1887

Chapter 18 : Interactions between Species and Bacteria in Mixed Infections

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Interactions between Species and Bacteria in Mixed Infections, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817947/9781555812447_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817947/9781555812447_Chap18-2.gif

Abstract:

is an opportunistic fungal pathogen found as part of the normal microflora in the human digestive tract. This chapter considers the etiology and pathology of some disease conditions that arise from, or involve directly, interactions with bacteria. The clinical manifestations, and processes of adhesion and biofilm formation, are described for mixed-species infections, in particular those involving colonization of oral tissues and dental or medical prostheses by mixed communities of and bacteria. Knowledge gained from studies of microbial colonization mechanisms in the laboratory and in vivo, and of disease mechanisms from model systems, should assist in the development of more effective methods for controlling or preventing infections. The interactions between and bacteria are especially important in the establishment of oral microbial communities and in the etiology of candidiasis. There are few other examples of cooperative interactions between bacteria and unicellular eukaryotic microorganisms. Adhesion processes are the defining events in establishing these polymicrobial biofilms. As the physiological and molecular processes that occur during biofilm formation are studied in greater detail, it is becoming apparent that organisms within biofilms acquire properties that are quite different from those of their free-living counterparts.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18

Key Concept Ranking

Catheter-associated urinary tract Infection
0.4102411
0.4102411
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Diagrammatic representation of positioning of partially implanted silicone rubber voice prosthesis (arrow). Diagram kindly provided by G. J. Elving.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

multiple interactions with oral surfaces, salivary components, host components and bacteria in oral biofilms. Interactions designated A through E are as follows: A, adhesion of to the surfaces of teeth or prostheses coated with an acquired pellicle of salivary proteins and glycoproteins or to epithelial cells or bacteria via adsorbed salivary components (different salivary components may be adsorbed to the different surfaces); B, adhesion of to the surfaces of prostheses or epithelial cells via adsorbed or attached tissue matrix proteins; C, adhesion of to bacteria via protein-carbohydrate and protein-protein reactions; D, adhesion of to epithelial cell receptors; E, physicochemical interaction of yeast cells with unmodified tooth enamel or prosthetic material.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Coaggregation and coadhesion of and oral streptococci. (A) Coaggregation of in suspension with (B) Adhesion of cells to cells immobilized onto polystyrene. Bars, 5 μm. Reproduced with permission from reference .

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Intergeneric coaggregation reactions and coadhesion of with oral bacteria in mixed-species biofilms. Interactions between and involve multiple adhesin-receptor reactions and promote retention of these organisms in defined relationships within oral biofilms. The abilities of and to bind streptococci and fusobacteria contribute to their success as secondary colonizers, especially within subgingival communities.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

and mixed-species biofilms formed in vitro. (A) biofilm showing bilayer structure of germ-tube-forming cells and hyphae growing above layers of yeast cells (blastospores). (B) Mixed-species biofilm of (yeast and hyphal forms) and (smaller cocci with individual cells and clusters adhering predominantly to blastospores). (C) Mixed-species biofilm of (mainly hyphal forms) and Bars, 10 μm.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

The critical effect of perturbation of host environmental conditions in the shift from commensal to pathogenic microflora. cells (black) are present in low numbers within the oral microflora or are acquired from other individuals. A major disruption of the host physiology, e.g., reduced salivary flow or immune cell function, or of bacterial flora, e.g., following antibiotic treatment, provides conditions for to outcompete the numerically dominant members of the microflora and cause disease.

Citation: Jenkinson H, Douglas L. 2002. Interactions between Species and Bacteria in Mixed Infections, p 357-374. In Brogden K, Guthmiller J (ed), Polymicrobial Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817947.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817947.chap18
1. Arendorf, T. M.,, and D. M. Walker. 1980. The prevalence and intra-oral distribution of Candida albicans in man. Arch. Oral Biol. 25: 1 10.
2. Baillie, G. S.,, and L. J. Douglas. 1998. Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob. Agents Chemother. 42: 1900 1905.
3. Baillie, G. S.,, and L. J. Douglas. 1998. Iron-limited biofilms of Candida albicans and their susceptibility to amphotericin B. Antimicrob. Agents Chemother. 42: 2146 2149.
4. Baillie, G. S.,, and L. J. Douglas. 1999. Candida biofilms and their susceptibility to antifungal agents. Methods Enzymol. 310: 644 656.
5. Baillie, G. S.,, and L. J. Douglas. 1999. Role of dimorphism in the development of Candida albicans biofilms. J. Med. Microbiol. 48: 671 679.
6. Baillie, G. S.,, and L. J. Douglas. 2000. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J. Antimicrob. Chemother. 46: 397 403.
7. Basson, N. J. 2000. Competition for glucose between Candida albicans and oral bacteria grown in mixed culture in a chemostat. J. Med. Microbiol. 49: 969 975.
8. Baum, B. J.,, and B. C. O’Connell. 1999. In vivo gene transfer to salivary glands. Crit. Rev. Oral Biol. Med. 10: 276 283.
9. Bayston, R., 2000. Biofilms and prosthetic devices, p. 295 307. In D. G. Allison,, P. Gilbert,, M. H. Lappin-Scott,, and M. Wilson (ed.), Community Structure and Cooperation in Biofilms. Cambridge University Press, Cambridge, England.
10. Branting, C.,, M. L. Sund,, and L. E. Linder. 1989. The influence of Streptococcus mutans on adhesion of Candida albicans to acrylic surfaces in vitro. Arch. Oral Biol. 34: 347 353.
11. Brause, B. D., 1989. Infected orthopedic prostheses, p. 111 127. In A. L. Bisno, and F. A. Waldvogel (ed.), Infections Associated with Indwelling Medical Devices. American Society for Microbiology, Washington, D.C.
12. Cameron, B. J.,, and L. J. Douglas. 1996. Blood group glycolipids as epithelial cell receptors for Candida albicans. Infect. Immun. 64: 891 896.
13. Cannon, R. D.,, and W. L. Chaffin. 1999. Oral colonization by Candida albicans. Crit. Rev. Oral Biol. Med. 10: 359 383.
14. Cannon, R. D.,, A. K. Nand,, and H. F. Jenkinson. 1995. Adherence of Candida albicans to human salivary components adsorbed to hydroxylapatite. Microbiology 141: 213 219.
15. Carlen, A.,, P. Bratt,, C. Stenudd,, J. Olsson,, and N. Stromberg. 1998. Agglutinin and acid proline-rich protein receptor patterns may modulate bacterial adherence and colonization on tooth surfaces. J. Dent. Res. 77: 81 90.
16. Chandra, J.,, P. K. Mukherjee,, S. D. Leidich,, F. F. Faddoul,, L. L. Hoyer,, L. J. Douglas,, and M. A. Ghannoum. 2001. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J. Dent. Res. 80: 903 908.
17. Costerton, J. W.,, T. J. Marrie,, and K.-J. Cheng,. 1985. Phenomena of bacterial adhesion, p. 3 43. In D. C. Savage, and M. Fletcher (ed.), Bacterial Adhesion Mechanisms and Physiological Significance. Plenum Press, New York, N.Y.
18. Elving, G. J.,, H. C. van der Mei,, H. J. Busscher,, A. Amerongen,, E. C. I. Veerman,, R. van Weissenbruch,, and F. W. J. Albers. 2000. Antimicrobial activity of synthetic salivary peptides against voice prosthetic microorganisms. Laryngoscope 110: 321 324.
19. Gibbons, R. J.,, and D. I. Hay. 1988. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infect. Immun. 56: 439 445.
20. Gibbons, R. J.,, D. I. Hay,, J. O. Cisar,, and W. B. Clark. 1988. Adsorbed salivary proline-rich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect. Immun. 56: 2990 2993.
21. Gibbons, R. J.,, D. I. Hay,, and D. H. Schlesinger. 1991. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect. Immun. 59: 2948 2954.
22. Grimaudo, N. J.,, and W. E. Nesbitt. 1997. Coaggregation of Candida albicans with oral Fusobacterium species. Oral Microbiol. Immunol. 12: 168 173.
23. Grimaudo, N. J.,, W. E. Nesbitt,, and W. B. Clark. 1996. Coaggregation of Candida albicans with Actinomyces species. Oral Microbiol. Immunol. 11: 59 61.
24. Haffajee, A. D.,, and S. S. Socransky. 2001. Relationship of cigarette smoking to the subgingival microbiota. J. Clin. Periodontol. 28: 377 388.
25. Hawser, S. P.,, and L. J. Douglas. 1994. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect. Immun. 62: 915 921.
26. Hawser, S. P.,, and L. J. Douglas. 1995. Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob. Agents Chemother. 39: 2128 2131.
27. Hawser, S. P.,, G. S. Baillie,, and L. J. Douglas. 1998. Production of extracellular matrix by Candida albicans biofilms. J. Med. Microbiol. 47: 253 256.
28. Holmes, A. R.,, R. D. Cannon,, and H. F. Jenkinson. 1995. Interactions of Candida albicans with bacteria and salivary molecules in oral biofilms. J. Ind. Microbiol. 15: 208 213.
29. Holmes, A. R.,, P. K. Gopal,, and H. F. Jenkinson. 1995. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect. Immun. 63: 1827 1834.
30. Holmes, A. R.,, R. McNab,, and H. F. Jenkinson. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun. 64: 4680 4685.
31. Hostetter, M. K. 1999. Integrin-like proteins in Candida spp. and other microorganisms. Fungal Genet. Biol. 28: 135 145.
32. Hube, B.,, and J. Naglik. 2001. Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 147: 1997 2005.
33. Jabra-Rizk, M. A.,, W. A. Falkner, Jr.,, W. G. Merz,, J. I. Kelley,, A. A. M. A. Baqui,, and T. F. Meiller. 1999. Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. J. Clin. Microbiol. 37: 1464 1468.
34. Jenkinson, H. F.,, and D. R. Demuth. 1997. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 23: 183 190.
35. Jenkinson, H. F.,, and R. J. Lamont. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral Biol. Med. 8: 175 200.
36. Jenkinson, H. F.,, H. C. Lala,, and M. G. Shepherd. 1990. Coaggregation of Streptococcus sanguis and other streptococci with Candida albicans. Infect. Immun. 58: 1429 1436.
37. Jimenez-Lucho, V.,, V. Ginsburg,, and H. C. Krivan. 1990. Cryptococcus neoformans, Candida albicans, and other fungi bind specifically to the glycosphingolipid lactosyceramide (Galβl-4Glcβ1- 1Cer), a possible adhesion receptor for yeasts. Infect. Immun. 58: 2085 2090.
38. Johansson, I.,, P. Bratt,, D. I. Hay,, S. Schluckebier,, and N. Stromberg. 2000. Adhesion of Candida albicans, but not Candida krusei, to salivary statherin and mimicking host molecules. Oral Microbiol. Immunol. 15: 112 118.
39. Kamma, J. J.,, M. Nakou,, and P. C. Baehni. 1999. Clinical and microbiological characteristics of smokers with early onset periodontitis. J. Periodontal Res. 34: 25 33.
40. Lamont, R. J.,, and H. F. Jenkinson. 1998. Life below the gum line: pathogenic mechanisms of Porphyromonas gingivalis. Microbiol. Mol. Biol. Rev. 62: 1244 1263.
41. Lamont, R. J.,, and H. F. Jenkinson,. 2000. Adhesion as an ecological determinant in the oral cavity, p. 131 168. In H. K. Kuramitsu, and R. P. Ellen (ed.), Oral Bacterial Ecology: The Molecular Basis. Horizon Scientific Press, Wymondham, United Kingdom.
42. Lana, M. A.,, A. P. Ribeiro-Sobrinho,, R. Stehling,, G. D. Garcia,, B. K. Silva,, J. S. Hamdan,, J. R. Nicoli,, M. A. Carvalho,, and L. D. Farias. 2001. Microorganisms isolated from root canals presenting necrotic pulp and their drug susceptibility in vitro. Oral Microbiol. Immunol. 16: 100 105.
43. Lendenmann, U.,, and F. G. Oppenheim,. 1998 Protein structure and function: histatins, p. 198 210. In B. Guggenheim,, and S. Shapiro (ed.), Oral Biology at the Turn of the Century. Karger, Basel, Switzerland.
44. Leonhardt, A.,, S. Renvert,, and G. Dahlen. 1999. Microbial findings at failing implants. Clin. Oral Implants Res. 10: 339 345.
45. Liu, B.,, S. A. Rayment,, C. Gyurko,, F. G. Oppenheim,, G. D. Offner,, and R. F. Troxler. 2000. The recombinant N-terminal region of human salivary mucin MG2 (MUC7) contains a binding domain for oral streptococci and exhibits anti-candidacidal activity. Biochem. J. 345: 557 564.
46. Maki, D. G.,, and P. A. Tambyah. 2001. Engineering out the risk of infection with urinary catheters. Emerg. Infect. Dis. 7: 1 6.
47. Marco, F.,, S. R. Lockhart,, M. A. Pfaller,, C. Punjol,, M. S. Rangel-Frausto,, T. Wiblin,, H. M. Blumberg,, J. E. Edwards,, W. Jarvis,, L. Saiman,, J. E. Patterson,, M. G. Rinaldi,, R. P. Wenzel,, and D. R. Soll. 1999. Elucidating the origins of nosocomial infections with Candida albicans by DNA fingerprinting with the complex probe Ca3. J. Clin. Microbiol. \: 2817 2818.
48. Marrie, T. J.,, J. Y. Sung,, and J. W. Costerton. 1990. Bacterial biofilm formation on nasogastric tubes. J. Gastroenterol. Hepatol 5: 503 506.
49. Matthews, R.,, and J. Burnie. 1996. Antibodies against Candida: potential therapeutics? Trends Microbiol. 4: 354 358.
50. Millan, R. S.,, N. Elguezabal,, P. Regulez,, M. D. Moragues,, G. Quindos,, and J. Ponton. 2000. Effect of secretory IgA on the adhesion of Candida albicans to polystyrene. Microbiology 146: 2105 2112.
51. Millsap, K. W.,, R. Bos,, H. C. van der Mei,, and H. J. Busscher. 1999. Adhesion and surface aggregation of Candida albicans from saliva on acrylic surfaces with adhering bacteria as studied in a parallel plate flow chamber. Ant. Van Leeuwenhoek 75: 351 359.
52. Nair, R. G.,, and L. P. Samaranayake. 1996. The effect of oral commensal bacteria on Candida adhesion to human buccal epithelial cells in vitro. J. Med. Microbiol. 45: 179 185.
53. Nikawa, H.,, H. Nishimura,, T. Yamamoto,, T. Hamada,, and L. P. Samaranayake. 1996. The role of saliva and serum in Candida albicans biofilm formation on denture acrylic surfaces. Microb. Ecol. Health Dis. 9: 35 48.
54. O’Sullivan, J. M.,, R. D. Cannon,, P. A. Sullivan,, and H. F. Jenkinson. 1997. Identification of salivary basic proline-rich proteins as receptors for Candida albicans adhesion. Microbiology 143: 341 348.
55. O’Sullivan, J. M.,, H. F. Jenkinson,, and R. D. Cannon. 2000. Adhesion of Candida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 146: 41 48.
56. Prakobphol, A.,, F. Xu,, V. M. Hoang,, T. Larsson,, J. Bergstrom,, I. Johansson,, L. Frangsmyr,, U. Holmskov,, H. Leffler,, C. Nilsson,, T. Boren,, J. R. Wright,, N. Stromberg,, and S. J. Fisher. 2000. Salivary agglutinin, which binds Streptococcus mutans and Helicobacter pylori, is the lung scavenger receptor cysteine- rich protein gp-340. J. Biol. Chem. 275: 39860 39866.
57. Prigent-Combaret, C.,, O. Vidal,, C. Dorel,, and P. Lejeune. 1999. Abiotic surface sensing and biofilm-dependent regulation of gene expression in Escherichia coli. J. Bacteriol. 181: 5993 6002.
58. Sen, B. H.,, K. E. Safavi,, and L. S. W. Spangberg. 1997. Colonization of Candida albicans on cleaned human dental hard tissues. Arch. Oral Biol. 42: 513 520.
59. Sheng, W. H.,, W. J. Ko,, J. T. Wang,, S. C. Chang,, P. R. Hseuh,, and K. T. Luh. 2000. Evaluation of antiseptic-impregnated central venous catheters for prevention of catheter-related infection in intensive care unit patients. Diagn. Microbiol. Infect. Dis. 38: 1 5.
60. Singleton, D. R.,, J. Masuoka,, and K. C. Hazen. 2001. Cloning and analysis of a Candida albicans gene that affects cell surface hydrophobicity. J. Bacteriol. 183: 3582 3588.
61. Socransky, S. S.,, A. D. Haffajee,, M. A. Cugini,, C. Smith,, and R. J. Kent, Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25: 134 144.
62. Staab, J. F.,, S. D. Bradway,, P. L. Fidal,, and P. Sundstrom. 1999. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283: 1535 1538.
63. Sziegoleit, F.,, A. Sziegoleit,, and W.-E. Wetzel. 1999. Effect of dental treatment and/or local application of amphotericin B to carious teeth on oral colonization by Candida. Med. Mycol. 37: 345 350.
64. Tosh, F. D.,, and L. J. Douglas. 1992. Characterization of a fucoside-binding adhesin of Candida albicans. Infect. Immun. 60: 4734 4739.
65. Van der Mei, H. C.,, R. H. Free,, G. J. Elving,, R. van Weissenbruch,, F. W. J. Albers,, and H. J. Busscher. 2000. Effect of probiotic bacteria on prevalence of yeasts in oropharyngeal biofilms on silicone rubber voice prostheses in vitro. J. Med. Microbiol. 49: 713 718.
66. Waltimo, T. M.,, E. K. Siren,, H. L. Torkko,, I. Olsen,, and M. P. Haapasalo. 1997. Fungi in therapy-resistant periodontitis. Int. Endod. J. 30: 96 101.
67. Xu, Y.,, I. Ambudkar,, H. Yamagishi,, W. Swaim,, T. J. Walsh,, and B. C. O’Connell. 1999. Histatin-3 mediated killing of Candida albicans: effect of extracellular salt concentration on binding and internalization. Antimicrob. Agents Chemother. 43: 2256 2262.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error