1887

Chapter 9 : Human Rhinovirus Minor Group Receptors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Human Rhinovirus Minor Group Receptors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817916/9781555812102_Chap09-2.gif

Abstract:

More than 25 years ago Lonberg-Holm and colleagues demonstrated that out of 11 human rhinovirus serotypes investigated, HRV3, -5, -10, -14, -15, -39, -41, and -51 competed for the same binding site on HeLa cells whereas HRV1A, -1B, and -2 were found to recognize other sites on the cell surface. The ubiquitous presence of minor group HRV receptors was taken to indicate that it was evolutionarily strongly conserved; this was then confirmed by the discovery of its identity with the low-density lipoprotein receptor (LDLR) and the existence of several closely related molecules with virus-binding activity. A structural hallmark of members of the LDLR family is various numbers of incomplete direct repeats of about 40 amino acids containing six cysteines each, which are all involved in disulfide bridges. Purification of amounts of LDLR or of lipoprotein receptor-related protein (LRP) large enough to carry out cell-protection experiments appeared tedious, and expression of these proteins in bacteria was expected to be difficult due to the large number of disulfide bridges present in the native proteins. To determine the minimal structure requirements of LDLR for viral recognition and the LDLR-binding site on the viral capsid, the authors started to express soluble truncated LDLR in insect Sf9 cells. Receptor derivatives might inhibit virus infection by various mechanisms. In most cases soluble receptors compete for the membrane receptors present on the cell surface.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9

Key Concept Ranking

Rous sarcoma virus
0.49066988
Viral Life Cycle
0.47278467
Sodium Dodecyl Sulfate
0.44960758
Coomassie Brilliant Blue
0.4255062
0.49066988
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Virus-binding activity is released from HeLa cells upon incubation in PBS. Rhino-HeLa cells grown in T-flasks were suspended in PBS and incubated at 37°C. At the times indicated, cell supernatants from individual flasks were saved, an S80 extract was prepared, and the supernatants were concentrated to 50 l by centrifugation dialysis in Centricon tubes. The retained material was analyzed by SDS-8% poly-acrylamide gel electrophoresis under nonreducing conditions followed by electrophoretic transfer of the proteins to PVDF membranes. As a control, HeLa cell membrane proteins from about 5 × 10 cells were also analyzed in parallel. Virus-binding activity was detected by incubation of the blot with [S]methionine-labeled HRV2 ( ) followed by autoradiography. Reproduced from the ( ) with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Structural features of various members of the LDL superfamily.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

LDLR and LRP bind HRV2 on virus overlay blots. Cell membranes from wild-type human fibroblasts (wt) and from fibroblasts from a patient with FH were solubilized under nonreducing conditions and proteins were separated on a 4 to 12% gradient polyacrylamide gel in the presence of SDS. Polypeptides were electrophoretically transferred to a nitrocellulose membrane, and virus-binding activity was revealed by incubation with S-methionine-labeled HRV2 followed by autoradiography. The two subunits of LRP (515 kDa and 84 kDa) and the tightly associated RAP (39 kDa) were visualized with antiserum against LRP (-LRP). Modified from reference with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Recombinant soluble LDLR protects HeLa cells against infection with minor receptor group HRVs. Supernatants from Sf9 cells infected with recombinant baculovirus carrying the cDNA encoding the ligand-binding domain of human LDLR with a C-tetminal hexa-his tag (rLDLRh) were incubated for 150 min at 34°C with 500 TCID of the respective HRV HeLa cells grown in microtiter plates were then challenged with the mixtures, and incubation was continued for an additional 3 days. Cells remaining attached to the plastic as a result of no cytopathic effect were then stained with amido black. Reproduced from reference with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Structure of recombinant LDL minireceptors expressed in Sf9 cells. Reproduced from reference with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Polyacrylamide gel electrophoretic analysis of recombinant soluble LDL minireceptors expressed in insect Sf9 cells. Tissue culture supernatants from recombinant baculovirus-infected insect Sf9 cells were passed over a Ni-NTA Sepharose column, and the material retained was eluted with ammonia and analyzed under reducing (A) and under nonreducing (B) conditions on 12% polyacrylamide gels in the presence of SDS. Numbers refer to the repeats present in the minireceptor. The gels were stained with Coomassie brilliant blue. Reproduced from reference with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

LDL minireceptors expressed in insect Sf9 cells protect HeLa cells against infection with minor group viruses. LDL receptor fragments were purified by Ni-NTA and -VLDL column chromatography from supernatants of Sf9 cells infected with recombinant baculoviruses carrying the cDNA encoding various combinations of ligand-binding complement type-A repeats fused to a C-terminal hexa-his tag. The purified proteins were incubated at the concentrations shown for 1.5 h at 34°C with 100 TCID of HRV2. HeLa cells grown in microtiter plates were challenged with the mixtures and incubation was continued fot 5 days. Cells remaining attached to the plastic as a result of lacking cytopathic effect were then stained with amido black. The stain was dissolved in NaOH and A was determined. Values measured for cells infected in the presence of wild-type baculovirus-infected Sf9 supernatant were taken as 0% protection; the values from cells grown in the absence of HRV2 were taken as 100% protection. The minimal inhibitory concentration affording 50% cell protection was detetmined by interpolation. Reproduced from reference with permission of the publisher.

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Cryo-electron microscopy image reconstruction of a complex between HRV2 (main body) and VP1-3 (protrusions) as seen down a threefold symmetry axis. Five receptor molecules bind close to the fivefold axes to the stat-like mesa and cover the BC and the HI loops of VP1. Due to the close vicinity of the symmetry related sites, the receptor molecules appear to touch each other, giving rise to a ting-like appearance (density map from reference ).

Citation: Blaas D. 2002. Human Rhinovirus Minor Group Receptors, p 93-105. In Semler B, Wimmer E (ed), Molecular Biology of Picornavirus. ASM Press, Washington, DC. doi: 10.1128/9781555817916.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817916.chap9
1. Abraham, G.,, and R. J. Colonno. 1984. Many rhinovirus serotypes share the same cellular receptor. J. Virol. 51: 340 345.
2. Almenar Queralt, A.,, A. Duperray,, L. A. Miles,, J. Felez,, and D. C. Altieri. 1995. Apical topography and modulation of ICAM-1 expression on activated endothelium. Am. J. Pathol. 147: 1278 1288.
3. Anfinsen, C. B.,, and H. A. Scheraga. 1975. Experimental and theoretical aspects of protein folding. Adv. Protein Chem. 29: 205 300.
4. Arruda, E.,, C. E. Crump,, and F. G. Hayden. 1994. In vitro selection of human rhinovirus relatively resistant to soluble intercellular adhesion molecule-1. Anamicrob. Agents Chemother. 38: 66 70.
5. Arruda, E.,, C. E. Crump,, S. D. Marlin,, V. J. Merluzzi,, and F. G. Hayden. 1992. In vitro studies of the anti-rhinovirus activity of soluble intercellular adhesion molecule-1. Antimicrob. Agents Cnemotfier. 36: 1186 1191.
6. Atkins, A. R.,, I. M. Brereton,, R. A. Kroon,, H. T. Lee,, and R. Smith. 1998. Calcium is essential for the structural integrity of the cysteine-rich, ligand-binding repeat of the low-density lipoprotein receptor. Biochemistry 37: 1662 1670.
7. Barber, D. L.,, E. J. Sanders,, R. Aebersold,, and W. J. Schneider. 1991. The receptor for yolk lipoprotein deposition in the chicken oocyte. J. Biol. Chem. 266: 18761 18770.
8. Bates, P.,, J. A. Young,, and H. E. Varmus. 1993. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74: 1043 1051.
9. Bayer, N.,, E. Prchla,, M. Schwab,, D. Blaas,, and R. Fuchs. 1999. Human rhinovirus HRV14 uncoats from early endosomes in the presence of bafilomycin. FEBS Lett. 463: 175 178.
10. Bayer, N.,, D. Schober,, E. Prchla,, R. F. Murphy,, D. Blaas,, and R. Fuchs. 1998. Effect of bafilomycin Al and nocodazole on endocytic transport in HeLa cells: implications for viral uncoating and infection. J. Virol. 72: 9645 9655.
11. Beglova, N.,, C. L. North,, and S. C. Blacklow. 2001. Backbone dynamics of a module pair from the ligand-binding domain of the LDL receptor. Biochemistry 40: 2808 2815.
12. Bella, J.,, P. R. Kolatkar,, C. W. Marlor,, J. M. Greve,, and M. G. Rossmann. 1998. The structure of the two amino-terminal domains of human ICAM-1 suggests how it functions as a rhinovirus receptor and as an LFA-1 integrin ligand. Proc. Natl. Acad. Sci. USA 95: 4140 4145.
13. Bieri, S.,, A. R. Atkins,, H. T. Lee,, D. J. Winzor,, R. Smith,, and P. A. Kroon. 1998. Folding, calcium binding, and structural chatacterization of a concatemer of the first and second ligand-binding modules of the low-density lipoprotein receptor. Biochemistry 37: 10994 11002.
14. Bieri, S.,, J. T. Djordjevic,, N. L. Daly,, R. Smith,, and P. A. Kroon. 1995. Disulfide bridges of a cysteine-rich repeat of the LDL receptor ligand-binding domain. Biochemistry 34: 13059 13065.
15. Blaas, D.,, and R. Fuchs,. 1999. Early steps in rhinoviral infection, p. 485 503. In S. G. Pandalai (ed.), Recent Research Developments in Virology, vol. 1. Transworld Research Network, Kerala, India.
16. Bu, G. J.,, H. J. Geuze,, G. J. Strous,, and A. L. Schwartz. 1995. 39 kDa receptor-associated protein is an ER resident protein and molecular chaperone for LDL receptor-related protein. EMBO J. 14: 2269 2280.
17. Bu, G. J.,, and S. Rennke. 1996. Receptor-associated protein is a folding chaperone for low density liporeceptor-related protein. J. Biol. Chem. 271: 22218 22224.
18. Casasnovas, J. M. 2000. The dynamics of receptot recognition by human rhinoviruses. Trends Microbiol. 8: 251 254.
19. Casasnovas, J. M.,, and T. A. Springer. 1994. Pathway of rhinovirus disruption by soluble intercellular adhesion molecule 1 (ICAM-1): an intermediate in which ICAM-1 is bound and RNA is released. J. Virol. 68: 5882 5889.
20. Chen, W. J.,, J. L. Goldstein,, and M. S. Brown. 1990. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J. Biol. Chem. 265: 3116 3123.
21. Clayton, D.,, I. M. Brereton,, P. A. Kroon,, and R. Smith. 2000. Three-dimensional NMR structute of the sixth ligand-binding module of the human LDL receptor: comparison of two adjacent modules with different ligand binding specificities. FEBS Lett. 479: 118 122.
22. Colonno, R. J.,, P. L. Callahan,, and W. J. Long. 1986. Isolation of a monoclonal antibody that blocks attachment of the major group of human rhinoviruses. J. Virol. 57: 7 12.
23. Colonno, R. J.,, J. H. Condra,, S. Mizutani,, P. L. Callahan,, M. E. Davies,, and M. A. Murcko. 1988. Evidence for the direct involvement of the rhinovirus canyon in receptor binding. Proc. Natl. Acad. Sci. USA 85: 5449 5453.
24. Daly, N. L.,, J. T. Djordjevic,, P. A. Kroon,, and R. Smith. 1995. Three-dimensional structure of the second cysteine-rich repeat from the human low-density lipoprotein receptor. Biochemistry 34: 14474 14481.
25. Daly, N. L.,, M. J. Scanlon,, J. T. Djordjevic,, P. A. Kroon,, and R. Smith. 1995. Three-dimensional structure of a cysteine-rich repeat from the low-density lipoprotein receptor. Proc. Natl. Acad. Sci. USA 92: 6334 6338.
26. Davis, C. G.,, J. L. Goldstein,, T. C. Sudhof,, R. G. Anderson,, D. W. Russell,, and M. S. Brown. 1987. Acid-dependent ligand dissociation and recycling of LDL receptor mediated by growth factor homology region. Nature 326: 760 765.
27. De Broe, M. E.,, R. J. Wieme,, G. N. Logghe,, and F. Roels. 1977. Spontaneous shedding of plasma membrane fragments by human cells in vivo and in vitro. Clin. Chim. Acta 81: 237 245.
28. De Tulleo, L.,, and T. Kirchhausen. 1998. The clathrin endocytic pathway in viral infection. EMBO J. 17: 4585 4593.
29. Dirlam Schatz, K. A.,, and A. D. Attie. 1998. Calcium induces a conformational change in the ligand binding domain of the low density lipoprotein receptor. J. Lipid Res. 39: 402 411.
30. DiScipio, R. G.,, M. R. Gehring,, E. R. Podack,, C. C. Kan,, T. E. Hugh,, and G. H. Fey. 1984. Nucleotide sequence of cDNA and detived amino acid sequence of human complement component C9. Proc. Natl. Acad. Sci. USA 81: 7298 7302.
31. Dolmer, K.,, W. Huang,, and P. G. W. Gettins. 1998. Characterization of the calcium site in two complementlike domains from the low-density lipoprotein receptor-related protein (LRP) and comparison with a repeat from the low-density lipoprotein receptor. Biochemistry 37: 17016 17023.
32. Duechler, M.,, S. Ketter,, T. Skern,, E. Kuechler,, and D. Blaas. 1993. Rhinoviral receptor discrimination: mutational changes in the canyon regions of human rhinovirus types 2 and 14 indicate a different site of interaction. J. Gen. Virol. 74: 2287 2291.
33. Fass, D.,, S. Blacklow,, P. S. Kim,, and J. M. Berger. 1997. Molecular basis of familial hypercholesterolaemia from structure of LDL receptor module. Nature 388: 691 693.
34. Gilmore, E. C.,, and K. Herrup. 2000. Cortical development: receiving reelin. Curr. Biol. 10: R162 166.
35. Giranda, V. L.,, M. S. Chapman,, and M. G. Rossmann. 1990. Modeling of the human intercellular adhesion molecule-1, the human rhinovirus major group receptor. Proteins 7: 227 233.
36. Gliemann, J. 1998. Receptors of the low density lipoprotein (LDL) receptor family in man. Multiple functions of the latge family members via interaction with complex ligands. Biol. Chem. 379: 951 964.
37. Greve, J. M.,, G. Davis,, A. M. Meyer,, C. P. Forte,, S. C. Yost,, C. W. Marlor,, M. E. Kamarck,, and A. McClelland. 1989. The major human rhinovirus receptor is ICAM-1. Cell 56: 839 847.
38. Greve, J. M.,, C. P. Forte,, C. W. Marlor,, A. M. Meyer,, H. Hoover-Litty,, D. Wunderlich,, and A. McClelland. 1991. Mechanisms of teceptor-mediated rhinovirus neutralization defined by two soluble forms of ICAM-1. J. Virol. 65: 6015 6023.
39. Gruenberger, M.,, R. Wandl,, J. Nimpf,, T. Hiesberger,, W. J. Schneider,, E. Kuechler,, and D. Blaas. 1995. Avian homologs of the mammalian low-density lipoprotein teceptor family bind minor receptor group human rhinovirus. J. Virol. 69: 7244 7247.
40. Hardy, M. M.,, J. Feder,, R. A. Wolfe,, and G. J. Bu. 1997. Low density lipoprotein receptor-related protein modulates the expression of tissue-type plasminogen activator in human colon fibroblasts. J. Biol. Chem. 272: 6812 6817.
41. Haridas, M.,, B. F. Anderson,, H. M. Baker,, G. E. Norris,, and E. N. Baker. 1994. X-ray structural analysis of bovine lactoferrin at 2.5 A resolution. Adv. Exp. Med. Biol. 357: 235 238.
42. Herz, J.,, U. Hamann,, S. Rogne,, O. Myklebost,, H. Gausepohl,, and K. K. Stanley. 1988. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7: 4119 4127.
43. Hewat, E. A.,, E. Neumann,, J. F. Conway,, R. Moser,, B. Ronacher,, T. C. Marlovits,, and D. Blaas. 2000. The cellular receptor to human rhinovirus 2 binds around the 5-fold axis and not in the canyon: a structural view. EMBO J. 19: 6317 6325.
44. Hobbs, H. H.,, M. S. Brown,, and J. L. Goldstein. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1: 445 466.
45. Hodits, R. A.,, J. Nimpf,, D. M. Pfistermueller,, T. Hiesberger,, W. J. Schneider,, T. J. Vaughan,, K. S. Johnson,, M. Haumer,, E. Kuechler,, G. Winter,, and D. Blaas. 1995. An antibody fragment from a phage display library competes for ligand binding to the low density lipoprotein receptor family and inhibits rhinovirus infection. J. Biol. Chem. 270: 24078 24085.
46. Hofer, F.,, B. Berger,, M. Gruenberger,, H. Machat,, R. Dernick,, U. Tessmer,, E. Kuechler,, and D. Blaas. 1992. Shedding of a rhinovirus minor group binding protein— evidence for a Ca 2+-dependent process. J. Gen. Virol. 73: 627 632.
47. Hofer, F.,, M. Gruenberger,, H. Kowalski,, H. Machat,, M. Huettinger,, E. Kuechler,, and D. Blaas. 1994. Members of the low density lipoprotein receptor family mediate cell entry of a minor-group common cold virus. Proc. Nad. Acad. Sci. USA 91: 1839 1842.
48. Hoover-Litty, H.,, and J. M. Greve. 1993. Formation of rhinovirus-soluble ICAM-1 complexes and conformational changes in the virion. J. Virol. 67: 390 397.
49. Huang, W.,, K. Dolmer,, and P. G. W. Gettins. 1999. NMR solution structure of complement-like repeat CR8 from the low density lipoprotein receptor-related protein. J. Biol. Chem. 274: 14130 14136.
50. Iijima, H.,, M. Miyazawa,, J. Sakai,, K. Magoori,, M. R. Ito,, H. Suzuki,, M. Nose,, Y. Kawarabayasi,, and T. T. Yamamoto. 1998. Expression and characterization of a very low density lipoprotein receptor variant lacking the O-linked sugar region generated by alternative splicing. J. Biochem. 124: 747 755.
51. Ishibashi, S.,, M. S. Brown,, J. L. Goldstein,, R. D. Gerard,, R. E. Hammer,, and J. Herz. 1993. Hypercholesterolemia in low density lipoprotein receptor knockout mice and its teversal by adenovirus-mediated gene delivery. J. Clin. Invest. 92: 883 893.
52. Kamps, J. A. A. M.,, and T. J. C. Vanberkel. 1992. Complete down-regulation of low-density-lipoprotein-receptor activity in the human hepatoma cell line Hep-G2 by beta-migrating very-low-density lipoprotein and non-lipoprotein cholesterol—different cellular regulatory pools of cholesterol. Eur. J. Biochem. 206: 973 978.
53. Kim, S.,, T. J. Smith,, M. S. Chapman,, M. G. Rossmann,, D. C. Pevear,, F. J. Dutko,, P. J. Felock,, G. D. Diana,, and M. A. McKinlay. 1989. Crystal structure of human rhinovirus serotype-1A (Hrv1A). J. Mol. Biol. 210: 91 111.
54. Kolatkar, P. R.,, J. Bella,, N. H. Olson,, C. M. Bator,, T. S. Baker,, and M. G. Rossmann. 1999. Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 18: 6249 6259.
55. Korant, B. D.,, K. Lonberg-Holm,, J. Noble,, and J. T. Stasny. 1972. Naturally occurring and artificially produced components of three rhinoviruses. Virology 48: 71 86.
56. Kristensen, T.,, S. K. Moestrup,, J. Gliemann,, L. Bendtsen,, O. Sand,, and L. Sottrup Jensen. 1990. Evidence that the newly cloned low-density-lipoprotein receptor related protein (LRP) is the alpha 2-macroglobulin receptor. FEBS Lett. 276: 151 155.
57. Lonberg-Holm, K.,, and J. Noble Harvey. 1973. Comparison of in vitro and cell-mediated alteration of a human rhinovirus and its inhibition by sodium dodecyl sulfate. J. Virol. 12: 819 826.
58. Lonberg-Holm, K.,, and F. H. Yin. 1973. Antigenic determinants of infective and inactivated human rhinovirus type 2. J. Virol. 12: 114 123.
59. Lonberg-Holm, K.,, R. L. Crowell,, and L. Philipson. 1976. Unrelated animal viruses share receptors. Nature 259: 679 681.
60. Lonberg-Holm, K.,, and B. D. Korant. 1972. Early interaction of rhinoviruses with host cells. J. Virol. 9: 29 40.
61. Magrane, J.,, M. Reina,, R. Pagan,, A. Luna,, R. P. Casaroli Marano,, B. Angelin,, M. Gafvels,, and S. Vilaro. 1998. Bovine aortic endothelial cells express a variant of the very low density lipoprotein receptor that lacks the O-linked sugar domain. J. Lipid Res. 39: 2172 2181.
62. Marlovits, T. C.,, C. Abrahamsberg,, and D. Blaas. 1998. Soluble LDL minireceptors—minimal structure requirements for recognition of minor group human rhinovirus. J. Biol. Chem. 273: 33835 33840.
63. Marlovits, T. C.,, C. Abrahamsberg,, and D. Blaas. 1998. Very-low-density lipoprotein receptor fragment shed from HeLa cells inhibits human rhinovirus infection. J. Virol. 72: 10246 10250.
64. Marlovits, T. C.,, T. Zechmeister,, M. Gruenberger,, B. Ronacher,, H. Schwihla,, and D. Blaas. 1998. Recombinant soluble low density lipoprotein receptor fragment inhibits minor group rhinovirus infection in vitro. FASEB J. 12: 695 703.
65. Martin, S.,, J. M. Casasnovas,, D. E. Staunton,, and T. A. Springer. 1993. Efficient neutralization and disruption of rhinovirus by chimeric ICAM-1/immunoglobulin molecules. J. Virol. 67: 3561 3568.
66. Martin, S.,, A. Martin,, D. E. Staunton,, and T. A. Springer. 1993. Functional studies of truncated soluble intercellular adhesion molecule-1 expressed in Escherichia coli. Antimicrob. Agents Chemother. 37: 1278 1285.
67. Medh, J. D.,, G. L. Fry,, S. L. Bowen,, M. W. Pladet,, D. K. Strickland,, and D. A. Chappell. 1995. The 39-kDa receptor-associated protein modulates lipoprotein catabolism by binding to LDL receptors. J. Biol. Chem. 270: 536 540.
68. Mischak, H.,, C. Neubauer,, B. Berger,, E. Kuechler,, and D. Blaas. 1988. Detection of the human rhinovirus minor group receptor on renaturing Western blots. J. Gen. Virol. 69: 2653 2656.
69. Mischak, H.,, C. Neubauer,, E. Kuechler,, and D. Blaas. 1988. Characteristics of the minor group receptor of human rhinoviruses. Virology 163: 19 25.
70. Neubauer, C.,, L. Frasel,, E. Kuechler,, and D. Blaas. 1987. Mechanism of entry of human rhinovirus 2 into HeLa cells. Virology 158: 255 258.
71. North, C. L.,, and S. C. Blacklow. 2000. Evidence that familial hypercholesterolemia mutations of the LDL receptor cause limited local misfolding in an LDL-A module pair. Biochemistry 39: 13127 13135.
72. North, C. L.,, and S. C. Blacklow. 2000. Solution structure of the sixth LDL-A module of the LDL receptors. Biochemistry 39: 2564 2571.
73. Obermoeller, L. M.,, Z. Chen,, A. L. Schwartz,, and G. Bu. 1998. Ca2+ and receptor-associated protein are independently required for proper folding and disulfide bond formation of the low density lipoprotein receptor-related protein. J. Biol. Chem. 273: 22374 22381.
74. Okun, V. M.,, R. Moser,, D. Blaas,, and E. Kenndler. 2001. Complexes between monoclonal antibodies and receptor fragments with a common cold virus: determination of stoichiometry by capillary electrophoresis. Anal. Biochem. 73: 3900 3906.
75. Okun, V. M.,, R. Moser,, B. Ronacher,, E. Kenndler,, and D. Blaas. 2001. VLDL receptor fragments of different lengths bind to human rhinovirus HRV2 with different stoichiometry. An analysis of virus-receptor complexes by capillary electrophoresis. J. Biol. Chem. 276: 1057 1062.
76. Oliveira, M. A.,, R. Zhao,, W. M. Lee,, M. J. Kremer,, I. Minor,, R. R. Rueckert,, G. D. Diana,, D. C. Pevear,, F. J. Dutko,, M. A. McKinlay,, and M. G. Rossmann. 1993. The structure of human rhinovirus 16. Structure 1: 51 68.
77. Olson, N. H.,, P. R. Kolatkar,, M. A. Oliveira,, R. H. Cheng,, J. M. Greve,, A. McClelland,, T. S. Baker,, and M. G. Rossmann. 1993. Structure of a human rhinovirus complexed with its receptor molecule. Proc. Natl. Acad. Sci. USA 90: 507 511.
78. Powell, R. M.,, T. Ward,, D. J. Evans,, and J. W. Almond. 1997. Interaction between echovirus 7 and its receptor, decay accelerating factor (Cd55): evidence for a secondary cellular factor in A particle formation. J. Virol. 71: 9306 9312.
79. Prchla, E.,, E. Kuechler,, D. Blaas,, and R. Fuchs. 1994 -Uncoating of human rhinovirus serotype 2 from late endosomes. J. Virol. 68: 3713 3723.
80. Register, R. B.,, C. R. Uncapher,, A. M. Naylor,, D. W. Lineberger,, and R. J. Colonno. 1991. Human-murine chimeras of ICAM-1 identify amino acid residues critical for rhinovirus and antibody binding. J. Virol. 65: 6589 6596.
81. Reischl, A.,, M. Reithmayer,, G. Winsauer,, R. Moser,, J. Gosler,, and D. Blaas. 2001. Viral evolution toward change in receptor usage: adaptation of a major group human rhinovirus to grow in ICAM-1 negative cells. J. Virol. 75: 9312 9319.
82. Ronacher, B.,, T. C. Marlovits,, R. Moser,, and D. Blaas. 2000. Expression and folding of human very-low-density lipoprotein receptor fragments: neutralization capacity toward human rhinovirus HRV2. Virology 278: 541 550.
83. Rossmann, M. G. 1989. The canyon hypothesis. Hiding the host cell receptor attachment site on a viral surface from immune surveillance. J. Biol. Chem. 264: 14587 14590.
84. Rossmann, M. G.,, E. Arnold,, J. W. Erickson,, E. A. Frankenberger,, J. P. Griffith,, H. J. Hecht,, J. E. Johnson,, G. Kamer,, M. Luo,, A. G. Mosser,, R. R. Rueckert,, B. Sherry,, and G. Vriend. 1985. Structure of a human common cold virus and functional relationship to other picornaviruses. Nature 317: 145 153.
85. Rothlein, R.,, M. L. Dustin,, S. D. Marlin,, and T. A. Springer. 1986. A human intercellular adhesion molecule (ICAM-1) distinct from LFA-1. J. Immunol. 137: 1270 1274.
86. Saito, A.,, S. Pietromonaco,, A. K. C. Loo,, and M. G. Farquhar. 1994. Complete cloning and sequencing of rat gp330/"megalin," a distinctive member of the low density lipoprotein receptor gene family. Proc. Natl. Acad. Sci. USA 91: 9725 9729.
87. Schober, D.,, P. Kronenberger,, E. Prchla,, D. Blaas,, and R. Fuchs. 1998. Major and minor-receptor group human rhinoviruses penetrate from endosomes by different mechanisms. J. Virol. 72: 1354 1364.
88. Sherry, B.,, and R. Rueckert. 1985. Evidence for at least two dominant neutralization antigens on human rhinovirus 14. J. Virol. 53: 137 143.
89. Staunton, D. E.,, M. L. Dustin,, H. R Erickson,, and T. A. Springer. 1990. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell 61: 243 254.
90. Staunton, D. E.,, A. Gaur,, P. Y. Chan,, and T. A. Springer. 1992. Internalization of a major group human rhinovirus does not require cytoplasmic or transmembrane domains of ICAM-1.;. Immunol. 148: 3271 3274.
91. Staunton, D. E.,, V. J. Merluzzi,, R. Rothlein,, R. Barton,, S. D. Marlin,, and T. A. Springer. 1989. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell 56: 849 853.
92. Stifani, S.,, R. George,, and W. J. Schneider. 1988. Solubilization and characterization of the chicken oocyte vitellogenin receptor. Biochem. J. 250: 467 475.
93. Strickland, D. K.,, J. D. Ashcom,, S. Williams,, W. H. Burgess,, M. Migliorini,, and W. S. Argraves. 1990. Sequence identity between the alpha 2-macroglobulin receptor and low density lipoprotein receptor-related protein suggests that this molecule is a multifunctional receptor.;. Biol. Chem. 265: 17401 17404.
94. Strickland, D. K.,, M. Z. Kounnas,, and W. S. Argraves. 1995. LDL receptor-related protein: a multiligand receptor for lipoprotein and proteinase catabolism. FASEB ;. 9: 890 898.
95. Takahashi, S.,, Y. Kawarabayasi,, T. Nakai,, J. Sakai,, and T. Yamamoto. 1992. Rabbit very low density lipoprotein receptor: a low density lipoprotein receptor-like protein with distinct ligand specificity. Proc. Natl. Acad. Sci. USA 89: 9252 9256.
96. Tessier, D. C.,, D. Y. Thomas,, H. E. Khouri,, F. Laliberte,, and T. Vernet. 1991. Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide. Gene 98: 177 183.
97. Tomassini, E.,, T. Graham,, C. DeWitt,, D. Lineberger,, J. Rodkey,, and R. Colonno. 1989. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Natl. Acad. Sci. USA 86: 4907 4911.
98. Tomassini, J. E.,, and R. J. Colonno. 1986. Isolation of a receptor protein involved in attachment of human rhinoviruses. ). Virol. 58: 290 295.
99. Uncapher, C. R.,, C. M. Dewitt,, and R. J. Colonno. 1991. The major and minor group receptor families contain all but one human rhinovirus serotype. Virology 180: 814 817.
100. Verdaguer, N.,, D. Blaas,, and I. Fita. 2000. Structure of human rhinovirus serotype 2 (HRV2). J. Mol. Biol. 300: 1179 1194.
101. Verdaguer, N.,, T. C. Marlovits,, J. Bravo,, D. I. Stuart,, D. Blaas,, and I. Fita. 1999. Crystallization and preliminary X-ray analysis of human rhinovirus serotype 2 (HRV2). Acta Crystallogr. D Biol. Crystallogr. 55: 1459 1461.
102. Willnow, T. E. 1999. The low-density lipoprotein receptor gene family: multiple roles in lipid metabolism.;. Mol. Med. 77: 306 315.
103. Willnow, T. E.,, S. A. Armstrong,, R. E. Hammer,, and J. Herz. 1995. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc. Natl. Acad. Sci. USA 92: 4537 4541.
104. Willnow, T. E.,, and J. Herz. 1994 - Genetic deficiency in low density lipoprotein receptor-related protein confers cellular resistance to Pseudomonas exotoxin A. Evidence that this protein is required for uptake and degradation of multiple ligands. J. Cell Sci. 107: 719 726.
105. Wilson, C.,, M. R. Wardell,, K. H. Weisgraber,, R. W. Mahley,, and D. A. Agard. 1991. Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252: 1817 1822.
106. Yamamoto, T.,, C. G. Davis,, M. S. Brown,, W. J. Schneider,, M. L. Casey,, J. L. Goldstein,, and D. W. Russell. 1984. The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 39: 27 38.
107. Yin, F. H.,, and N. B. Lomax. 1986. Establishment of a mouse model for human rhinovirus infection. J. Gen. Virol. 67: 2335 2340.
108. Yin, F. H.,, and N. B. Lomax. 1983. Host range mutants of human rhinovirus in which nonstructural proteins are altered.;. Virol. 48: 410 418.
109. Zhao, R.,, D. C. Pevear,, M. J. Kremer,, V. L. Giranda,, J. A. Kofron,, R. J. Kuhn,, and M. G. Rossmann. 1996. Human rhinovirus 3 at 3.0 angstrom resolution. Structure 4: 1205 1220.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error