1887

Chapter 8 : Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap08-2.gif

Abstract:

The first step in the virus life cycle is the interaction between the virus and the cellular receptor. This interaction is a significant determinant of pathogenesis. For picornaviruses, the best studied virus-receptor interaction has been that of the major group rhinoviruses and their cellular receptor, intercellular adhesion molecule-1 (ICAM-1, CD54). Later, following the structure determination of rhinovirus, the receptor for the major group of rhinoviruses was identified as ICAM-1. It should be informative to examine the features of a receptor and a virus that use this canyon strategy for attachment and entry. This chapter looks at a well-studied example of this interaction at a structural level, the interaction of the major group rhinoviruses with their cellular receptor, ICAM-1. Molecular genetic and structural studies have demonstrated that rhinoviruses bind to domain D1 of ICAM-1. A major tenet of the canyon hypothesis suggested that the receptor would bind in the crevice that surrounds each of the fivefold vertices. This was supported by molecular genetic studies in which residues that line the floor of the canyon in rhinovirus 14 (HRV14) were mutated and the resulting virus particles had altered levels of receptor binding. The electron density values for D1D2 were nearly identical to those of the virus, indicating a nearly complete saturation of all of the 60 available binding sites on the virion. The association of ICAM-1 with HRV3 was slow compared with other protein-protein interactions, suggesting that the receptor may have a difficult time penetrating the canyon and making the correct contacts.

Citation: Kuhn R, Rossmann M. 2002. Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, p 85-91. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch8

Key Concept Ranking

Coxsackievirus B3
0.51428574
Plasmodium falciparum
0.49627754
Membrane Protein
0.45642364
0.51428574
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A diagram of an ICAM-1 molecule showing sites of glycosylation (lollipops) and the approximate location of binding sites of LFA-1, Mac-1, the major group of human rhinoviruses, fibrinogen, and -infected erythrocytes (PFIE). Ig-like domains are numbered D1 through D5. Amino acid residues are given by the number above the schematic. Reprinted from the , U.S.A. ( ) with permission of the publisher.

Citation: Kuhn R, Rossmann M. 2002. Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, p 85-91. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Roadmap representation ( ) showing the amino acids within the ICAM-1 footprint (thick outline) on the surface of (A) HRV16 and (B) HRV14. The figure shows one icosahedral asymmetric unit with a fivefold axis at the top and threefold axes to the left and right at the bottom. Residues closer than 145 Å to the viral center, shaded in gray, outline the central and deepest region of the canyon. Reprinted from the ( ) with permission of the publisher.

Citation: Kuhn R, Rossmann M. 2002. Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, p 85-91. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic representation of a proposed two-step binding mechanism between ICAM-1 and major group HRVs. ICAM-1 is represented only as a two-domain fragment, (a) The first (observed) step corresponds to the cryo-EM reconstructions of HRV-ICAM-1 complexes in which ICAM-1 binds primarily to the floor and south wall of the canyon, (b) The second (hypothesized) step involves a conformational change in the virus surface, shown only on the right-hand side of the diagram. Probably both walls of the canyon bind to domain D1 of ICAM-1 and, in so doing, open up the fivefold channel. This requires conformational flexibility of VP1, which forms a large part of both the north and south walls of the canyon, and probably also an empty hydrophobic pocket in VP1. Opening of the pentamer vertex, induced by the binding of one or more ICAM-1 molecules, may facilitate externalization of VP4 and other internal viral components, including RNA. Reprinted from the ( ) with permission of the publisher.

Citation: Kuhn R, Rossmann M. 2002. Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, p 85-91. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap8
1. Badger, J.,, I. Minor,, M. J. Kremer,, M. A. Oliveira,, T. J. Smith,, J. P. Griffith,, D. M. A. Guerin,, S. Krishna-swamy,, M. Luo,, M. G. Rossmann,, M. A. McKinlay,, G. D. Diana,, F. J. Dutko,, M. Fancher,, R. R. Rueckert,, and B. A. Heinz. 1988. Structural analysis of a series of antiviral agents complexed with human rhinovirus 14. Proc. Natl. Acad. Sci. USA 85:33043308.
2. Bella, J.,, P. R. Kolatkar,, C. W. Marlor,, J. M. Greve,, and M. G. Rossmann. 1998. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. USA 95:41404145.
3. Belnap, D. M.,, B. M. McDermott, Jr.,, D. J. Filman,, N. Cheng,, B. L. Trus,, H. J. Zuccola,, V. R. Racaniello,, J. M. Hogle,, and A. C. Steven. 2000. Three-dimensional structure of poliovirus receptor bound to poliovirus. Proc. Nad. Acad. Sci. USA 97:7378.
4. Berendt, A. R.,, D. L. Simmons,, J. Tancey,, C. I. Newbold,, and K. Marsh. 1989. Intercellular adhesion molecule-1 is an endothelial cell adhesion receptor for Plasmodium falciparum. Nature (London) 347:5759.
5. Casasnovas, J. M.,, J. K. Bickford,, and T. A. Springer. 1998. The domain structure of ICAM-1 and the kinetics of binding to rhinovirus. J. Virol. 72:62446246.
6. Casasnovas, J. M.,, and T. A. Springer. 1995. Kinetics and thermodynamics of virus binding to receptor. Studies with rhinovirus, intercellular adhesion molecule-1 (ICAM-1), and surface plasmon resonance. J. Biol. Chem. 270:1321613224.
7. Casasnovas, J. M.,, T. A. Springer,, J. Liu,, S. C. Harrison,, and J. Wang. 1997. Crystal structure of ICAM-2 reveals a distinctive integrin recognition surface. Nature (London) 387:312315.
8. Casasnovas, J. M.,, T. Stehle,, J. Liu,, J. Wang,, and T. A. Springer. 1998. A dimeric crystal structure for the N-terminal two domains of intercellular adhesion molecule-1. Proc. Natl. Acad. Sci. USA 95:41344139.
9. Chapman, M. S. 1993. Mapping the surface properties of macromolecules. Protein Sci. 2:459469.
10. Colonno, R. J.,, P. L. Callahan,, and W. J. Long. 1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 57:712.
11. Colonno, R. J.,, J. H. Condra,, S. Mizutani,, P. L. Callahan,, M. E. Davies,, and M. A. Murcko. 1988. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc. Natl. Acad. Sci. USA 85:54495453.
12. Greve, J. M.,, G. Davis,, A. M. Meyer,, C. P. Forte,, S. C. Yost,, C. W. Marlor,, M. E. Kamarck,, and A. McClelland. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56:839847.
13.[See reference 12.].
14. Greve, J. M.,, C. P. Forte,, C. W. Marlor,, A. M. Meyer,, H. Hoover-Litty,, D. Wunderlich,, and A. McClelland. 1991. Mechanisms of receptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J. Virol. 65:60156023.
15. Harpaz, Y.,, and C. Chothia. 1994. Many of the immunoglobulin superfamily domains in cell adhesion molecules and surface receptors belong to a new structural set which is close to that containing variable domains. J. Mol. Biol. 238:528539.
16. He, Y.,, V. D. Bowman,, S. Mueller,, C. M. Bator,, J. Bella,, X. Peng,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2000. Interaction of the poliovirus receptor with poliovirus. Proc. Nad. Acad. Sci. USA 97:7984.
17. He, Y. N.,, P. R. Chipman,, J. Howitt,, C. M. Bator,, M. A. Whitt,, T. S. Baker,, R. J. Kuhn,, C. W. Anderson,, P. Freimuth,, and M. G. Rossmann. 2001. Interaction of coxsackievirus B3 with the full length coxsackievirus-adenovirus receptor. Nat. Struct. Biol. 8:874878.
18. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits,, and D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 19:63176325.
19. Hofer, E.,, M. Gruenberger,, H. Kowalski,, H. Machat,, M. Huettinger,, E. Kuechler,, and D. Blaas. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Natl. Acad. Sci. USA 91:18391842.
20. Hoover-Litty, H.,, and J. M. Greve. 1993. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J. Virol. 67:390397.
21. Kim, K. H.,, P. Willingmann,, Z. X. Gong,, M. J. Kremer,, M. S. Chapman,, I. Minor,, M. A. Oliveira,, M. G. Ross-mann,, K. Andries,, G. D. Diana,, F. J. Dutko,, M. A. McKinlay,, and D. C. Pevear. 1993. A comparison of the anti-rhinoviral drug binding pocket in HRV 14 and HRV1A. J. Mol. Biol. 230:206226.
22. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Sttuctural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 18:62496259.
23. Lewis, J. K.,, B. Bothner,, T. J. Smith,, and G. Siuzdak. 1998. Antiviral agent blocks breathing of the common cold virus. Proc. Natl. Acad. Sci. USA 95:67746778.
24. Marlovits, T. C.,, C. Abrahamsberg,, and D. Blaas. 1998. Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J. Virol. 72:1024610250.
25. Martin, S.,, J. M. Casasnovas,, D. E. Staunton,, and T. A. Springer. 1993. Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J. Virol. 67:35613568.
26. McClelland, A.,, J. deBear,, S. C. Yost,, A. M. Meyer,, C. W. Marlor,, and J. M. Greve. 1991. Identification of monoclonal antibody epitopes and critical residues for rhinovirus binding in domain 1 of ICAM-1. Proc. Natl. Acad. Sci. USA 88:79937997.
27. Ockenhouse, C. E.,, R. Betageri,, T. A. Springer,, and D. E. Staunton. 1992. Plasmodium /airifwrum-infected erythrocytes bind ICAM-1 at a site distinct from LFA-1, Mac-1, and human rhinovirus. Cell 68:6369.
28. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90:507511.
29. Pevear, D. C.,, F. J. Fancher,, P. J. Feloc,, M. G. Rossmann,, M. S. Miller,, G. Diana,, A. M. Treasurywala,, M. A. McKinlay,, and F. J. Dutko. 1989. Conformational change in the floor of the human rhinovirus canyon blocks adsorption to HeLa cell receptors. J. Virol. 63:20022007.
30. Register, R. B.,, C. R. Uncapher,, A. M. Naylor,, D. W. Lineberger,, and R. J. Colonno. 1991. Human-murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding. J. Virol. 65:65896596.
31. Reilly, P. L.,, J. R. Woska, Jr.,, D. D. Jeanfavre,, E. McNally,, R. Rothlein,, and B. J. Bormann. 1995. The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. Correlation with binding to LFA-1. J. Immunol. 155:529532.
32. Rossmann, M. G. 1989. The canyon hypothesis. Vir. Immunol. 2:143161.
33. Rossmann, M. G. 1989. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J. Biol. Chiem. 264:1458714590.
34. Rossmann, M. G. 1994. Viral cell recognition and entry. Protein Sci. 3:17121725.
35. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H.-J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of human cold virus and functional relationship to other picornaviruses. Nature (London) 317:145153.
36. Rossmann, M. G.,, J. Bella,, P. R. Kolatkar,, Y. He,, E. Wimmer,, R. J. Kuhn,, and T. S. Baker. 2000. Cell recognition and entry by rhino- and enteroviruses. Virology 269:239247.
37. Rossmann, M. G.,, and A. C. Palmenberg. 1988. Conservation of the putative receptor attachment site in picornaviruses. Virology 164:373382.
38. Schober, D.,, P. Kronenberger,, E. Prchla,, D. Blaas,, and R. Fuchs. 1998. Major and minor receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J. Virol. 72:13541364.
39. Sherry, B.,, A. G. Mosser,, R. J. Colonno,, and R. R. Rueckert. 1986. Use of monoclonal antibodies to identify four neutralization immunogens on a common cold picornavirus, human rhinovirus 14- J. Virol. 57:246257.
40. Smith, T. J.,, M. J. Kremer,, M. Luo,, G. Vriend,, E. Arnold,, G. Kamer,, M. G. Rossmann,, M. A. McKinlay,, G. D. Diana,, and M. J. Otto. 1986. The site of attachment in human rhinovirus 14 for antiviral agents that inhibit uncoating. Science 233:12861293.
41. Springer, T. A. 1990. Adhesion receptors of the immune system. Nature (London) 346:425434.
42. Staunton, D. E.,, S. D. Marlin,, C. Stratowa,, M. L. Dustin,, and T. A. Springer. 1988. Primary structure of ICAM-1 demonstrates interaction between members of the immunoglobulin and integrin supergene families. Cell 52:925933.
43. Staunton, D. E.,, V. J. Merluzzi,, R. Rothlein,, R. Barton,, S. D. Marlin,, and T. A. Springer. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56:849853.
44. [See reference 43.].
45. Xiao, C.,, C. M. Bator,, V. D. Bowman,, E. Rieder,, Y. N. He,, B. Hebert,, J. Bella,, T. S. Baker,, E. Wimmer,, R. J. Kuhn,, and M. G. Rossmann. 2001. Interaction of coxsackievirus A21 with its cellular receptor, ICAM-1. J. Virol. 75:24442451.
46. Xing, L.,, K. Tjarnlund,, B. Lindqvist,, G. G. Kaplan,, D. Feigelstock,, R. H. Cheng,, and J. M. Casasnovas. 2000. Distinct cellular receptor interactions in poliovirus and rhinoviruses. EMBO J. 19:12071216.

Tables

Generic image for table
TABLE 1

Rhinovirus-ICAM charge complementarity

See text for an explanation of HRV amino acid nomenclature.

Citation: Kuhn R, Rossmann M. 2002. Interaction of Major Group Rhinoviruses with Their Cellular Receptor, ICAM-1, p 85-91. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error