1887

Chapter 6 : Plasmids and Transposons

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Plasmids and Transposons, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817923/9781555812348_Chap06-2.gif

Abstract:

This chapter describes the basic mechanisms of maintenance and transposition of the plasmids and transposons identified or known to function in the enterococci. Their use as genetic tools for studying enterococci is also discussed. Three classes of plasmids are known to be capable of replication in the enterococci: the rolling circle replicating (RCR) plasmids, the Incl8 plasmids, and the pheromone-responsive plasmids. A large number of individual transposons and several transposon classes have been described in enterococci. Enterococcal transposons generally fall into one of three classes: Tn3-family transposons, composite transposons, and conjugative transposons. The first two classes are widespread throughout the bacterial domain and their transposition mechanisms have been well described in and other gram-negative bacteria. The distribution and characteristics of several important Tn3-family and composite transposons native to the enterococci are described. Both the pheromone-responsive plasmids and the broad-hostrange plasmids have been implicated in the transfer of antibiotic resistance in the clinical setting. Work on plasmids and transposons in the enterococci and in other low G+C gram-positive bacteria has revealed that the general themes of plasmid and transposon function are conserved between gram-negative and gram-positive bacteria. Clearly, more information on plasmid biology and chromosomal genomics of diverse bacterial organisms is required before the hypothesis can be tested.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6

Key Concept Ranking

Genetic Elements
0.56903243
Genetic Recombination
0.54292756
DNA Polymerase III
0.48795855
DNA Polymerase I
0.4752406
0.56903243
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Model for replication of RCR plasmids. For details, see the text. The Rep protein is shown as a dimer in the model, but different initiators may function as monomers or oligomers. Similarly, the inactivated Rep protein may be released as a monomer, dimer, or oligomer. SC, supercoiled. Reprinted by permission from reference .

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

General organization of Incl8 replicons. and encode protein and antisense RNA copy control functions, respectively ( for pAMl, pIP501, pSM19035; in pAMl and RNAIII in the others), encodes the replication initiator protein ( in pAMl, pIPS0l, and pSM19035, respectively), contains the sites of protein action. The black box is the origin of replication, the open box is the primosome assembly site, and the hatched box is the resolution site, encodes the multimer resolvase ( in pAMl, pIP501 and pSM19035, respectively). encodes a topoisomerase ( in pAMl and γ in pSM19035). encodes a protein with homology to ParA-type partition proteins (δ in pSM19035). The , and genes encode a postsegregational killing system. The specific functions of each of these genes is described in the text.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model for initiation of pAM1 replication. The RNA polymerase and the RepE protein are represented by gray and black ovals, respectively. RNA is shown as a thick line, DNA strands as thin lines. The origin (ori) and the position of initiation of leading strand synthesis (+1) are indicated. The direction of transcription is indicated by a horizontal arrow. Two models are shown. In the first model, on the left, a DNA-RNA heteroduplex forms in the origin by an unknown mechanism (step 1). An RNase H activity, which could be carried by the RepE protein or a host-encoded protein, cleaves the RNA part of the heteroduplex at several positions, including the initiation site and a position located 10 nt upstream (step 2). The 5′ part of the transcript is released and the 10-nt-long oligoribonucleotide is used as a primer by Pol I (step 3). In the second model on the right, transcription stops in the origin, because of the presence of particular sequences or the RepE protein bound to the origin, acting as roadblock for the RNA polymerase (step 4). An RNA polymerase-associated RNase activity cleaves the RNA molecule ≈10 nt upstream of the initiation site (step 5). The 5′ part of the transcript is released and the 10-nt-long oligoribonucleotide remains annealed to its template and is used as a primer by Pol I (step 6). Reprinted by permission from reference 16. For an updated model, see Fig. 11 in reference .

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

(A) Generalized organization of pheromone plasmid replicons. The gene ( in pCFl0) encodes the replication initiator protein, and the cross-hatched box within represents the repeat structure, which constitutes the replication origin. The size of the origin region is similar in each -related gene, but the organization and sequence of the repeats vary. The ( in pCFl0) gene is a member of the ParA family of partition proteins and the pair most likely encodes a ParAB partition pair ( in pCFl0). In all pheromone plasmids the genes are flanked by a series of identical repeats, denoted by the vertically lined boxes. These repeats probably encode the site of action of the RepBC partition proteins. The number, sequence, and organization of the repeats vary between the different pheromone plasmids. The genes of pAM373 are inverted with respect to . The locus is an antisense RNA regulated PSK system (see text). A variable number of genes apparently unrelated to replication are located between and . (B) Organization of the iterons of pheromone plasmids. Each box represents a cluster of repeats, with the number of repeats given inside the box. Distance between clusters is given below. In each case, at least one repeat overlaps the putative promoter. Sequence data are provided in the following references: 185 and 187 for pADl; 73 for pCFl0; 55 for pPD1, except for the region downstream of from 183a; 36 for pAM373. Repeat organization is as published for pADl and according to the interpretation of the author (K. E. Weaver) for the other three.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Organization of the pADl PSK locus. The boxes with arrows indicate positions of the promoters (P-RNA I and P-RNA II) for the convergently transcribed RNAs. Solid boxes indicate the regions at the 5′ end of each gene encoding complementary sequences in RNA I and RNA II. The stipled box shows the location of the bidirectional terminator used to terminate transcription of both RNAs. The terminator stem-loop represents another important complementary region required for RNA-RNA interaction. The checkerboard box designated shows the coding region and associated ribosome binding site for a 33-amino-acid open reading frame believed to encode the toxic component of the PSK system.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Prototype representation of the two families of Tn-type transposons (Tn-family, Tn-family) and a comparison of two highly prevalent enterococcal transposons: Tn, encoding VanA-type vancomycin resistance, and Tn, encoding -type macroHde-lincosamide-streptogramin B resistance. The transposons are not drawn to scale. Arrows indicate the direction of transcription of the indicated genes or operons. This figure is adapted from references , and .

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Schematic drawing of composite enterococcal transposon . Segments along the upper line represent regions most likely derived from streptococcal or enterococcal sources. Segments along the lower line are typical for staphylococcal plasmids. The segment in the middle represents a structure indistinguishable from , an aminoglycoside-resistant transposon found widely distributed in staphylococcal and streptococcal/enterococcal species. Sm, streptomycin resistance gene; Mob, region typical of mobilization regions from small staphylococcal plasmids; Erm, erythromycin ribosomal methylase within a truncated version of Tn917; Rep, replication region typical for streptococcal/enterococcal broad host-range plasmids; Mer, mercury resistance operon; Bla, -lactamase gene encoded by Tn552. The representative shapes for the various insertion sequences are indicated to the left of the diagram.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Genetic map of . The gray line represents transposon DNA and the thick black arrows represent open reading frames. Four short reading frames, , to the right of , to the right of , to the right of ; and , to the right of are not shown. The position of the origin of conjugal DNA transfer, oriT, is indicated between and . The thin arrows indicate five promoters and their direction of transcription.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Binding sites for Int and Xis on Tn916. The thick black line represents transposon DNA. The diamonds labeled Int-C show where the C-terminal domains of Int bind to the transposon ends and flanking bacterial DNA. The black triangles labeled DR-2 and Int-N show the positions and relative orientation of binding sites for the N-tenrtinal domain of integrase. The open triangles labeled Xis show the positions and relative orientation of binding sites for Xis.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Model for the alignment of the left and right ends of Tn916 during excision, (adapted from reference ). The left and right parts of the figure show two different views of the complex. The heavy black line represents the DNA of the right end of Tn916 and the open line represents the DNA of the left end of Tn916. The hatched open line represents flanking bacterial DNA. The positions indicated by B, T′, B′ and T indicate binding sites for the C-terminal domain of Int. The positions indicated by Nl, N2, Nl′, and N2′ indicate binding sites for the N-terminal domain of Int. In the left part of the figure, the large circles represent the C-terminal domain of Int molecules, and the small circles represent the N-terminal domains. In the right part of the figure, the large cylinders represent the C-terminal domain of Int, and the small circles represent the N-terminal domain. The hatched circle in the left part of the figure and the hatched cylinder on the right represent an Int molecule that may be recruited into the complex from solution. The hatched object labeled Xis indicates where Xis binds at the left end of the transposon.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

Model for transposition. The thick lines represent and the thin lines represent the DNA adjacent to the transposon. Coupling sequences are indicated by the hypothetical nucleotide pairs X-Y, Q-R, and A-B. (A) Cleavage of one DNA strand at each end of the transposon on the 5′ side of the coupling sequence, indicated by the vertical arrows, followed by DNA strand exchange leads to the formation of a Holliday junction intermediate. A second round of cleavage and DNA strand exchange results in the formation of an excised circular intermediate form of the transposon that contains a heteroduplex region formed from the base pairs originally present in the coupling sequences flanking the transposon in the donor. The reciprocal product can be processed by DNA replication to yield a pair of excisant molecules, each carrying one of the coupling sequences originally flanking the transposon. (B) Following introduction of a single strand of the circular intermediate form of the transposon into the recipient, the complementary strand is synthesized to form a new intermediate with only one of the coupling sequences originally flanking the transposon in the donor. A similar recombination event to that shown in panel A results in the transposon being integrated into the recipient DNA where it is flanked on each side by a heteroduplex region composed of coupling sequence and target DNA. Following replication, two DNA molecules are produced, with sequences from the circular form of the transposon at either the left or the right of the integrated transposon.

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817923.chap6
1. Alonso, J. C.,, S. Ayora,, I. Canosa,, F. Weise,, and F. Rojo. 1996. Site-specific recombination in gram-positive theta-replicating plasmids. FEMS Microbiol. Lett. 142:110.
la. An, F. Y.,, and D. B. Clewell. 1991. Tn917 transposase. Sequence correction reveals a single open reading frame corresponding to the tnpA determinant of Tn3-family elements. Plasmid 25:121124.
2. An, F. Y.,, and D. B. Clewell. 1997. The origin of transfer (oriT) of the enterococcal, pheromone-responding, cytolysin plasmid pADl is located within the repA determinant. Plasmid 37:8794.
2a. Andrup, L. Personal communication.
3. Argos, P.,, A. Landy,, K. Abremsk,, J. B. Egan,, E. Haggard-Ljungquist,, R. H. Hoess,, M. J. Kahn,, W. Kalionis,, S. V. L. Narayana,, L. S. Pierson,, N. Sternberg,, and J. M. Leong. 1986. The integrase family of site-specific recombinases: regional similarity and global diversity. EMBO J. 5:433440.
4. Arthur, M.,, C. Molinas,, E. Depardieu,, and P. Courvalin. 1993. Characterization of Tnl546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
5. Berg, D. E., 1989. Transposon Tn5, p. 185210. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA, American Society for Microbiology, Washington, D.C.
6. Berg, T.,, N. Firth,, S. Apisiridej,, A. Hettiaratchi,, A. Leelaporn,, and R. A. Skurray. 1998. Complete nucleotide sequence of pSK41: evolution of staphylococcal conjugative multiresistance plasmids. J. Bacteriol. 180:43504359.
7. Bertram, J.,, M. Stratz,, and P. Durre. 1991. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173: 443448.
8. Bidnenko, V.,, S. D. Ehrlich,, and L. Jannigre. 1998. In vivo relations between pAMβl-encoded type I topoisomerase and plasmid replication. Mol. Microbiol. 28:10051016.
9. Bonafede, M. E.,, L. L. Carias,, and L. B. Rice. 1997. Enterococcal transposon Tn53#4: evolution of a composite transposon through cointegration of enterococcal and staphylococcal plasmids. Antimicrob. Agents Chemother. 41:18541858.
10. Brantl, S. 1994. The copR gene product of plasmid pIP501 acts as a transcriptional repressor at the essential repR promoter. Mol Microbiol. 14:473483.
11. Brantl, S.,, E. Birch-Hirschfeld,, and D. Behnke. 1993. RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J. Bacteriol. 175:40524061.
12. Brantl, S.,, and E. G. H. Wagner. 1996. An unusually long-lived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. J. Mol. Biol 255:275288.
13. Brantl, S.,, and E. G. H. Wagner. 1997. Dual function of the copR gene product of plasmid pIP501. J. Bacteriol 179:70167024.
14. Bringel, F. G.,, G. L. Van Alstine,, and J. R. Scott. 1992. Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J. Bacteriol 174: 40364041.
15. Bruand, C.,, E. le Chatelier,, S. D. Ehrlich,, and L. Janniére. 1993. A fourth class of theta-replicating plasmids: the pAMβ1 family from gram-positive bacteria. Proc. Natl Acad. Sci. USA 90:1166811672.
16. Bruand, C.,, and S. D. Ehrlich. 1998. Transcription-driven DNA replication of plasmid pAMβ1 in Bacillus subtilis. Mol Microbiol 30:135145.
17. Bryan, E. M.,, T. Bae,, M. Kleerbezem,, and G. M. Dunny. 2000. Improved vectors for nisin-controlled expression in gram-positive bacteria. Plasmid 44:183190.
18. Buu-Hoi, A.,, and T. Horodniceanu. 1980. Conjugative transfer of multiple antibiotic resistance markers of Streptococcus pneumoniae. J. Bacteriol 143:313320.
19. Caillard, F.,, C. Carlier,, and P. Courvalin. 1987. Physical analysis of the conjugative shuttle transposon Tnl545. Plasmid 17:5860.
20. Caparon, M. G.,, and J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:10271034.
21. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanB-containing transposon (Tn53#2) and a lowaffinity penicillin-binding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180:44264434.
21a. Ceglowski, P. Personal communication.
22. Celli, J.,, and P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded tranfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28:103117.
23. Churchward, G., 2002. Conjugative transposons and related mobile elements. In N. Craig,, R. Craigie,, M. Gellert,, and A. Lambowitz (ed.), Mobile DNA II. ASM Press, Washington, D.C.
24. Clark, N. C.,, O. Olsvik,, J. M. Swenson,, C. A. Spiegel,, and F. C. Tenover. 1999. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob. Agents Chemother. 43:157160.
25. Clemans, D. L.,, P. E. Kolenbrander,, D. V. Debabov,, Q. Zhang,, R. D. Lunsford,, H. Sakone,, C. J. Whittaker,, M. P. Heaton,, and F. C. Neuhaus. 1999. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Infect. Immun. 67:24642474.
26. Clewell, D. B. 1990. Movable genetic elements and antibiotic resistance in Enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9:90102.
27. Clewell, D. B.,, and S. E. Flannagan,. 1993. The conjugative transposons of gram-positive bacteria, p. 369393. In D. B. Clewell (ed.), Bacterial Conjugation. Plenum Press, New York, N.Y.
28. Clewell, D. B.,, S. E. Flannagan,, and D. D. Jaworski. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3:229236.
29. Clewell, D. B.,, S. E. Flannagan,, Y. Ike,, J. M. Jones,, and C. Gawron-Burke. 1988. Sequence analysis of termini of conjugative transposon Tn916. J. Bacteriol. 170:30463052.
30. Clewell, D. B.,, and C. Gawron-Burke. 1986. Conjugative transposons and the dissemination of antibiotic resistance. Annu. Rev. Microbiol. 40:635659.
31. Clewell, D. B.,, Y. Yagi,, and B. Bauer. 1975. Plasmid-determined tetracycline resistance in Streptococcus faecalis: evidence for gene amplification during growth in the presence of tetracycline. Proc. Natl. Acad. Sci. USA 72:17201724.
32. Colmar, I.,, and T. Horaud. 1987. Enterococcus faecalis hemolysin-bacteriocin plasmids belong to the same incompatibility group. Appl. Environ. Microbiol. 53:567570.
33. Courvalin, P.,, and C. Carlier. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205:291297.
34. Dahl, K., H. E. W. Lundblad,, T. P. Rokenes,, O. Olsvik,, and A. Sundsfjord. 2000. Genetic linkage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiology 146:14691479.
35. Darini, A. L.,, M. F. Palepou,, and N. Woodford. 2000. Effects of the movement of insertion sequences on the structure of VanA glycopeptide resistance elements in Enterococcus faecium. Antimicrob. Agents Chemother. 44:13621364.
36. De Boever, E. H.,, D. B. Clewell,, and C. M. Fraser. 2000. Enterococcus faecalis conjugative plasmid pAM373: complete nucleotide sequence and genetic analysis of sex pheromone response. Mol. Microbiol. 37:13271341.
37. de la Hoz, A. B.,, S. Ayora,, I. Sitkiewicz,, S. Fernandez,, R. Pankiewicz,, J. C. Alonso,, and P. Ceglowski. 2000. Plasmid copy-number control and better-than-random segregation genes of pSM19035 share a common regulator. Proc. Natl. Acad. Sci. USA 97:728733.
38. del Solar, G.,, and M. Espinosa. 2000. Plasmid copy number control: an evergrowing story. Mol. Microbiol. 37:492500.
39. del Solar, G.,, R. Giraldo,, M. J. Ruiz-Eschevarria,, M. Espinosa,, and R. Diaz-Orejas. 1998. Replication and control of circular bacterial plasmids. Microbiol. Mol. Biol. Rev. 62:434464.
40. del Solar, G. H.,, M. Moscoso,, and M. Espinosa. 1993. Rolling-circle replicating plasmids from gram-positive and gram-negative bacteria: a wall falls. Mol. Microbiol. 8:789796.
41. Doolittle, W. F. 2000. Lateral genomics. Trends Biochem. Sci. 24:58.
42. Doucet-Populaire, F.,, P. Trieu-Cuot,, I. Dosbaa,, A. Andremont,, and P. Courvalin. 1991. Inducible transfer of conjugative transposon Tnl545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35:185187.
43. Dunny, G. M.,, L. N. Lee,, and D. J. LeBlanc. 1991. Improved electroporation and cloning vector system for gram-positive bacteria. Appl. Environ. Microbiol. 57:11941201.
44. Dunny, G. M.,, and B. A. B. Leonard. 1997. Cell-cell communication in gram-positive bacteria. Anna. Rev. Microbiol. 51:527564.
45. Dunny, G. M.,, B. A. B. Leonard,, and P. J. Hedberg. 1995. Pheromone-inducible conjugation in Enterococcus faecalis: interbacterial and host-parasite chemical communication. J. Bacteriol. 177:871876.
46. Espinosa, M.,, G. del Solar,, F. Rojo,, and J. C. Alonso. 1995. Plasmid rolling circle replication and its control. FEMS Microbiol. Lett. 130:111120.
47. Fayet, O.,, P. Ramond,, P. Polard,, M. F. Prere,, and M. Chandler. 1990. Functional similarities between the IS3 family of bacterial insertion elements. Mol. Microbiol. 4:17711777.
48. Flanary, P. L.,, R. D. Allen,, L. Dons,, and S. Kathariou. 1999. Insertional inactivation of the Listeria monocytogenes cheYA operon abolishes response to oxygen gradients and reduces the number of flagella. Can. J. Microbiol. 45:646652.
49. Flannagan, S. E.,, and D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173: 71367141.
50. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su,, and D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350354.
51. Franch, T.,, and K. Gerdes. 2000. U-turns and regulatory RNAs. Curr. Opin. Microbiol. 3:159164.
51a. Francia, V., et al. Unpublished data.
52. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of conjugative transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494502.
53. Frere, J.,, A. Benachour,, J. C. Giard,, J. M. Laplace,, S. Flahaut,, and Y. Auffray. 1998. A new theta-type thermosensitive replicon from Lactococcus lactis as an integration vector for Enterococcus faecalis. FEMS Microbiol. Lett. 161:107114.
54. Fujimoto, S. H.,, and Y. Ike. 2001. pAM401-based shuttle vectors that enable overexpression of promoterless genes and one-step purification of Tag fusion proteins directly from Enterococcus faecalis. Appl. Environ. Microbiol. 67:12621267.
55. Fujimoto, S.,, H. Tomita,, E. Wakamatsu,, K. Tanimoto,, and Y. Ike. 1995. Physical mapping of the conjugative bacteriocin plasmid pPDl of Enterococcus faecalis and identification of the determinant related to the pheromone response. J. Bacteriol. 177:55745581.
56. Galas, D. J.,, and M. Chandler,. 1989. Bacterial insertion sequences, p. 109162.In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
57. Gamier, E.,, S. Taourit,, P. Glaser,, P. Courvalin,, and M. Galimand. 2000. Characterization of transposon Tnl549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:14811489.
58. Gawron-Burke, C.,, and D. B. Clewell. 1982 A transposon in Streptococcus faecalis with fertility properties. Nature 300:281284.
59. Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182:561572.
60. Gerdes, K.,, A. P. Gultyaev,, T. Franch,, K. Pedersen,, and N. D. Mikkelsen. 1997. Antisense RNA-regulated programmed cell death. Annu. Rev. Genet. 31:131.
61. Gerdes, K.,, J. Møller-Jensen,, and R. B. Jensen. 2000. Plasmid and chromosome partitioning: surprises from phylogeny. Mol. Microbiol. 37:455466.
62. Gering, M.,, F. Götz,, and R. Brückner. 1996. Sequence and analysis of the replication region of the Staphylococcus xylosus plasmid pSX267. Gene 182:117122.
63. Glansdorf, N. 2000. About the last common ancestor, the universal life-tree and lateral gene transfer: a reappraisal. Mol. Microbiol. 38:177185.
64. Greenfield, T.,, E. Ehli,, T. Kirschenmann,, T. Franch,, K. Gerdes,, and K. E. Weaver. 2000. The antisense RNA of the par locus of pADl regulates the expression of a 33-amino-acid toxic peptide by an unusual mechanism. Mol. Microbiol. 37: 652660.
65. Greenfield, T.,, and K. E. Weaver. 2000. Antisense RNA regulation of the pADl par post-segregational killing system requires interaction at the 5' and 3' ends of the RNAs. Mol. Microbiol. 37:661670.
66. Guo, E.,, D. N. Gopaul,, and G. D. Van Duyne. 1997. Structure of the Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:4046.
67. Hammerum, A. M.,, L. B. Jensen,, and F. M. Aarestrup. 1998. Detection of the sat A gene and transferability of virginiamycin resistance in Enterococcus faecium from food-animals. FEMS Microbiol Lett. 168:145151.
68. Hanrahan, J.,, C. Hoyen,, and L. B. Rice. 2000. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob. Agents Chemother. 44:13491351.
69. Hartley, R. W.,, and C. J. Paddon. 1986. Use of plasmid pTVl in transposon mutagenesis and gene cloning in Bacillus amyloliquefaciens. Plasmid 16:4551.
70. Heath, D. G.,, F. Y. An,, K. E. Weaver,, and D. B. Clewell. 1995. Phase variation of conjugation functions of Enterococcus faecalis plasmid pADl relates to changes in number of direct repeat (iteron) sequences. J. Bacteriol. 177:54535459.
71. Heaton, M.,, and S. Handwerger. 1995. Conjugative mobilization of a vancomycin resistance plasmid by a putative Enterococcus faecium sex pheromone response plasmid. Microb. Drug Res. 1:177183.
72. Heaton, M. P.,, L. F. Discotto,, M. J. Pucci,, and S. Handwerger. 1996. Mobilization of vancomycin resistance by transposon-mediated fusion of a VanA plasmid with an Enterococcus faecium sex pheromone-response plasmid. Gene 171:917.
73. Hedberg, P. J.,, B. A. B. Leonard,, R. E. Ruhfel,, and G. M. Dunny. 1996. Identification and characterization of the genes of Enterococcus faecalis plasmid pCFl0 involved in replication and in negative control of pheromone-inducible conjugation. Plasmid 35:4657.
73a. Hinerfeld, D.,, and G. Churchward. Unpublished results.
74. Hinerfeld, D.,, and G. Churchward. 2001. Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J. Bacteriol. 183: 29472951.
74a. Hinerfeld, D.,, and G. Churchward. 2001. Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol. Microbiol. 41:14591467.
75. Hirt, H.,, R. Wirth,, and A. Muscholl. 1996. Comparative analysis of 18 sex pheromone plasmids from Enterococcus faecalis: detection of a new insertion element on pPDl and implications for the evolution of this plasmid family. Mol. Gen. Genet. 252:640647.
75a. Hochhut, B.,, J. Marrero,, and M. K. Waldor. 2000. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae 0139. J. Bacteriol. 182:20432047.
76. Hochhut, B.,, and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32:99110.
77. Hodel-Christian, S. L.,, and B. E. Murray. 1991. Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031. Antimicrob. Agents Chemother. 35:11471152.
78. Hodel-Christian, S. L.,, and B. E. Murray. 1992. Comparison of the gentamicin resistance transposon Tn5281 with regions encoding gentamicin reistance in Enterococcus faecalis isolates from diverse geographic regions. Antimicrob. Agents Chemother. 36:22592264.
79. Hols, R.,, A. Baulard,, D. Garmyn,, B. Delplace,, S. Hogan,, and J. Delcour. 1992. Isolation and characterization of genetic expression and secretion signals from Enterococcus faecalis through the use of broad-host-range alpha-amylase probe vectors. Gene 118:2130.
80. Horodniceanu, T.,, L. Bougueleret,, and G. Bieth. 1981. Conjugative transfer of multiple-antibiotic resistance markers in beta hemolytic group A, B, F and G streptococci in the absence of extrachromosomal deoxyribonucleic acid. Plasmid 5:127137.
81. Hosking, S. L.,, M. E. Deadman,, E. R. Moxon,, J. F. Peden,, and N. J. Saunders. 1998. An in silico evaluation of Tn916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd. Microbiology 144:25252530.
82. Ike, Y.,, and D. B. Clewell. 1984. Genetic analysis of the pADl pheromone response in Streptococcus faecalis, using transposon Tn917 as an insertional mutagen. J. Bacteriol. 158:777783.
83. Ike, Y.,, and D. B. Clewell. 1992. Evidence that the hemolysin/bacteriocin phe-notype of Enterococcus faecalis subsp. zymogenes can be determined by plasmids in different incompatibility groups as well as by the chromosome. J. Bacteriol. 174:81728177.
84. Ishiwa, H.,, and H. Shibahara. 1985. New shuttle vectors for Escherichia coli and Bacillus subtilis II. Plasmid pHY300PLK, a multipurpose cloning vector with a polylinker, derived from pHY460. Jpn. J. Genet. 60:235243.
85. Janntere, L.,, V. Bidnenko,, S. McGovem,, S. D. Erhlich,, and M. A. Petit. 1997. Replication terminus for DNA polymerase I during initiation of pAMjSl replication: role of the plasmid-encoded resolution system. Mol. Microbiol. 23:525535.
86. Janntére, L.,, A. Gruss,, and S. D. Ehrlich,. 1993. Plasmids, p. 625644. In A. L. Sonenshein,, J. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria: Biochemistry, Physiology, and Molecular Genetics. American Society for Microbiology, Washington, D.C.
87. Jaworski, D. D.,, and D. B. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176:33283335.
88. Jaworski, D. D.,, and D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177:66446651.
89. Jia, Y.,, and G. Churchward. 1999. Interactions of the integrase protein of the conjugative transposon Tn916 with its specific DNA binding sites. J. Bacteriol. 181:61146123.
90. Kalnin, K.,, S. Stegalkina,, and M. Yarmolinsky. 2000. pTAR-encoded proteins in plasmid partitioning. J. Bacteriol. 182:18891894.
91. Kearny, K.,, G. F. Fitzgerald,, and J. F. M. L. Seegers. 2000. Identification and characterization of an active plasmid partition mechanism for the novel Lactococcus lactis plasmid pCI2000. J. Bacteriol 182:3037.
92. Khan, S. A. 1997. Rolling-circle replication of bacterial plasmids. Microbiol. Mol. Biol. Rev. 61:442455.
93. Khan, S. A. 2000. Plasmid rolling-circle replication: recent developments. Mol Microbiol. 37:477484.
94. Khan, S. A.,, and R. P. Novick. 1980. Terminal nucleotide sequences of Tn551, a transposon specifying erythromycin resistance in Staphylococcus aureus homology with Tn3. Plasmid 4:148154.
95. Kim, S.,, and A. Landy. 1992. Lambda Int protein bidges between higher order complexes at two distant chromosomal loci attL and attR. Science 256:198203.
96. Koonin, E. V.,, and T. V. Ilyina. 1993. Computer-assisted dissection of rolling circle DNA replication. Biosystems 30:241268.
97. LeBlanc, D. J.,, L. N. Lee,, and A. Abu-Al-Jaibat. 1992. Molecular, genetic, and functional analysis of the basic replicon of pVA380-l, a plasmid of oral streptococcal origin. Plasmid 28:130145.
98. Le Chatelier, E.,, S. D. Ehrlich,, and L. Janntére. 1994. The pAMβ1 repressor regulates copy number by controlling transcription of the repE gene. Mol. Microbiol. 14:463471.
99. Le Chatelier, E.,, S. D. Ehrlich,, and L. Janniére. 1996. Countertranscript-driven attenuation system of the pAMβ1 repE gene. Mol Microbiol. 20:10991112.
100. Le Chatelier, E.,, L. Janniére,, S. D. Ehrlich,, and D. Canceill. 2001. The RepE initiator is a double-stranded and single-stranded DNA binding protein that forms an atypical open complex at the onset of replication of plasmid pAMβ1 from gram-positive bacteria. J. Biol. Chem. 276:1023410246.
101. Leffers, G. G.,, and S. Gottesman. 2000. Lambda Xis degradation in vivo by Lon and FtsH. J. Bacteriol. 180:15731577.
102. Lett, M. C. 1988. Tn3-like elements: molecular structure, evolution. Biochimie 70:167176.
103. Lu, F.,, and G. Churchward. 1994 Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13:15411548.
104. Lu, E.,, and G. Churchward. 1995. Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177:19381946.
105. Lyon, B. R.,, J. W. May,, and R. A. Skurray. 1984. Tn4002: a gentamicin and kanamycin resistance transposon in Staphylococcus aureus. Mol. Gen. Genet. 193: 554556.
106. Lyras, D.,, and J. I. Rood,. 1997. Transposable genetic elements and antibiotic resistance determinants from Clostridium perfringens and Clostridium difficile, p. 7392. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
107. Lyras, D.,, and J. I. Rood,. 2000. Clostridial genetics, p. 529539. In V. A. Fischetti (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, D.C.
108. Macrina, F. L.,, J. A. Tobian,, K. R. Jones,, R. P. Evans,, and D. B. Clewell. 1982. A cloning vector able to replicate in Escherichia coli and Streptococcus sanguis. Gene 19:345353.
109. Manganelli, R.,, S. Ricci,, and G. Pozzi. 1996. Conjugative transposon Tn916: evidence for excision with formation of 5'-protruding termini. J. Bacteriol. 178: 58135816.
110. Manganelli, R.,, S. Ricci,, and G. Pozzi. 1997. The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid 38:7178.
111. Manganelli, R.,, L. Romano,, S. Ricci,, M. Zazzi,, and G. Pozzi. 1995. Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid 34:4857.
112. Marra, D.,, B. Pethel,, G. Churchward,, and J. R. Scott. 1999. The frequency of conjugative transposition of Tn916 is not determined by the frequency of excision. J. Bacteriol. 181:54145418.
113. Marra, D.,, and J. R. Scott. 1999. Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31:609621.
114. Martin, B.,, G. Alloing,, V. Me jean,, and J.-P. Claverys. 1987. Constitutive expression of erythromycin resistance mediated by the ermAM determinant of plasmid pAMβ1 results from deletion of 5' leader peptide sequences. Plasmid 18:250253.
115. McCormick, M.,, W. Wishart,, H. Ohtsubo,, F. Heffron,, and E. Ohtsubo. 1981. Plasmid cointegrates and their resolution mediated by transposon Tn3 mutants. Gene 15:103118.
116. Moitoso de Vargas, L.,, C. A. Pargellis,, N. M. Hasan,, E. W. Bushman,, and A. Landy. 1988. Autonomous DNA binding domains of lambda integrase recognize two different sequence families. Cell 54:923929.
116a. Muller, D.,, and G. Churchward. Unpublished results.
117. Mundy, L. M.,, D. F. Sahm,, and M. Gilmore. 2000. Relationships between enterococcal virulence and antimicrobial resistance. Clin. Microbiol. Rev. 13:513522.
118. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269288. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
119. Murray, B. E.,, F. Y. An,, and D. B. Clewell. 1986. Plasmids and pheromone response of the β-lactamase-producer Streptococcus (Enterococcus) faecalis HH22. Antimicrob. Agents Chemother. 32:547551.
120. Nelson, K. E.,, D. L. Richardson,, and B. A. Dougherty. 1997. Tn916 transposition in Haemophilus influenzae Rd: preferential insertion into noncoding DNA. Microb. Comp. Genomics 2:313321.
121. Noble, W. C.,, Z. Virani,, and R. G. A. Gee. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93:195198.
122. Norgren, M.,, and J. R. Scott. 1991. The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173:319324.
123. Norgren, M. G.,, and J. R. Scott. 1991. Presence of the conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173:319324.
124. Novick, R. P. 1998. Contrasting lifestyles of rolling-circle phages and plasmids. Trends Biochem. Sci. 23:434438.
125. Nunes-Duby, S. E.,, H. J. Kwon,, R. Tirumalai,, T. Ellenberger,, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26:391406.
126. Ochman, H.,, J. G. Lawrence,, and E. A. Groisman. 2000. Lateral gene transfer and the nature of bacterial innovation. Nature 405:299304.
127. Oggioni, M. R.,, C. G. Dowson,, J. M. Smith,, R. Prowedi,, and G. Pozzi. 1996. The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid 35: 156163.
128. Pattee, P. A. 1981. Distribution of Tn551 insertion sites responsible for auxotrophy on the Staphylococcus aureus chromosome. J. Bacteriol 145:479488.
129. Perkins, J. B.,, and P. Youngman. 1983. Streptococcus plasmid pAMβ1 is composed of two separable replicons, one of which is closely related to Bacillus plasmid pBC16. J. Bacteriol 155:607615.
130. Perkins, J. B.,, and P. J. Youngman. 1984. A physical and functional analysis of Tn917, a streptococcus transposon in the Tn3 family that functions in Bacillus. Plasmid 12:119138.
131. Perkins, J. B.,, and P. J. Youngman. 1986. Construction and properties of Tn917-lac, a transposon derivative that mediates transcriptional gene fusions in Bacillus subtilis. Proc. Natl. Acad. Sci. USA 83:140144.
132. Pethel, B.,, and G. Churchward. 2000. Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid 43:123129.
133. Pournaras, S.,, A. Tsakris,, M. E Palepou,, A. Papa,, J. Douboyas,, A. Antoniadis,, and N. Woodford. 2000. Pheromone responses and high-level aminoglycoside resistance of conjugative plasmids of Enterococcus faecalis from Greece. J. Antimicrob. Chemother. 46:10131016.
134. Poyart, C.,, J. Celli,, and P. Trieu-Cuot. 1995. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Eschericia coli and Pseudomonas fluorescens. Antimicrob. Agents Chemother. 39:500506.
135. Poyart, C.,, and P. Trieu-Cuot. 1997. A broad-host-range mobilizable shuttle vector for the construction of transcriptional fusions to β-galactosidase in gram-positive bacteria. FEMS Microbiol. Lett. 156:193198.
136. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 8:24252433.
137. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1990. The integration-excision system of the conjugative transposon Tn1545 is structurally and functionally related to those of lambdoid phages. Mol. Microbiol 4:15131521.
138. Pujol, C.,, F. Chédin,, S. D. Ehrlich,, and L. Jannifère. 1998. Inhibition of a naturally ocoirring rolling-circle replicon in derivatives of the theta-replicating plasmid pIP501. Mol Microbiol. 29:709718.
139. Quintiliani, R., Jr.,, and P. Courvalin. 1996. Characterization of Tnl547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecium BM4281. Gene 172:18.
140. Raze, D.,, O. Dardenne,, S. Hallut,, M. Martinez-Bueno,, J. Coyette,, and J.-M. Ghuysen. 1998. The gene encoding the low-affinity penicillin-binding protein 3r in Enterococcus hirae is borne on a plasmid carrying other antibiotic resistance determinants. Antimicrob. Agents Chemother. 42:534539.
141. Rhinehart, E.,, N. E. Smith,, C. Wennersten,, E. Gorss,, J. Freeman,, G. Eliopoulos,, R. C. Moellering, Jr.,, and D. A. Goldmann. 1990. Rapid dissemination of β-lactamase-producing, aminoglycoside-resistant Enterococcus faecalis among patients and staff on an infant-toddler surgical ward. N. Engl. J. Med. 323:18141818.
142. Rice, L. B. 1998. Tn916-family conjugative transposons and dissemination of antimicrobial resistance determinants. Antimicrob. Agents Chemother. 42:18711877.
142a. Rice, L. B. Personal observation.
143. Rice, L. B.,, and L. L. Carias. 1998. Transfer of Tn5385, a composite, multiresistance element from Enterococcus faecalis. J. Bacteriol. 180:714721.
144. Rice, L. B.,, L. L. Carias,, and S. H. Marshall. 1995. Tn5384, a composite enterococcal mobile element conferring resistance to erythromycin and gentamicin whose ends are directly repeated copies of IS256. Antimicrob. Agents Chemother. 39:11471153.
145. Rice, L. B.,, L. L. Carias,, S. H. Marshall,, and M. C. Bonafede. 1996. Sequences found on staphylococcal β-lactamase plasmids integrated into the chromosome of Enterococcus faecalis CH116. Plasmid 35:8190.
146. Rice, L. B.,, S. H. Marshall,, and L. L. Carias. 1992. Tn5381, a conjugative transposon identifiable as a circular form in Enterococcus faecalis. J. Bacteriol. 174: 73087315.
147. Rice, L. B.,, and B. E. Murray,. 1995. β-lactamase-producing enterococci, p. 107114. In F. Brown, and J. J. Ferretti (ed.), Genetics of Streptococci, Enterococci and Lactococci. Developmental and Biological Standards, vol. 85. Karger, Basel, Switzerland.
148. Rice, L. B.,, and A. S. Thorisdottir. 1994. The prevalence of sequences homologous to IS256 in clinical enterococcal isolates. Plasmid 32:344349.
148a. Rollins, L. D.,, L. N. Lee,, and D. J. LeBlanc. 1985. Evidence for a disseminated erythromycin resistance determinant mediated by Tn917-like sequences among group D streptococci isolated from pigs, chickens, and humans. Antimicrob. Agents Chemother. 27:439444.
149. Rudy, C. K.,, L. Taylor,, D. Hinerfeld,, J. R. Scott,, and G. Churchward. 1997. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25:40614066.
150. Rudy, C. K.,, J. R. Scott,, and G. Churchward. 1997. DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179:25672572.
150a. Rudy, C.,, J. R. Scott,, and G. Churchward. Unpublished results.
151. Rudy, C. K.,, and J. R. Scott. 1996. Length of the coupling sequence of Tn916. J. Bacteriol. 176:33863388.
152. Salyers, A. A.,, N. B. Shoemaker,, and L. Y. Li. 1995. In the driver's seat: the Bacteroides conjugative transposons and the elements they mobilize. J. Bacteriol. 177:57275731.
153. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L.-Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59:579590.
154. Scott, J. R. 1992. Sex and the single circle: conjugative transposition. J. Bacteriol. 174:60056010.
155. Scott, J. R., 1993. Conjugative transposons, p. 597614. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, D.C.
156. Scott, J. R.,, F. Bringel,, D. Marra,, G. Van Alstine,, and C. K. Rudy. 1994. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11:10991108.
157. Scott, J. R.,, and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49:367397.
158. Scott, J. R.,, R. A. Kirchman,, and M. G. Caparon. 1988. An intermediate in the transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. USA 85:48094813.
159. Senghas, E.,, J. M. Jones,, M. Yamamoto,, C. Gawron-Burke,, and D. B. Clewell. 1988. Genetic organization of the bacterial conjugative transposon Tn916. J. Bacteriol. 170:245249.
160. Shaw, J. H.,, and D. B. Clewell. 1985. Complete nucleotide sequence of macrolide-lmcosamide-streptogramin B resistance transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 164:782796.
161. Sherratt, D., 1989. Tn3 and related transposable elements: site-specific recombination and transposition. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA, American Society for Microbiology, Washington, D.C.
162. Shoemaker, N. B.,, M. D. Smith,, and W. R. Guild. 1980. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in pneumococcus. Plasmid 3:8087.
163. Showsh, S. A.,, and R. E. Andrews. 1992. Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 28:213224.
164. Simjee, S.,, S. E. Manzoor,, A. R Fraise,, and M. J. Gill. 2000. Nature of transposon-mediated high-level gentamicin resistance in Enterococcus faecalis isolated in the United Kingdom. J. Antimicrob. Chemother. 45:565575.
165. Sioud, M.,, G. Baldacci,, P. Forterre,, and A.-M. de Recondo. 1988. Novobiocin induces accumulation of a single strand of plasmid pGRB-1 in the archaebacterium Halobacterium GRB. Nucleic Acids Res. 16:78337842.
166. Smidt, H.,, D. Song,, J. van Der Oost,, and W. M. de Vos. 1999. Random transposition by Tn916 in Desulfitobacterium dehalogenans allows for isolation and characterization of halorespiration-deficient mutants. J. Bacteriol. 181:68826888.
167. Smith, C. J.,, G. D. Tribble,, and D. P. Bayley. 1998. Genetic elements of Bacteroides species: a moving story. Plasmid 40:1229.
168. Stevens, A. M.,, N. B. Shoemaker,, L.-Y. Li,, and A. A. Salyers. 1993. Tetracycline regulation of genes on Bacteroides conjugative transposons. J. Bacteriol. 175: 61346141.
169. Storrs, M. J.,, C. Carlier,, C. Poyart-Salmeron,, P. Trieu-Cuot,, and P. Courvalin. 1991. Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J. Bacteriol. 173:43474352.
170. Summers, D. K.,, C. W. Beton,, and H. L. Withers. 1993. Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol. Microbiol. 8:10311038.
171. Su, Y. A.,, P. He,, and D. B. Clewell. 1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769778.
172. Suzuki, T.,, C. Shibata,, A. Yamaguchi,, K. Igarashi,, and H. Kobayashi. 1993. Complementation of an Enterococcus hirae (Streptococcus faecalis) mutant in the alpha subunit of the H(+)-ATPase by cloned genes from the same and different species. Mol Microbiol 9:111118.
173. Swinfield, T.-J.,, J. D. Oultram,, D. E. Thompson,, J. K. Brehm,, and N. P. Minton. 1990. Physical characterisation of the replication region of the Streptococcus faecalis plasmid pAMβ1. Gene 87:7990.
174. Takiguchi, R.,, H. Hashiba,, K. Aoyama,, and S. Ishii. 1989. Complete nucleotide sequence and characterization of a cryptic plasmid from Lactobacillus helviticus subsp. jugurti. Appl. Environ. Microbiol 55:16531655.
175. Tanaka, T.,, and M. Ogura. 1998. A novel Bacillus natto plasmid pLS32 capable of replication in Bacillus subtilis. FEBS Lett. 442:243246.
176. Taylor, K.,, and G. Churchward. 1997. Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol 179:11171125.
177. Thomas, C. M. 2000. Paradigms of plasmid organization. Mol Microbiol 37: 485491.
178. Thorisdottir, A. S.,, L. L. Carias,, S. H. Marshall,, M. Green,, M. J. Zervos,, C. Giorgio,, L. A. Mermel,, J. M. Boyce,, A. A. Medeiros,, H. Fraimow,, and L. B. Rice. 1994. IS6770, an enterococcal insertion-like element useful for determining the clonal relationship of clinical enterococcal isolates. J. Infect Dis. 170:15391548.
179. Tomich, P. K.,, F. Y. An,, and D. B. Clewell. 1980. Properties of erythromycin-inducible transposon Tn917 in Streptococcus faecalis. J. Bacteriol. 141:13661374.
180. Torres, O. R.,, R. Z. Korman,, S. A. Zahler,, and G. M. Dunny. 1991. The conjugative transposon Tn925: enhancement of conjugal transfer by tetracycline in Enterococcus faecalis and mobilization of chromosomal genes in both Bacillus subtilis and E. faecalis. Mol. Gen. Genet. 225:395400.
181. Trieu-Cuot, P.,, C. Carlier,, C. Poyart-Salmeron,, and P. Courvalin. 1991. An integrative vector exploiting the transposition properties of Tn1545 for insertional mutagenesis and cloning of genes from gram-positive bacteria. Gene 106: 2127.
182. Trieu-Cuot, P.,, C. Carlier,, C. Poyart-Salmeron,, and P. Courvalin. 1991. Shuttle vectors containing a multiple cloning site and a lacZα gene for conjugal transfer of DNA from Escherichia coli to gram-positive bacteria. Gene 102:99104.
183. Trieu-Cuot, P.,, C. Poyart-Salmeron,, C. Carlier,, and P. Courvalin. 1993. Sequence requirements for target activity in site-specific recombination mediated by the Int protein of transposon Tn1545. Mol. Microbiol. 8:179185.
183a. Weaver, K. E. Unpublished observations.
184. Weaver, K. E.,, and D. B. Clewell,. 1987. Transposon Tn917 delivery vectors for mutagenesis in Streptococcus faecalis, p. 1721. In J. J. Ferretti, and R. Curtiss III (ed.), Streptococcal Genetics. American Society for Microbiology, Washington, D.C.
185. Weaver, K. E.,, D. B. Clewell,, and F. An. 1993. Identification, characterization, and nucleotide sequence of a region of Enterococcus faecalis pheromone-responsive plasmid pADl capable of autonomous replication. J. Bacteriol. 175:19001909.
186. Weaver, K. E.,, K. D. Jensen,, A. Colwell,, and S. 1. Sriram. 1996. Functional analysis of the Enterococcus faecalis plasmid pADl-encoded stability determinant of par. Mol. Microbiol. 20:5363.
186a. Weaver, K. E.,, and P. Tille. Unpublished observations.
187. Weaver, K. E.,, and D. J. Tritle. 1994. Identification and characterization of an Enterococcus faecalis plasmid pADl-encoded stability determinant which produces two small RNA molecules necessary for its function. Plasmid 32: 168181.
188. Weaver, K. E.,, K. D. Walz,, and M. S. Heine. 1998. Isolation of a derivative of Escherichia coli-Enterococcus faecalis shuttle vector pAM401 temperature sensitive for maintenance in E. faecalis and its use in evaluating the mechanism of pADl par-dependent plasmid stabilization. Plasmid 40:225232.
189. Weisberg, R. A.,, L. W. Enquist,, C. Foeller,, and A. Landy. 1983. A role for DNA homology in site-specific recombination: the isolation and characterization of a site-affinity mutant of coliphage lambda. J. Mol Biol. 170:319342.
190. Weisblum, B. 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39:797805.
191. Wilks, A.,, L. Smidt,, O. A. Økstad,, A.-B. Kolstø,, J. Mahillon,, and L. Andrup. 1999. Replication mechanism and sequence analysis of the replicon of pAW63, a conjugative plasmid from Bacillus subtilis. J. Bacteriol. 181:31933200.
192. Willems, R. J.,, J. Top,, N. van den Braak,, A. van Belkum,, D. J. Mevius,, G. Hendriks,, M. van Santen-Verheuvel,, and J. D. van Embden. 1999. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob. Agents Chemother. 43:483491.
193. Wirth, R.,, E An, and D. B. Clewell,. 1987. Highly efficient cloning system for Streptococcus faecalis protoplast transformation, shuttle vectors, and applications, p. 2527. In J. J. Ferretti, and R. Curtiss III (ed.), Streptococcal Genetics. American Society for Microbiology, Washington, D.C.
194. Woese, C. R. 2000. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. USA 97:83928396.
195. Wojciak, J. M.,, K. M. Connolly,, and R. T. Clubb. 1999. Solution structure of the Tn916 integrase-DNA complex: specific binding using a three-strand beta-sheet. Nat. Struct. Biol. 6:366373.
196. Woodford, N.,, A. M. Adebiyi,, M. F. Palepou,, and B. D. Cookson. 1998. Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources. Antimicrob. Agents Chemother. 42:502508.
197. Wu, S. W.,, H. de Lencastre,, and A. Tomasz. 1999. The Staphylococcus aureus transposon Tn551: complete nucleotide sequence and transcriptional analysis of the expression of the erythromycin resistance gene. Microb. Drug Resist. 5:17.
198. Wyckoff, H. A.,, M. Barnes,, K. O. Gillies,, and W. E. Sandine. 1996. Characterization and sequence analysis of a stable cryptic plasmid from Enterococcus faecium 226 and development of a stable cloning vector. Appl. Environ. Microbiol. 62:14811486.
199. Yagi, Y.,, and D. B. Clewell. 1977. Identification and characterization of a small sequence located at two sites on the amplifiable tetracycline resistance plasmid pAMal in Streptococcus faecalis. J. Bacteriol. 129:400406.
200. Youngman, P., 1987. Plasmid vectors for recovering and exploiting Tn917 transpositions in Bacillus and other gram-positive bacteria, p. 79104. In K. G. Hardy (ed.), Plasmids, a Practical Approach. IRL Press Ltd., Oxford, United Kingdom.

Tables

Generic image for table
Table 1

Enterococcal cloning vectors

Citation: Weaver K, Rice L, Churchward G. 2002. Plasmids and Transposons, p 219-263. In Gilmore M, Clewell D, Courvalin P, Dunny G, Murray B, Rice L (ed), The Enterococci. ASM Press, Washington, DC. doi: 10.1128/9781555817923.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error