, A. Zibert,, and E. Wimmer. 1991. Poliovirus can enter and infect mammalian cells by way of an intercellular adhesion molecule 1 pathway. Proc. Natl. Acad. Sci. USA 88:35983602.
60. Shafren, D. R.,, R. C. Bates,, M. V. Agrez,, R. L. Herd,, G. F. Burns,, and R. D. Barry. 1995>. Coxsackieviruses Bl, B3, and B5 use decay accelerating factor as a receptor for cell attachment. J. Virol. 69:38733877.
61. Shafren, D. R.,, D. J. Dorahy,, S. J. Greive,, G. F. Burns,, and R. D. Barry. 1997. Mouse cells expressing human intercellular adhesion molecule-1 are susceptible to infection by coxsackievirus A21. J. Virol. 71:785789.
62. Shafren, D. R.,, D. J. Dorahy,, R. A. Ingham,, G. F. Burns,, and R. D. Barry. 1997. Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular adhesion molecule 1 for cell entry. J. Virol. 71:47364743.
63. Shafren, D. R.,, D. J. Dorahy,, R. F. Thorne,, T. Kinoshita,, R. D. Barry,, and G. F. Burns. 1998. Antibody binding to individual short consensus repeats of decay-accelerating factor enhances enterovirus cell attachment and infectivity. J. Immunol. 160:23182323.
64. Shieh, M. T.,, D. WuDunn,, R. I. Montgomery,, J. D. Esko,, and P. G. Spear. 1992. Cell surface receptors for herpes simplex virus are heparan sulfate proteoglycans. J. Cell Biol. 116:12731281.
65. Silberstein, E.,, G. Dveksler,, and G. G. Kaplan. 2001. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J. Virol. 75:717725.
66. Solecki, D.,, G. Bernhardt,, M. Lipp,, and E. Wimmer. 2000. Identification of a nuclear respiratory factor-1 binding site within the core promoter of the human polio virus receptor/CD155 gene. J. Biol. Chem. 275:1245312462.
67. Solecki, D.,, E. Wimmer,, M. Lipp,, and G. Bernhardt. 1999. Identification and characterization of the cis-acting elements of the human CD155 gene core promoter. J. Biol. Chem. 274:17911800.
68. Sommerfelt, M. A. 1999. Retrovirus receptors. J. Gen. Virol. 80:30493064.
69.. Staunton, D. E.,, V. J. Merluzzi,, R. Rothlein,, R. Barton,, S. D. Marlin,, and T. A. Springer. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849853.
70. Tomassini, J. E.,, D. Graham,, C. M. DeWitt,, D. W. Lineberger,, J. A. Rodkey,, and R. J. Colonno. 1989. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 86:49074911.
71. Tomko, R. P.,, C. B. Johansson,, M. Totrov,, R. Abagyan,, J. Frisen,, and L. Philipson. 2000. Expression of the adenovirus receptor and its interaction with the fiber knob. Exp. Cell Res. 255:4755.
72. Tomko, R. P.,, R. Xu,, and L. Philipson. 1997. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94:33523356.
73. Triantafilou, K.,, M. Triantafilou,, Y. Takada,, and N. Fernandez. 2000. Human parechovirus 1 utilizes integrins alphavbeta3 and alphavbetal as receptors. J. Virol. 74: 58565862.
77. 74- Triantafilou, M.,, K. Triantafilou,, and K. M. Wilson. 2000. A 70 kDa MHC class I associated protein (MAP-70) identified as a receptor molecule for coxsackievirus A9 cell attachment. Hum. Immunol. 61:867878.
75. Triantafilou, M.,, K. Triantafilou,, K. M. Wilson,, Y. Takada,, N. Fernandez,, and G. Stanway. 1999. Involvement of beta2-microgiobulin and integrin alphavbeta3 molecules in the coxsackievirus A9 infectious cycle. J. Gen. Virol. 80:25912600.
76. Ward, T.,, P. A. Pipkin,, N. A. Clarkson,, D. M. Stone,, P. D. Minor,, and J. W. Almond. 1994. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 13:50705074.
77. Ward, T.,, R. M. Powell,, P. A. Pipkin,, D. J. Evans,, P. D. Minor,, and J. W. Almond. 1998. Role for beta2microglobulin in echovirus infection of rhabdomyosarcoma cells. J. Virol. 72:53605365.
78. Wirnmer, E., 1994. Introduction, p. 113. In E. Wimmer (ed.), Cellular Receptors for Animal Viruses. Cold Spring Harbor Press, Cold Spring Harbor, N.Y..
79. Wimmer, E.,, J. J. Harber,, J. A. Bibb,, M. Gromeier,, H.-H. Lu,, and G. Bernhardt,. 1994. The poliovirus receptor, p. 101127. In E. Wimmer (ed.), Cellular Receptors for Animal Viruses. Cold Spring Harbor Press, Cold Spring Harbor, N.Y..
80. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. G. Kaplan,, D. Feigelstock,, R. H. Cheng,, and J. M. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19:12071216.

Tables

Generic image for table
TABLE 1

Overview of disease syndromes and receptors of six genera of

Receptors: the molecules listed are sufficient to dock a virion to the cell surface, but they are not necessarily competent to initiate an infectious cycle. Receptors in bold letters are likely to be essential and sufficient for infectivity. Abbreviations: , , , integrins ( , , vitronectin receptors; = VLA-2, a collagen and laminin receptor); DAF, decay-accelerating factor (CD55); CD155, poliovirus receptor (Pvr); ICAM-1, intercellular adhesion molecule 1; HCAR, human coxsackievirus B and adenovirus 2 receptor; VCAM, vascular cell adhesion molecule; HAVcr-1, receptor for hepatitis A virus; -m, -microglobulin, a component of MHC class I; MAP-70, a protein of the MHC class I; CD59, complement control protein. Italics denote a nonhuman pathogen; ND, not determined.

Clusters of enteroviruses refer to groups of enteroviruses arranged predominantly according to genotypic kinship ( ; chapter 2). Poliovirus was added to the C-cluster because of its close relationship to the Ocluster coxsackieviruses A. More clusters including mainly animal enteroviruses have been proposed.

Receptors may be specific for specific serotypes. For details, see text.

Accessory factors are defined here as proteins that enhance infectivity. In some cases, blocking an accessory factor by monoclonal antibodies may block infection. This, however, may be restricted to specific virus-cell pairing (e.g., infectivity of some echoviruses on RD cells, but not on HeLa cells, can be blocked with monoclonal antibodies to :-m).

Numbers in this column refer to references describing the identification of receptors.

List of human syndromes adapted from reference . Common syndromes in humans caused predominantly by one and/or other member(s) of the cluster, but member viruses of other clusters or even genera may cause the same syndrome.

Rieder and Wimmer, unpublished data.

Coxsackievirus A24v is a genetic variant of coxsackievirus A24.

Citation: Rieder E, Wimmer E. 2002. Cellular Receptors of Picornaviruses: an Overview, p 61-70. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch6
Generic image for table
TABLE 2

Sites of attachment on virions and receptors

V, V domain; C, C domain; * indicates N-terminal binding domain.

Citation: Rieder E, Wimmer E. 2002. Cellular Receptors of Picornaviruses: an Overview, p 61-70. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error