Chapter 4 : Physiology of Enterococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Physiology of Enterococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap04-2.gif


Enterococci are medically important bacteria that also happen to comprise part of the normal human intestinal flora. This chapter reviews an expanding literature on enterococcal physiology, emphasizing those topics that have been more thoroughly studied: central carbon metabolism, respiration, ion transport, pyrimidine and folate pathways, stress responses, and the metabolism of reactive oxygen species. The newly completed genome databases for and speeds up progress in many areas under current investigation. In addition, these databases should catalyze new studies on metabolism. These resources are used here to help identify putative genes in known or suspected metabolic pathways and spur additional interest in the many fascinating and unusual aspects of physiology for these medically important organisms. A wide variety of carbohydrates can be fermented by enterococci. Essential components of the respiratory chain-de-methylmenaquinone, cytochrome , fumarate reductase, and FF-ATP synthase are described in the chapter. Oxidation of lactate for energy is also potentially linked to respiratory components. Growth on lactate is well characterized for , but surveys of other enterococci are lacking. For enterococci, investigators have commonly used (formerly ) to study ion transport mechanisms. Iron is an essential nutrient for aerotolerant microorganisms like enterococci. In a survey of enterococci, several strains were identified that produced two or three different siderophores. Except for folate, lipoic acid, demethylmenaquinone, and hematin, little is known about this topic for enterococci. Enterococci are potent producers and scavengers of reactive oxygen species.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4

Key Concept Ranking

Aromatic Amino Acid Biosynthesis
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Phosphoenolpyruvate phosphotransferase and catabolite repression. Phosphorylation of phosphocarrier protein (HPr) by enzyme I (EI) at histidine residue 15 forms HPr(hisl5-P) and couples sugar uptake to sugar phosphorylation through carbohydrate-specific enzymes II (EIIs). Phos-phorylated sugars are channeled into catabolic pathways (ED, Entner-Doudoroff; EMP, Embden-Meyerhof-Parnas; and PP, pentose phosphate). HPr(hisl5-P) also regulates glycerol metabolism through glycerol-3-phosphate kinase. The bifunctional HPr kinase/phosphatase enzyme (HprK) regulates HPr activity through phosphorylation at conserved serine residue 46 to form HPr(ser46-P), which is unable to phosphorylate EIIs. HPr(ser46-P) also activates catabolite repression through the catabolite control protein A (CcpA) and up-regulates inducer expulsion through phosphatase II (Pase II, hashed arrow). HprK phosphatase is attenuated by ATP (hashed arrow).

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Glycerol metabolism. Glycerol uptake in occurs through an energy-independent diffusion facilitator. Enzymes for glycerol dissimilation include: GlpK, ATP-dependent glycerol kinase; GlpO, HO-producing L-α-glycerophosphate oxidase; NAD-dependent glycerol dehydrogenase; and dihydroxyacetone kinase. A putative NADH:quinone oxidoreductase regenerates NAD using membrane-associated demethylmenaquinone (DMK). In the presence of fumarate, demethylmenaquinol (DMKH2) is oxidized by fumarate reductase. GlpK is activated by enzyme I-activated histidine-containing protein (HPr[hisl5-P]) of the phosphoenolpyruvate phosphotransferase system and allosterically inhibited by fructose 1,6-bisphosphate (FBP). GlpK and GlpO are expressed only under aerobic or microaerophilic conditions.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Pyruvate metabolism. Circled compounds represent substrates for pyruvate synthesis. Major end-products are boxed. E. faecalis genes coding enzymes for reactions, cofactors, and gradients are shown: , pyruvate kinase; , malic enzyme; , citrate lyase; ACP, acyl carrier protein (y-subunit), , oxaloacetate decarboxylase; ΔμNa, transmembrane sodium gradient; , pyruvate decarboxylase; fdred, reduced ferredoxin; fdox, oxidized ferredoxin; , pyruvate dehydrogenase complex with El, E2, and E3 subunits; TIP, thiamine pyrophosphate; , L-(+)-lactate dehydrogenase; , α-acetolactate synthase; , a-acetolactate decarboxylase; , pyruvate formate-lyase; , aldehyde-alcohol dehydrogenase; , acetokinase; , phosphoacetyltransfer-ase. Exact stoichiometry is not indicated, and reaction details are omitted for clarity.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Deiminase catabolism. Arginine and agmatine pathways both lead to a high-energy carbamoyl phosphate intermediate. A third reaction forms ATP from carbamoyl phosphate. Specific, gradient-dependent antiporters provide import and export of substrates and products. Genes coding enzymes for reactions are shown: , arginine deiminase; , oirrithine carbamoyltrans-ferase; and , arginine-induced carbamate kinase. Genes for agmatine deiminase, putrescine carbamoyltransferase, and agmatine-induced carbamate kinase have not been identified.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Respiration. Conceptualized model of E. faecalis respiratory components. A putative transporter facilitates hematin uptake for incorporation into cytochrome bd (CydAB). Cytosolic reducing equivalents are transferred to demethylmenaquinone (DMK) through a putative NADH:quinone oxido-reductase. Fumarate reductase (FrdABCD) and cytochrome bd are terminal demethylmenaquinol (DMKH2) oxidases that generate succinate from fumarate, and HO from O, respectively. Cytochrome bd translocates one proton per electron to establish a proton motive force. FF-ATPsynthase couples proton movement into the cell to formation. A putative -lactate:quinone oxidoreductase for lactate oxidation is not shown.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Copper metabolism. The CopZ copper chaperone is central to copper homeostasis. Cu is extracellularly reduced to Cu by a putative Cu-reductase prior to import via a P-type ATPase termed CopA. CopZ transports bound Cu to target proteins and the CopY repressor that controls cop expression. CopB is a P-type ATPase that accepts Cu from CopZ for export.

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Superoxide production. Model of Oˉ production by demethylmenaquinone. Cytosolic reducing equivalents transfer to demethylmenaquinone (left) through oxidoreductases forming demethylmenaquinol (right). Normally, reduced demethylmenaquinone binds terminal quinol oxidases such as fumarate reductase or cytochrome bd. In the absence of fumarate or hematin, extracellular Oˉ as a by-product through the univalent reduction of O by stabilized semiquinone radicals (middle). Under acidic conditions Oˉ spontaneously dismutes into HO and, in the presence of transition metals like iron or copper, catalytically forms damaging hydroxyl radicals (-OH).

Citation: Huycke M. 2002. Physiology of Enterococci, p 133-175. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abrams, A.,, P. McNamara,, and F. B. Johnson. 1960. Adenosine triphosphatase in isolated bacterial cell membranes.J. Biol. Chem. 235:36593662.
2. Albrecht, A. M.,, J. L. Palmer,, and D. J. Hutchison. 1966. Differentiating properties of the dihydrofolate reductases of amethopterin-resistant Streptococcus faecalis/Ak and the sensitive parent strain.J. Biol. Chem. 241:10431048.
3.Alc &ctara, C.,, J. Cervera,, and V. Rubio. 2000. Carbamate kinase can replace in vivo carbamoyl phosphate synthetase. Implications for the evolution of car-bamoyl phosphate biosynthesis. FEBS Lett. 484:261264.
4. Allen, A. G.,, and R. N. Perham. 1991. Two lipoyl domains in the dihydrolipoamide acetyltransferase chain of the pyruvate dehydrogenase multienzyme complex of Streptococcus faecalis. FEBS Lett. 287:206210.
5. Alpert, C.-A.,, R. Frank,, K. Stiiber,, J. Deutscher,, and W. Hengstenberg. 1985. Phosphoenolpyruvate-dependent protein kinase enzyme I of Streptococcus faecalis: purification and properties of the enzyme and characterization of its active center. Biochemistry 24:959964.
6. Andrewes, E. W.,, and T. J. Horder. 1906. A study of the streptococci pathogenic for man. Lancet ii:708-713, 775782.
7. Arikado, E.,, H. Ishihara,, T. Ehara,, C. Chibata,, H. Saito,, T. Kakegawa,, K. Igarashi,, and H. Kobayashi. 1999. Enzyme level of enterococcal FaFo-ATPase is regulated by pH at the step of assembly. Eur. J. Biochem. 259:262268.
8. Arnau, J.,, E. Jergensen,, S. M. Madsen,, A. Vrand,, and H. Israelsen. 1998. Cloning of the Lactococcus lactis adhE gene, encoding a multifunctional alcohol dehydrogenase, by complementation of a fermentative mutant of Escherichia coli. J. Bacteriol. 180:30493055.
9. Aue, B. J.,, and R. H. Deibel. 1967. Fumarate reductase activity of Streptococcus faecalis. J. Bacteriol. 93:17701776.
10. Babbs, C. F. 1990. Hypothesis paper: free radicals and the etiology of colon cancer. Free Radic. Biol. Med. 8:191200.
11. Bakker, E. P.,, and E. M. Harold. 1980. Energy coupling to potassium transport in Streptococcus faecalis: interplay of ATP and the protonmotive force. J. Biol. Chem. 255:433440.
12. Barja, G. 1999. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity.J. Bioenerg. Biomembr. 31:347366.
13. Bauchop, T.,, and S. R. Elsden. 1960. The growth of micro-organisms in relation to their energy supply.J. Gen. Microbiol. 23:457469.
14. Baum, R. H.,, and M. I. Dolin. 1965. Isolation of 2-solanesyl-l,4-naphthoquinone from Streptococcus faecalis, 10C1.J. Biol Chem. 240:34253433.
15. Bott, M. 1997. Anaerobic citrate metabolism and its regulation in enterobacteria. Arch. Microbiol. 167:7888.
16. Britton, L.,, D. P. Malinowski,, and I. Fridovich. 1978. Superoxide dismutase and oxygen metabolism in Streptococcus faecalis and comparisons with other organisms. J. Bacteriol. 134:229236.
17. Brown, A. T.,, and C. L. Wittenberger. 1972. Induction and regulation of a nic-otinamide adenine dinucleotide-specific 6-phosphogluconate dehydrogenase in Streptococcus faecalis. J. Bacteriol. 109:106115.
18. Bryan-Jones, D. G.,, and R. Whittenbury. 1969. Haematin-dependent oxidative phosphorylation in Streptococcus faecalis. J. Gen. Microbiol. 58:247260.
19. Chang, T.-Y.,, and M. E. Jones. 1974. Asparate transcarbamylase from Streptococcus faecalis. Purification, properties, and nature of an allosteric activator site. Biochemistry 13:629638.
20. Chang, T.-Y.,, and M. E. Jones. 1974. Aspartate transcarbamylase from Streptococcus faecalis. Steady-state kinetic analysis. Biochemistry 13:638645.
21. Charrier, V.,, E. Buckley,, D. Parsonage,, A. Galinier,, E. Darbon,, M. Jaquinod,, E. Forest,, J. Deutscher,, and A. Claiborne. 1997. Cloning and sequencing of two enterococcal glpK genes and regulation of the encoded glycerol kinases by phosphoenolpyruvate-dependent, phosphotransferase system-catalyzed phosphorylation of a single histidyl residue.J.. Biol. Chem. 272:1416614174.
22. Claiborne, A.,, J. I. Yeh,, T. C. Mallett,, J. Luba,, E. J. Drane, III,, V. Charrier,, and D. Parsonage. 1999. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation. Biochemistry 38:1540715416.
23. Clarke, D. J.,, and C. J. Knowles. 1980. The effect of haematin and catalase on Streptococcus faecalis var. zymogenes growing on glycerol. J. Gen. Microbiol. 121: 339347.
24. Cobine, P.,, W. A. Wickramasinghe,, M. D. Harrison,, T. Weber,, M. Solioz,, and C. T. Dameron. 1999. The Enterococcus hirae copper chaperone CopZ delivers copper(I) to the CopY repressor. FEBS Lett. 445:2730.
25. Collins, M. D.,, and D. Jones. 1979. The distribution of isoprenoid quinones in streptococci of serological groups D and N.J.. Gen. Microbiol. 114:2733.
26. Coque, T. M.,, K. V. Singh,, G. M. Weinstock,, and B. E. Murray. 1999. Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 43:141147.
27. Corfield, A. P.,, S. A. Wagner,, J. R. Clamp,, M. S. Kriaris,, and L. C. Hoskins. 1992. Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect. Immun. 60:39713978.
28. Crane, E. J., III,, D. Parsonage,, L. B. Poole,, and A. Claiborne. 1995. Analysis of the kinetic mechanism of enterococcal NADH peroxidase reveals catalytic roles for NADH complexes with both oxidized and two-electron-reduced enzyme forms. Biochemistry 34:1411414124.
29. Deibel, R. H. 1964. The group D streptococci. Bacteriol. Rev. 28:330366.
30. Deibel, R. H. 1964. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J. Bacteriol. 87:988992.
31. Deibel, R. H.,, and M. J. Kvetkas. 1964. Fumarate reduction and its role in the diversion of glucose fermentation by Streptococcus faecalis. J. Bacteriol. 88:858864.
32. Deibel, R. H.,, and C. F. Niven, Jr. 1964. Pyruvate fermentation by Streptococcus faecalis. J. Bacteriol. 88:410.
33. Delk, A. S.,, D. P. Nagle, Jr.,, and J. C. Rabinowitz. 1979. The methylenetetra-hydrofolate-mediated biosynthesis of ribothymidine in the transfer-RNA of Streptococcus faecalis: incorporation of hydrogen from solvent into the methyl moiety. Biochem. Biophys. Res. Commun. 86:244251.
34. Derré, I.,, G. Rapoport,, and T. Msadek. 1999. CtsR, a novel regulator of stress and heat shock response, controls dp and molecular chaperone gene expression in gram-positive bacteria. Mol. Microbiol. 31:117131.
35. Devriese, L. A.,, B. Pot,, and M. D. Collins. 1993. Phenotypic identification of the genus Enterococcus and differentiation of phylogenetically distinct enterococcal species and species groups.J. Appl. Bacteriol. 75:399408.
36. Dolin, M. I.1957. Trie Streptococcus faecalis oxidases for reduced diphosphopyr-idine nucleotide. HI. Isolation and properties of a flavin peroxidase for reduced diphosphopyridine nucleotide. J. Biol. Chem. 225:557573.
37. Dolin, M. I.,, and I. C. Gunsalus. 1951. Pyruvic acid metabolism. II. An acetoin-forming enzyme system in Streptococcus faecalis. J. Bacteriol. 62:199214.
38. Driessen, A. J. M.,, E. J. Smid,, and W. N. Konings. 1988. Transport of diamines by Enterococcus faecalis is mediated by an agmatine-putrescine antiporter. J. Bacteriol. 170:45224527.
39. Dym, O.,, E. A. Pratt,, and D. Eisenberg. 2000. The crystal structure of D-lactate dehydrogenase, a peripheral membrane respiratory enzyme. Proc. Natl. Acad. Sci. USA 97:94139418.
40. Efthymiou, C. J.,, S. Saadi,, S.-L. Young,, and E. A. Helfand. 1987. Iron-deficient medium for selective isolation and presumptive identification of enterococci. Ann. Clin. Lab. Sci. 17:226231.
41. Esders, T. W.,, and C. A. Michrina. 1979. Purification and properties of L-a-glycerophosphate oxidase from Streptococcus faecium ATCC 12755.J. Biol. Chem. 254:27102715.
42. Falcioni, G. C.,, S. Coderoni,, G. G. Tedeschi,, M. Brunori,, and G. Rotilio. 1981. Red cell lysis induced by microorganisms as a case of superoxide- and hydrogen peroxide-dependent hemolysis mediated by oxyhemoglobin. Biochim. Biophys. Ada 678:437441.
43. Farrow, J. A. E.,, D. Jones,, B. A. Phillips,, and M. D. Collins. 1983. Taxonomic studies on some group D streptococci. J. Gen. Microbiol. 129:14231432.
44. Fertally, S. S.,, and R. Facklam. 1987. Comparison of physiologic tests used to identify non-beta-hemolytic aerococci, enterococci, and streptococci. J. Clin. Microbiol. 25:18451850.
45. Field, J.,, B. Rosenthal,, and J. Samuelson. 2000. Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydroge-nases from anaerobic prokaryotes to Entamoeba histolytica. Mol. Microbiol 38:446455.
46. Fischer, R.,, R. P. von Strandmann,, and W. Hengstenberg. 1991. Mannitol-specihc phosphoenolpyruvate-dependent phosphotransferase system of Entero-coccus faecalis: molecular cloning and nucleotide sequences of the enzyme IHMtl gene and the mannitol-1-phosphate dehydrogenase gene, expression in Esche-richia coli, and comparison of the gene products with similar enzymes. J. Bacteriol 173:37093715.
47. Flahaut, S.,, J. Frere,, P. Boutibonnes,, and Y. Auffray. 1997. Relationship between the thermotolerance and the increase of DnaK and GroEL synthesis in Entero-coccus faecalis ATCC19433. J. Basic Microbiol. 37:251258.
48. Flahaut, S.,, J.-M. Laplace,, and Y. Auffray. 1998. The oxidative stress response in Enterococcus faecalis: relationship between H202 tolerance and H202 stress proteins. Lett. Appl. Microbiol. 26:259264.
49. Fridovich, I. 1999. Fundamental aspects of reactive oxygen species, or what's the matter with oxygen? Ann. N.Y. Acad. Sci. 893:1318.
50. Gallin, J. I.,, and P. J. VanDemark. 1964. Evidence for oxidative phosphorylation in Streptococcus faecalis. Biochem. Biophys. Res. Commun. 17:630635.
51. Gennis, R. B.,, and V. Stewart,. 1996. Respiration, p. 217261. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
52. Ghim, S.-Y.,, C. C. Kim,, E. R. Bonner,, J. N. D'Elia,, G. K. Brabner,, and R. L. Switzer. 1999. The Enterococcus faecalis pyr operon is regulated by autogenous transcriptional attenuation at a single site in the 5' leader. J. Bacteriol. 181:13241329.
53. Giard, J.-C.,, A. Rince,, H. Capiaux,, Y. Auffray,, and A. Hartke. 2000. Inactivation of the stress- and starvation-inducible gls24 operons has a pleiotrophic effect on cell morphology, stress sensitivity, and gene expression in Enterococcus faecalis. J. Bacteriol 182:45124520.
54. Goldman, B. S.,, K. K. Gabbert,, and R. G. Kranz. 1996. The temperature-sensitive growth and survival phenotypes of Escherichia coli cydDC and cydAB strains are due to deficiencies in cytochrome bd and are corrected by exogenous catalase and reducing agents. J. Bacteriol. 178:63486351.
55. Gordon, J.,, R. A. Holman,, and J. W. McLeod. 1953. Further observations on the production of hydrogen peroxide by anaerobic bacteria. J. Pathol. Bacteriol. 66: 527537.
56. Gunsalus, I. C. 1947. Products of anaerobic glycerol fermentation by streptococci faecalis. J. Bacteriol. 54:239244.
57. Hardman, M. J.,, and G. G. Pritchard. 1987. Kinetics of activation of L-lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-biphosphate and by metal ions. Biochim. Biophys. Acta 912:185190.
58. Harold, E. M.,, and E. Levin. 1974. Lactic acid translocation: terminal step in glycolysis by Streptococcus faecalis. J. Bacteriol. 117:11411148.
59. Harold, E. M.,, and P. C. Maloney,. 1996. Energy transduction by ion currents, p. 283306. In E. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
60. Hastings, S. E.,, T. M. Kaysser,, E. Jiang,, J. C. Salerno,, R. B. Gennis,, and W. J. Ingledew. 1998. Identification of a stable semiquinone intermediate in the purified and membrane bound ubiquinol oxidase-cytochrome bd from Escherichia coli Eur. J. Biochem. 255:317323.
61. Hederstedt, L. 1999. Respiration without 02. Science 284:19411942.
62. Heefner, D. L.,, and F. M. Harold. 1982. ATP-driven sodium pump in Streptococcus faecalis. Proc. Natl. Acad. Sci. USA 79:27982802.
63. Hiremath, S. T.,, S. Paranjpe,, and C. SivaRaman. 1976. Purification and properties of citrate lyase from Streptococcus faecalis. Biochem. Biophys. Res. Commun. 72:11221128.
64. Hockings, P. D.,, and P. J. Rogers. 1997. Thermodynamic significance of the lactate gradient. Eur. J. Biochem. 246:574579.
65. Hollander, R. 1976. Correlation of the function of demethylmenaquinone in bacterial electron transport with its redox potential. FEBS Lett. 72:98100.
66. Hoskins, L. C.,, M. Agustines,, W. B. McKee,, E. T. Boulding,, M. Kriaris,, and G. Niedermeyer. 1985. Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J. Clin. Invest. 75:944953.
67. Huycke, M. M.,, W. Joyce,, and M. F. Wack. 1996. Augmented production of extracellular superoxide production by blood isolates of Enterococcus faecalis. J. Infect. Dis. 173:743746.
68. Huycke, M. M.,, D. R. More,, L. Shepard,, W. Joyce,, P. Wise,, Y. Kotake,, and M. S. Gilmore. 2001. Extracellular superoxide production by Enterococcus faecalis requires demethylmenaquinone and is attenuated by functional terminal quinol oxidases. Mol. Microbiol. in press.
69. Izard, T.,, A. Evarsson,, M. D. Allen,, A. H. Westphal,, R. N. Perham,, A. De Kok,, and W. G. J. Hoi. 1999. Principles of quasi-equivalence and Euclidean geometry govern the assembly of cubic and dodecahedral cores of pyruvate dehydrogenase complexes. Proc. Natl. Acad. Sci. USA 96:12401245.
70. Jacobs, N. J.,, and P. J. VanDemark. 1960. Comparison of the mechanism of glycerol oxidation in aerobically and anaerobically grown Streptococcus faecalis. J. Bacteriol. 79:532538.
71. Jiinemann, S. 1997. Cytochrome bd terminal oxidase. Biochim. Biophys. Acta 1321: 107127.
72. Kakinuma, Y. 1998. Inorganic cation transport and energy transduction in Enterococcus hirae and other streptococci. Microbiol. Mol. Biol. Rev. 62:10211045.
73. Kakinuma, Y. 1987. Sodium/proton antiporter in Streptococcus faecalis. J. Bacteriol. 169:38863890.
74. Kakinuma, Y.,, and K. Igarashi. 1988. Active potassium extrusion regulated by intracellular pH in Streptococcus faecalis. J. Biol. Chem. 263:1416614170.
75. Kakinuma, Y.,, and K. Igarashi. 1999. Isolation and properties of Enterococcus hirae mutant defective in the potassium/proton antiport system. J. Bacteriol. 181: 41034105.
76. Kakinuma, Y.,, and K. Igarashi. 1990. Mutants of Streptococcus faecalis sensitive to alkaline pH lack Na+-ATPase. J. Bacteriol 172:17321735.
77. Kawano, M.,, R. Abuki,, K. Igarashi,, and Y. Kakinuma. 2000. Evidence for Na+ influx via the NtpJ protein of the Ktrll K+ uptake system in Enterococcus hirae. J. Bacteriol. 182:25072512.
78. Kawano, M.,, K. Igarashi,, and Y. Kakinuma. 1999. Two major potassium uptake systems, Ktrl and Ktrll, in Enterococcus hirae. FEMS Microbiol. Lett. 176:449453.
79. Kersten, H. 1984. On the biological significance of modified nucleosides in tRNA. Prog. Nucleic Acid Res. Mol. Biol. 31:59114.
80. Kim, W. S.,, N. Khunajakr,, J. Ren,, and N. W. Dunn. 1998. Conservation of the major cold shock protein in lactic acid bacteria. Curr. Microbiol. 37:333336.
81. Kravanja, M.,, R. Engelmann,, V. Dossonnet,, M. Bliiggel,, H. E. Meyer,, R. Frank,, A. Galinier,, J. Deutscher,, N. Schnell,, and W. Hengstenberg. 1999. The hprK gene of Enterococcus faecalis encodes a novel bifunctional enzyme: the HPr ki-nase/phosphatase. Mol. Microbiol. 31:5966.
82. Lahti, R.,, and M. Suonpaa. 1982. Role of glutathione in the regulation of inorganic pyrophosphatase activity in Streptococcus faecalis. J. Gen. Microbiol. 128: 10231026.
83. Leboeuf, C.,, Y. Auffray,, and A. Hartke. 2000. Cloning, sequencing, and characterization of the ccpA gene from Enterococcus faecalis. Int. J. Food Microbiol. 55: 109113.
84. Li, X.,, G. M. Weinstock,, and B. E. Murray. 1995. Generation of auxotrophic mutants of Enterococcus faecalis. J. Bacteriol. 177:68666873.
85. Lindmark, D. G.,, P. Paolella,, and N. P. Wood. 1969. The pyruvate formate-lyase system of Streptococcus faecalis. J. Biol. Chem. 244:36053612.
86. Lisiecki, P.,, P. Wysocki,, and J. Mikucki. 1999. Occurrence of siderophores in enterococci. Zentralbl. Bakteriol. 289:807815.
87. London, J. 1968. Regulation and function of lactate oxidation in Streptococcus faecium. J. Bacteriol. 95:13801387.
88. London, J.,, and E. Y. Meyer. 1969. Malate utilization by a group D Streptococcus: physiological properties and purification of an inducible malic enzyme. J. Bacteriol. 98:705711.
89. London, J.,, and E. Y. Meyer. 1970. Malate utilization by a group D Streptococcus: regulation of malic enzyme synthesis by an inducible malate permease. J. Bacteriol. 102:130137.
90. Lutsendo, S.,, and J. H. Kaplan. 1995. Organization of P-type ATPases: significance of structural diversity. Biochemistry 34:1560715613.
91. Mallett, T. C.,, and A. Claiborne. 1998. Oxygen reactivity of an NADH oxidase C42S mutant: evidence for a C(4a)-peroxyflavin intermediate and a rate-limiting conformational change. Biochemistry 37:87908802.
92. Mande, S. S.,, D. Parsonage,, A. Claiborne,, and W. G. J. Hoi. 1995. Crystallo-graphic analyses of NADH peroxidase Cys42Ala and Cys42Ser mutants: active site structures, mechanistic implications, and an unusual environment of Arg 303. Biochemistry 34:69856992.
93. Marcinkeviciene, J.,, W. Jiang,, G. Locke,, L. M. Kopcho,, M. J. Rogers,, and R. A. Copeland. 2000. A second dihydroorotate dehydrogenase (Type A) of the human pathogen Enterococcus faecalis: expression, purification, and steady-state kinetic mechanism. Arch. Biochem. Biophys. 377:178186.
94. Marcinkeviciene, J.,, L. M. Tinney,, K. H. Wang,, M. J. Rogers,, and R. A. Copeland. 1999. Dihydroorotate dehydrogenase B of Enterococcus faecalis. Characterization and insights into chemical mechanism. Biochemistry 38:1312913137.
95. Marina, A.,, M. Uriarte,, B. Barcelona,, V. Fresquet,, J. Cervera,, and V. Rubio. 1998. Carbamate kinase from Enterococcus faecalis and Enterococcus faecium. Cloning of the genes, studies on the enzyme expressed in Escherichia coli, and sequence similarity with N-acetyl-L-glutamate kinase. Eur. J. Biochem. 253:280291.
96. Maskell, J. P. 1980. The functional interchangeability of enterobacterial and staphylococcal iron chelators. Antonie van Leeuwenhoek 46:343351.
97. Maurer, T.,, R. Doker,, A. Gorier,, W. Hengstenberg,, and H. R. Kalbitzer. 2001. Three-dimensional structure of the histidine-containing phosphocarrier protein (HPr) from Enterococcus faecalis in solution. Eur. J. Biochem. 268:635644.
98. Meganathan, R., 1996. Biosynthesis of the isoprenoid quinones menaquinone (vitamin K2) and ubiquinone (coenzyme Q), p. 642656. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed., vol. 1. ASM Press, Washington, D.C.
99. Miles, R. J. 1992. Catabolism in mollicutes. J. Gen. Microbiol. 138:17731783.
100. Miller, H.,, L. B. Poole,, and A. Claiborne. 1990. Heterogeneity among the flavin-containing NADH peroxidases of group D streptococci. Analysis of the enzyme from Streptococcus faecalis ATCC 9790.J. Biol. Chem. 265:98579863.
101. Mirsa, H. P.,, and I. Fridovich. 1972. The univalent reduction of oxygen by reduced flavins and quinones.J. Biol. Chem. 247:188192.
102. Murata, T.,, K. Igarashi,, Y. Kakinuma,, and I. Yamato. 2000. Na+ binding of V-type Na+-ATPase in Enterococcus hirae. J. Biol. Chem. 275:1341513429.
103. Murata, T.,, K. Takase,, I. Yamato,, K. Igarashi,, and Y. Kakinuma. 1996. The ntpj gene in the Enterococcus hirae ntp operon encodes a component of Ktrll potassium transport system functionally independent of vacuolar Na+-ATPase. J. Biol. Chem. 271:1004210047.
104. Murata, T.,, K. Takase,, I. Yamato,, K. Igarashi,, and Y. Kakinuma. 1997. Purification and reconstitution of Na+-translocating vacuolar ATPase from Enterococcus hirae. J. Biol. Chem. 272:2488524890.
105. Murata, T.,, I. Yamato,, K. Igarashi,, and Y. Kakinuma. 1996. Intracellular Na+ regulates transcription of the ntp operon encoding a vacuolar-type Na+-translocating ATPase in Enterococcus hirae. J. Biol. Chem. 271:2366123666.
106. Nakamura, T.,, R. Yuda,, T. Unemoto,, and E. P. Bakker. 1998. KtrAB, a new type of bacterial Kl-uptake system from Vibrio alginolyticus. J. Bacteriol. 180: 34913494.
107. Nishiyama, Y.,, V. Massey,, K. Takeda,, S. Kawasaki,, J. Sato,, T. Watanabe,, and Y. Niimura. 2001. Hydrogen peroxide-forming NADH oxidase belonging to the peroxiredoxin oxidoreductase family: existence and physiological role in bacteria. J. Bacteriol. 183:24312438.
108. Ochsner, U. A.,, D. J. Hassett,, and M. L. Vasil. 2001. Genetic and physiological characterization of ohr, encoding a protein involved in organic hydroperoxide resistance in Pseudomonas aeruginosa. J. Bacteriol. 183:773778.
109. Parsonage, D.,, J. Luba,, T. C. Mallett,, and A. Claiborne. 1998. The soluble a-glycerophosphate oxidase from Enterococcus casseliflavus. Sequence homology with the membrane-associated dehydrogenase and kinetic analysis of the re-combinant enzyme. J. Biol. Chem. 273:2381223822.
110. Patel, M.,, J. Marcinkeviciene,, and J. S. Blanchard. 1998. Enterococcus faecalis glutathione reductase: purification, characterization and expression under normal and hyperbaric Oz conditions. FEMS Microbiol. Lett. 166:155163.
111. Perham, R. N. 1991. Domains, motifs, and linkers in 2-oxo acid dehydrogenase multienzyme complexes: a paradigm in the design of a multifunctional protein. Biochemistry 30:85018512.
112. Poole, L. B.,, and A. Claiborne. 1988. Evidence for a single active-site cysteinyl residue in the streptococcal NADH peroxidase. Biochem. Biophys. Res. Commun. 153:261266.
113. Poole, L. B.,, and A. Claiborne. 1986. Interactions of pyridine nucleotides with redox forms of the flavin-containing NADH peroxidase from Streptococcus faecalis. J. Biol. Chem. 261:1452514533.
114. Poole, L. B.,, and A. Claiborne. 1989. The non-flavin redox center of the streptococcal NADH peroxidase. II. Evidence for a stabilized cysteine-sulfenic acid. J. Biol. Chem. 264:1233012338.
115. Poole, L. B.,, C. M. Reynolds,, Z. A. Wood,, P. A. Karplus,, H. R. Ellis,, and M. L. Calzi. 2000. AhpF and other NADH:peroxiredoxin oxidoreductases, homo-logues of low Mr thioredoxin reductase. Eur. J. Biochem. 267:61266133.
116. Poolman, B.,, A. J. M. Driessen,, and W. N. Konings. 1987. Regulation of arginme-onuthine exchange and the arginine deiminase pathway in Streptococcus lactis. J. Bacteriol. 169:55975604.
117. Postma, P. W.,, J. W. Lengeler,, and G. R. Jacobson. 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57:543594.
118. Poulsen, L. K.,, T. R. Licht,, C. Rang,, K. A. Krogfelt,, and S. Molin. 1995. Physiological state of Escherichia coli BJ4 growing in the large intestines of streptomycin-treated mice.J. Bacteriol. 177:58405845.
119. Poyart, C.,, P. Berche,, and P. Trieu-Cuot. 1995. Characterization of superoxide dismutase genes from gram-positive bacteria by polymerase chain reaction using degenerate primers. FEMS Microbiol. Lett. 131:4145.
120. Presecan-Siedel, E.,, A. Galinier,, R. Longin,, J. Deutscher,, A. Danchin,, P. Gla-ser,, and I. Martin-Verstraete. 1999. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J. Bacteriol. 181:68896897.
121. Pritchard, G. G.,, and J. W. T. Wimpenny. 1978. Cytochrome formation, oxygen-induced proton extrusion and respiratory activity in Streptococcus faecalis var. zymogenes grown in the presence of haematin. J. Gen. Microbiol. 104:1522.
122. Pugh, S. Y. R.,, and C. J. Knowles. 1982. Growth of Streptococcus faecalis var. zymogenes on glycerol: the effect of aerobic and anaerobic growth in the presence and absence of haematin on enzyme synthesis. J. Gen. Microbiol. 128:10091017.
123. Pugh, S. Y. R.,, and C. J. Knowles. 1983. Synthesis of catalase by "Streptococcus faecalis subsp. Zymogenes." Arch. Microbiol. 136:6063.
124. Ramos, H. C.,, T. Hoffmann,, M. Marino,, H. Nedjari,, E. Presecan-Siedel,, O. Dreesen,, P. Glaser,, and D. Jahn. 2000. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression.J. Bacteriol. 182:30723080.
125. Reizer, J.,, A. Reizer,, and M. H. Saier, Jr. 1992. The putative Na+/H+ antiporter (NapA) of Enterococcus hirae is homologous to the putative K+/H+ antiporter (KefC) of Escherichia coli. FEMS Microbiol. Lett. 94:161164.
126. Rincè, A.,, J.-C. Giard,, V. Pichereau,, S. Flahaut,, and Y. Auffray. 2001. Identification and characterization of gsp65, an organic hydroperoxide resistance (ohr) gene encoding a general stress protein in Enterococcus faecalis. J. Bacteriol. 183: 14821488.
127. Ritchey, T. W.,, and H. W. Seeley. 1974. Cytochromes in Streptococcus faecalis var. zymogenes grown in a haematin-containing medium.J. Gen. Microbiol. 85: 220228.
128. Ritchey, T. W.,, and H. W. Seeley, Jr. 1976. Distribution of cytochrome-like respiration in streptococci. J. Gen. Microbiol. 93:195203.
129. Rosenzweig, A. C.,, and T. V. O'Halloran. 2000. Structure and chemistry of the copper chaperone proteins. Curr. Opin. Chem. Biol. 4:140147.
130. Ross, R. R.,, and A. Claiborne. 1997. Evidence for regulation of the NADH peroxidase gene (npr) from Enterococcus faecalis by OxyR. FEMS Microbiol. Lett. 151:177183.
131. Ross, R. R.,, and A. Claiborne. 1992. Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. J. Mol. Biol. 227: 658671.
132. Riidiger, H. W.,, U. Langenbeck,, and H. W. Goedde. 1972. Oxidation of branched chain a-ketoacids in Streptococcus faecalis and its dependence on lipoic acid. Hoppe-Seyler'sZ . Physiol. Chem. 353:875882.
133. Samuelson, J. 1999. Why metronidazole is active against both bacteria and parasites. Antimicrob. Agents Chemother. 43:15331541.
134. Sawers, G.,, and G. Watson. 1998. A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol. Microbiol. 29:945954.
135. Schmidt, H.-L.,, W. Stocklein,, J. Danzer,, R. Kirch,, and B. Linbach. 1986. Isolation and properties of an H20-forming NADH oxidase from Streptococcus faecalis. Eur. J. Biochem. 156:149155.
136. Schofield, R. J.,, M. R. Dewards,, J. Matthews,, and J. R. Wilson. 1882. The pathway of arginine catabolism in Giardia intestinalis. Mol. Biochem. Parasitol. 51:2936.
137. Shane, B.,, A. L. Bognar,, R. D. Goldfarb,, and J. H. LeBowitz. 1983. Regulation of folylpoly-y-glutamate synthesis in bacteria: in vivo and in vitro synthesis of pteroylpoly-y-glutamates by Lactobacillus casei and Streptococcus faecalis. J. Bacteriol. 153:316325.
138. Sherrill, C.,, and R. C. Fahey. 1998. Import and metabolism of glutathione by Streptococcus mutans. J. Bacteriol. 180:14541459.
139. Shibata, C.,, T. Ehara,, K. Tomura,, K. Igarashi,, and H. Kobayashi. 1992. Gene structure of Enterococcus hirae (Streptococcus faecalis) F1Fo-ATPase, which functions as a regulator of cytoplasmic pH. J. Bacteriol. 174:61176124.
140. Simon, J.-R, and V. Stalon. 1982. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J. Bacteriol. 152:676681.
141. Simon, J.-R,, B. Wargnies,, and V. Stalon. 1982. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. J. Bacteriol. 150:10851090.
142. Snoep, J. L.,, J. M. Teixeira de Mattos,, and O. M. Neijssel. 1991. Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostat cultures of Enterococcus faecalis NCTC 775. FEMS Microbiol. Lett. 81:6366.
143. Snoep, J. L.,, M. van Bommel,, F. Lubbers,, J. J. Teixeira de Mattos,, and O. M. Neijssel. 1993. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate de-hydrogenase complex. J. Gen. Microbiol. 139:13251329.
144. Snoep, J. L.,, A. H. Westphal,, J. A. E. Benen,, M. J. Teixeira de Mattos,, O. M. Neijssel,, and A. de Kok. 1992. Isolation and characterisation of the pyruvate dehydrogenase complex of anaerobically grown Enterococcus faecalis NCTC 775. Eur. J. Biochem. 203:245250.
145. Sokatch, J. T.,, and I. C. Gunsalus. 1957. Aldonic acid metabolism. I. Pathway of carbon in an inducible gluconate fermentation by Streptococcus faecalis. J. Bacteriol. 73:452460.
146. Stehle, T.,, A. Claiborne,, and G. E. Schulz. 1993. NADH binding site and catalysis of NADH peroxidase. Eur. J. Biochem. 211:221226.
147. Unden, G. 1988. Differential roles for menaquinone and demethylmenaquinone in anaerobic electron transport of E. coli and their yhr-independent expression. Arch. Microbiol. 150:499503.
148. Wagner, A. F. V.,, M. Frey,, E. A. Neugebauer,, W. Schafer,, and J. Knappe. 1992. The free radical in pyruvate formate-lyase is located on glycine-734. Proc. Natl. Acad. Sci. USA 89:9961000.
149. Waitkins, S. A. 1978. Use of pyruvate fermentation compared with tetrazolium reduction in the differentiation of group D streptococci.J. Clin. Pathol. 31:692695.
150. Ward, D. E.,, R. P. Ross,, C. C. van der Weijden,, J. L. Snoep,, and A. Claiborne. 1999. Catabolism of branched-chain a-keto acids in Enterococcus faecalis: the bkd gene cluster, enzymes, and metabolic route. J. Bacteriol. 181:54335442.
151. Ward, D. E.,, C. C. van der Weijden,, M. J. van der Merwe,, H. V. Westerhoff,, A. Claiborne,, and J. L. Snoep. 2000. Branched-chain a-keto acid catabolism via the gene products of the bkd operon in Enterococcus faecalis: a new, secreted metabolite serving as a temporary redox sink. J. Bacteriol. 182:32393246.
152. Waser, M.,, D. Hess-Bienz,, K. Davies,, and M. Solioz. 1992. Cloning and disruption of a putative NaH-antiporter gene of Enterococcus hirae. J. Biol. Chem. 267:53965400.
153. Wauven, C. V.,, J.-P. Simon,, P. Slos,, and V. Stalon. 1986. Control of enzyme synthesis in the oxalurate catabolic pathway of Streptococcus faecalis ATCC 11700: evidence for the existence of a third carbamate kinase. Arch. Microbiol. 145:386390.
154. Whittenbury, R. 1964. Hydrogen peroxide formation and catalase activity in the lactic acid bacteria. J. Gen. Microbiol. 35:1326.
155. Winstedt, L.,, L. Frankenberg,, L. Hederstedt,, and C. von Wachenfeldt. 2000. Enterococcus faecalis V583 contains a cytochrome bd-type respiratory oxidase. J. Bacteriol. 182:38633866.
156. Winters, M. D.,, T. L. Schlinke,, W. A. Joyce,, W. R. Glore,, and M. M. Huycke. 1998. Prospective case-cohort control study of intestinal colonization with en-terococci that produce extracellular superoxide and the risk for colorectal adenomas or cancer. Am. J. Gastroenterol. 93:24912500.
157. Wittenberger, C. L.,, M. P. Palumbo,, R. B. Bridges,, and A. T. Brown. 1971. Mechanisms for regulating the activity of constitutive glucose degradative pathways in Streptococcus faecalis. J. Dent. Res. 50:10941102.
158. Wunderli-Ye, H.,, and M. Solioz. 1999. Copper homeostasis in Enterococcus hirae. Adv. Exp. Med. Biol. 448:255264.
159. Wunderli-Ye, H.,, and M. Solioz. 1999. Effects of promoter mutations on the in vivo regulation of the cop operon of Enterococcus hirae by copper(I) and cop-per(II). Biochem. Biophys. Res. Commun. 259:443449.
160. Yamazaki, A.,, K. Watanabe,, Y. Nishimura,, and T. Kamihara. 1976. Mutants of Streptococcus faecalis concerning pyruvate dehydrogenation. FEBS Lett. 64:364368.
161. Ye, J.-J.,, J. Minarcik,, and M. H. Saier, Jr. 1996. Inducer expulsion and the occurrence of an HPr(Ser-P)-activated sugar-phosphate phosphatase in Enterococcus faecalis and Streptococcus pyogenes. Microbiology 142:585592.
162. Yu, J.,, A. P. Bryant,, A. Marra,, M. A. Lonetto,, K. A. Ingraham,, A. F. Chalker,, D. J. Holmes,, D. Holden,, M. Rosenberg,, and D. McDevitt. 2001. Characterization of the Streptococcus pneumoniae NADH oxidase that is required for infection. Microbiology 147:431438.
163. Zervos, M. J.,, and D. R. Schaberg. 1985. Reversal of the in vitro susceptibility of enterococci to trimethoprim-sulfamethoxazole by folinic acid. Antimicrob. Agents Chemother. 28:446448.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error