1887

Chapter 10 : Conjugative Transposons and Related Mobile Elements

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Conjugative Transposons and Related Mobile Elements, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap10-2.gif

Abstract:

This chapter covers the conjugative transposons from gram-positive bacteria and gram-negative bacteria, beginning with a detailed description of the enterococcal and streptococcal transposons Tn916 and Tn1545 and the larger streptococcal element Tn5253 and its components, Tn5251 and Tn5252. It also describes the conjugal transposons from and and spp. and mobilizable elements from and spp. The author describes the element of that encodes resistance to sulfamethoxazole and trimethoprim (SXT) that integrates into a unique target site in the genome of its host bacterium. He also detours into the world of integrating plasmids and the peculiar behavior of a class of elements originally described as conjugal plasmids assigned to the IncJ incompatibility group. Conjugative transposition of Tn916 is a relatively rare event, typically occurring at frequencies below 10 per donor bacterium. So far, only two factors have been reported to increase this frequency. One is addition of tetracycline, but increases in conjugative transposition frequency attributable to tetracycline are modest, and do not compare with the levels of induction of conjugative transposition of the conjugative transposons and related elements by tetracycline. The second is the nature of the coupling sequences flanking Tn916. The DNA sequences of the larger elements remain uncharted territory. Whereas some functions apart from antibiotic resistance that are encoded by the larger elements have been identified, the role these elements play in the biology of their bacterial hosts remains largely a mystery.

Citation: Churchward G. 2002. Conjugative Transposons and Related Mobile Elements, p 177-191. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch10

Key Concept Ranking

Mobile Genetic Elements
0.6649112
Genetic Elements
0.40727964
0.6649112
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Genetic map of Tn. The thin gray line represents transposon DNA and the thick black arrows represent open reading frames. Four short reading frames are not shown: to the right of to the right of to the right of and to the right of . The position of the origin of conjugal DNA transfer, is indicated between and . The thin arrows indicate five promoters and their direction of transcription.

Citation: Churchward G. 2002. Conjugative Transposons and Related Mobile Elements, p 177-191. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Binding sites for Int and Xis at the ends of Tn. The thick black line represents DNA from each end of the transposon. The diamonds labeled Int-C show where the C-terminal domains of Int bind to the transposon ends and flanking bacterial DNA. The black triangles labeled DR-2 and Int-N show the positions and relative orientation of binding sites for the N-terminal domain of integrase. The open triangles labeled Xis show the positions and relative orientation of binding sites for Xis.

Citation: Churchward G. 2002. Conjugative Transposons and Related Mobile Elements, p 177-191. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Model for Tn transposition. The thick lines represent Tn and the thin lines represent the DNA adjacent to the transposon. Coupling sequences are indicated by the hypothetical nucleotide pairs X-Y, Q-R, and A-B. (A) Cleavage of one DNA strand at each end of the transposon on the 5′ side of the coupling sequence, indicated by the vertical arrows, followed by DNA strand exchange leads to the formation of a Holliday junction intermediate. A second round of cleavage and DNA strand exchange results in the formation of an excised circular intermediate form of the transposon that contains a heteroduplex region formed from the base pairs originally present in the coupling sequences flanking the transposon in the donor. The reciprocal product can be processed by DNA replication to yield a pair of excisant molecules, each carrying one of the coupling sequences originally flanking the transposon. (B) After introduction of a single strand of the circular intermediate form of the transposon into the recipient, the complementary strand is synthesized to form a new intermediate with only one of the coupling sequences originally flanking the transposon in the donor. A recombination event similar to that shown in panel A results in the transposon being integrated into the recipient DNA where it is flanked on each side by a heteroduplex region composed of coupling sequence and target DNA. After replication, two DNA molecules are produced with sequences from the circular form of the transposon at either the left or the right of the integrated transposon.

Citation: Churchward G. 2002. Conjugative Transposons and Related Mobile Elements, p 177-191. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap10
1. Ayoubi, P.,, A. O. Kilic,, and M. N. Vijayakumar. 1991. Tn5253, the pneumococcal Ω (cat tet) BM6001 element, is a composite structure of two conjugative transposons, Tn5251 and Tn5252. J. Bacteriol. 173:16171622.
2. Bannam, T. L.,, P. K. Crellin,, and J. I. Rood. 1995. Molecular genetics of the chloramphenicol-resistance transposon Tn4551 from Clostridium perfringens: the TnpX site-specific recombinase excises a circular transposon molecule. Mol. Microbiol. 16:535551.
3. Bertram, J.,, M. Stratz,, and P. Durre. 1991. Natural transfer of conjugative transposon Tn916 between gram-positive and gram-negative bacteria. J. Bacteriol. 173:443448.
4. Bringel, F. G.,, G. L. Van Alstine,, and J. R. Scott. 1992. Conjugative transposition of Tn916: the transposon int gene is required only in the donor. J. Bacteriol. 174:40364041.
5. Buu-Hoi, A.,, and T. Horodniceanu. 1980. Conjugative transfer of multiple antibiotic resistance markers of Streptococcus pneumoniae. J. Bacteriol. 143:313320.
6. Caparon, M. G.,, and J. R. Scott. 1989. Excision and insertion of the conjugative transposon Tn916 involves a novel recombination mechanism. Cell 59:10271034.
7. Carmo de Freire Bastos, M. D.,, and E. Murphy. 1988. Transposon Tn544 encodes three products required for transposition. EMBO J. 7:29352941.
8. Celli, J.,, and P. Trieu-Cuot. 1998. Circularization of Tn916 is required for expression of the transposon-encoded transfer functions: characterization of long tetracycline-inducible transcripts reading through the attachment site. Mol. Microbiol. 28:103117.
9. Cheng, Q.,, B. J. Paszkeit,, N. B. Shoemaker,, J. Gardner,, and A. A. Salyers. 2000. Integration and excision of a Bacteroides conjugative transposon, CTnDOT. J. Bacteriol. 182:40354043.
10. Clewell, D. B. 1990. Movable genetic elements and antibiotic resistance in Enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9:90102.
11. Clewell, D. B.,, and S. E. Flannagan,. 1993. The conjugative transposons of gram-positive bacteria, p. 369393. In D. B. Clewell (ed.), Bacterial Conjugation. Plenum Publishing Corp., New York, N.Y.
12. Clewell, D. B.,, S. E. Flannagan,, Y. Ike,, J. M. Jones,, and C. Gawron-Burke. 1988. Sequence analysis of termini of conjugative transposon Tn916. J. Bacteriol. 170:30463052.
13. Clewell, D. B.,, S. E. Flannagan,, and D. D. Jaworski. 1995. Unconstrained bacterial promiscuity: the Tn916-Tn1545 family of conjugative transposons. Trends Microbiol. 3:229236.
14. Clewell, D. B.,, and C. Gawron-Burke. 1986. Conjugative transposons and the dissemination of antibiotic resistance. Annu. Rev. Microbiol. 40:635659.
15. Coetzee, N. A.,, N. Datta,, and R. W. Hedges. 1972. R-factors from Proteus rettgeri. J. Gen. Microbiol. 72:543555.
16. Courvalin, P.,, and C. Carlier. 1986. Transposable multiple antibiotic resistance in Streptococcus pneumoniae. Mol. Gen. Genet. 205:291297.
17. Crellin, P. K.,, and J. I. Rood. 1997. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J. Bacteriol. 179:51485156.
18. Doucet-Populaire, F.,, P. Trieu-Cuot,, I. Dosbaa,, A. Andremont,, and P. Courvalin. 1991. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35:185187.
19. Fayet, O.,, P. Ramond,, P. Polard,, M. F. Prere,, and M. Chandler. 1990. Functional similarities between the IS3 family of bacterial insertion elements. Mol. Microbiol. 4:17711777.
20. Flannagan, S. E.,, and D. B. Clewell. 1991. Conjugative transfer of Tn916 in Enterococcus faecalis: trans activation of homologous transposons. J. Bacteriol. 173:71367141.
21. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su,, and D. B. Clewell. 1994. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350354.
22. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome-borne resistance transposon (Tn916) in Streptococcus faecalis that is capable of conjugative transfer in the absence of a conjugative plasmid. J. Bacteriol. 145:494502.
23. Gawron-Burke, C.,, and D. B. Clewell. 1982. A transposon in Streptococcus faecalis with fertility properties. Nature 300:281284.
24. Hecht, D. W.,, and M. H. Malamy. 1989. Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. J. Bacteriol. 171:36033608.
25. Hecht, D. W.,, J. S. Thompson,, and M. H. Malamy. 1989. Characterization of the termini and transposition products of Tn4399, a conjugal mobilizing transposon of Bacteroides fragilis. Proc. Natl. Acad. Sci. USA 86:53405344.
25a.. Hinerfeld, D.,, and G. Churchward. 2001. Specific binding of integrase to the origin of transfer (oriT) of the conjugative transposon Tn916. J. Bacteriol. 183:29472951.
25b.. Hinerfeld, D.,, and G. Churchward. Xis protein of the conjugative transposon Tn916 plays dual opposing roles in transposon excision. Mol. Microbiol., in press.
25c.. Hochhut, B.,, J. W. Beaber,, R. Woodgate,, and M. K. Waldor. 2001. Formation of chromosomal tandem arrays of the SXT element and R391, two conjugative chromosomally integrating elements that share an attachment site. J. Bacteriol. 183:11241132.
26. Hochhut, B.,, K. Jahreis,, J. W. Lengeler,, and K. Schmid. 1997. CTnscr94, a conjugative transposon found in enterobacteria. J. Bacteriol. 179:20972102.
27. Hochhut, B.,, J. Marrero,, and M. K. Waldor. 2000. Mobilization of plasmids and chromosomal DNA mediated by the SXT element, a constin found in Vibrio cholerae O139. J. Bacteriol. 182:20432047.
28. Hochhut, B.,, and M. K. Waldor. 1999. Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol. Microbiol. 32:99110.
29. Horodniceanu, T.,, L. Bougueleret,, and G. Bieth. 1981. Conjugative transfer of multiple-antibiotic resistance markers in beta hemolytic group A, B, F and G streptococci in the absence of extrachromosomal deoxyribonucleic acid. Plasmid 5:127137.
30. Hosking, S. L.,, M. E. Deadman,, E. R. Moxon,, J. F. Peden,, and N. J. Saunders. 1998. An in silico evaluation of Tn916 as a tool for generalized mutagenesis in Haemophilus influenzae Rd. Microbiology 144:25252530.
31. Jaworski, D. D.,, and D. B. Clewell. 1994. Evidence that coupling sequences play a frequency-determining role in conjugative transposition of Tn916 in Enterococcus faecalis. J. Bacteriol. 176:33283335.
32. Jaworski, D. D.,, and D. B. Clewell. 1995. A functional origin of transfer (oriT) on the conjugative transposon Tn916. J. Bacteriol. 177:66446651.
33. Jia, Y.,, and G. Churchward. 1999. Interactions of the integrase protein of the conjugative transposon Tn916 with its specific DNA binding sites. J. Bacteriol. 181:61146123.
34. Kilic, A. O.,, M. N. Vijayakumar,, and S. F. al-Khaldi. 1994. Identification and nucleotide sequence analysis of a transferrelated region in the streptococcal conjugative transposon Tn5252. J. Bacteriol 176:51455150.
35. Lanka, E.,, and B. M. Wilkins. 1995. DNA processing reactions in bacterial conjugation. Annu. Rev. Biochem. 64:141169.
36. Leffers, G. G.,, and S. Gottesman. 1998. Lambda Xis degradation in vivo by Lon and FtsH. J. Bacteriol. 180:15731577.
37. Li, L.-Y.,, N. B. Shoemaker,, and A. A. Salyers. 1995. Location and characteristics of the transfer region of a Bacteroides conjugative transposon and regulation of transfer genes. J. Bacteriol. 177:49924999.
38. Lu, F.,, and G. Churchward. 1994. Conjugative transposition: Tn916 integrase contains two independent DNA binding domains that recognize different DNA sequences. EMBO J. 13:15411548.
39. Lu, F.,, and G. Churchward. 1995. Tn916 target DNA sequences bind the C-terminal domain of integrase protein with different affinities that correlate with transposon insertion frequency. J. Bacteriol. 177:19381946.
40. Lyras, D.,, and J. I. Rood,. 1997. Transposable genetic elements and antibiotic resistance determinants from Clostridium perfringens and Clostridium difficile, p. 7392. In J. I. Rood,, B. A. McClane,, J. G. Songer,, and R. W. Titball (ed.), The Clostridia: Molecular Biology and Pathogenesis. Academic Press, Inc., London, United Kingdom.
41. Lyras, D.,, and J. I. Rood,. 2000. Clostridial genetics, p. 529539. In V. A. Fischetti (ed.), Gram-Positive Pathogens. American Society for Microbiology, Washington, D.C.
42. Lyras, D.,, C. Storie,, A. S. Huggins,, T. L. Bannam,, and J. I. Rood. 1998. Chloramphenicol resistance in Clostridium difficile is encoded on Tn4453 transposons that are closely related to Tn4451 from Clostridium perfringens. Antimicrob. Agents Chemother. 42:15631567.
43. Manganelli, R.,, S. Ricci,, and G. Pozzi. 1996. Conjugative transposon Tn916: evidence for excision with formation of 5′-protruding termini. J. Bacteriol. 178:58135816.
44. Manganelli, R.,, S. Ricci,, and G. Pozzi. 1997. The joint of Tn916 circular intermediates is a homoduplex in Enterococcus faecalis. Plasmid 38:7178.
45. Manganelli, R.,, L. Romano,, S. Ricci,, M. Zazzi,, and G. Pozzi. 1995. Dosage of Tn916 circular intermediates in Enterococcus faecalis. Plasmid 34:4857.
46. Marra, D.,, B. Pethel,, G. Churchward,, and J. R. Scott. 1999. The frequency of conjugative transposition of Tn916 is not determined by the frequency of excision. J. Bacteriol. 181:54145418.
47. Marra, D.,, and J. R. Scott. 1999. Regulation of excision of the conjugative transposon Tn916. Mol. Microbiol. 31:609621.
48. Moitoso de Vargas, L.,, C. A. Pargellis,, N. M. Hasan,, E. W. Bushman,, and A. Landy. 1988. Autonomous DNA binding domains of lambda integrase recognize two different sequence families. Cell 54:923929.
49. Mullaney, P.,, M. Wilks,, and S. Tabaqchali. 1995. Transfer of macrolide-lincosamide-streptogramin B (MLS) resistance in Clostridium difficile is linked to a gene homologous with toxin A and is mediated by a conjugative transposon Tn5398. J. Antimicrob. Chemother. 35:305315.
50. Mullany, P.,, M. Pallen,, M. Wilks,, J. R. Stephen,, and S. Tabaqchali. 1996. A group II intron in a conjugative transposon from the gram-positive bacterium, Clostridium difficile. Gene 174:145150.
51. Mullany, P.,, M. Wilks,, I. Lamb,, C. Clayton,, B. Wren,, and S. Tabaqchali. 1990. Genetic analysis of a tetracycline resistance element from Clostridium difficile and its conjugal transfer to and from Bacillus subtilis. J. Gen Microbiol. 136:13431349.
52. Munoz-Najar, U.,, and M. N. Vijayakumar. 1999. An operon that confers UV resistance by evoking the SOS mutagenic response in streptococcal transposon Tn5252. J. Bacteriol. 181:27822788.
53. Murphy, C. G.,, and M. H. Malamy. 1995. Requirements for strand- and site-specific cleavage within the oriT region of Tn4399, a mobilizing transposon from Bacteroides fragilis. J. Bacteriol. 177:31583165.
54. Murphy, D. B.,, and J. T. Pembroke. 1995. Transfer of the IncJ plasmid R391 to recombination E. coli. FEMSMicrobiol. Lett. 134:153S158S.
55. Murphy, D. B.,, and J. T. Pembroke. 1999. Monitoring of chromosomal insertions of the IncJ elements R391 and R997 in Escherichia coli K-12. FEMSMicrobiol. Lett. 174:355361.
56. Murphy, E., 1989. Transposable elements in gram-positive bacteria, p. 269288. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
57. Murphy, E.,, L. Huwyler,, and M. de Carmo de Freire Bastos. 1985. Transposon Tn554: complete nucleotide sequence and isolation of transposition-defective and antibiotic-sensitive mutants. EMBO J. 4:33573365.
58. Murphy, E.,, and S. Lofdahl. 1984. Transposition of Tn544 does not generate a target duplication. Nature 307:292295.
59. Murphy, E.,, S. Phillips,, I. Edelman,, and R. P. Novick. 1981. Tn544: isolation and characterization of plasmid insertions. Plasmid 5:292305.
60. Norgren, M.,, and J. R. Scott. 1991. The presence of conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173:319324.
61. Norgren, M. G.,, and J. R. Scott. 1991. Presence of the conjugative transposon Tn916 in the recipient strain does not impede transfer of a second copy of the element. J. Bacteriol. 173:319324.
62. Pembroke, J. T.,, and E. Murphy. 2000. Isolation and analysis of a circular form of the IncJ conjugative transposon-like elements, R391 and R997: implications for IncJ incompatibility. FEMSMicrobiol. Lett. 187:133138.
63. Pethel, B.,, and G. Churchward. 2000. Coupling sequences flanking Tn916 do not determine the affinity of binding of integrase to the transposon ends and adjacent bacterial DNA. Plasmid 43:123129.
64. Phillips, S.,, and R. P. Novick. 1979. Tn544—a site-specific repressor-controlled transposon in Staphylococcus aureus. Nature 278:476478.
65. Poyart-Salmeron, C.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1989. Molecular characterization of two proteins involved in the excision of the conjugative transposon Tn1545: homologies with other site-specific recombinases. EMBO J. 8:24252433.
66. Poyart, C.,, J. Celli,, and P. Trieu-Cuot. 1995. Conjugative transposition of Tn916-related elements from Enterococcus faecalis to Escherichia coli and Pseudomonas fluorescens. Antimicrob. Agents Chemother. 39:500506.
67. Proveddi, R.,, R. Manganelli,, and G. Pozzi. 1996. Characterization of conjugative transposon Tn5251 of Streptococcus pneumoniae. FEMSMicrobiol. Lett. 135:231236.
68. Rauch, P. J.,, and W. M. de Vos. 1992. Characterization of the novel nisin-sucrose conjugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174:12801287.
69. Rauch, P. J.,, and W. M. de Vos. 1994. Identification and characterization of genes involved in excision of the Lactococcus lactis conjugative transposon Tn5276. J. Bacteriol. 176:21652171.
70. Rauch, P. J. G. 1996. Transposition of the Lactococcus lactis Conjugative Transposon Tn5276: Identification of a Circular Intermediate and Analysis of Its Excision and Insertion Sites. Ph.D. dissertation. Netherlands Institute for Dairy Research, Ede, The Netherlands.
71. Rudy, C.,, K. L. Taylor,, D. Hinerfeld,, J. R. Scott,, and G. Churchward. 1997. Excision of a conjugative transposon in vitro by the Int and Xis proteins of Tn916. Nucleic Acids Res. 25:40614066.
72. Rudy, C. K.,, and J. R. Scott. 1996. Length of the coupling sequence of Tn916. J. Bacteriol. 176:33863388.
73. Rudy, C. K.,, J. R. Scott,, and G. Churchward. 1997. DNA binding by the Xis protein of the conjugative transposon Tn916. J. Bacteriol. 179:25672572.
74. Salyers, A. A.,, N. B. Shoemaker,, and L.-Y. Li. 1995. In the drivers seat: the Bacteroides conjugative transposons and the elements the mobilize. J. Bacteriol. 177:57275731.
75. Salyers, A. A.,, N. B. Shoemaker,, and A. M. Stevens,. 1995. Tetracycline regulation of conjugal transfer genes, p. 393400. In J. A. Hoch, and T. J. Silhavy (ed.), Two-Component Signal Transduction. American Society for Microbiology, Washington, D.C.
76. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L.-Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59:579590.
77. Sampath, J.,, and M. N. Vijayakumar. 1998. Identification of a DNA cytosine methyltransferase gene in conjugative transposon Tn5252. Plasmid 39:6376.
78. Scott, J. R. 1992. Sex and the single circle: conjugative transposition. J. Bacteriol. 174:60056010.
79. Scott, J. R., 1993. Conjugative transposons, p. 597614. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Other Gram-Positive Bacteria. American Society for Microbiology, Washington, D.C.
80. Scott, J. R.,, F. Bringel,, D. Marra,, G. Van Alstine,, and C. K. Rudy. 1994. Conjugative transposition of Tn916: preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded circular intermediate. Mol. Microbiol. 11:10991108.
81. Scott, J. R.,, and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49:367397.
82. Scott, J. R.,, P. A. Kirchman,, and M. G. Caparon. 1988. An intermediate in the transposition of the conjugative transposon Tn916. Proc. Natl. Acad. Sci. USA 85:48094813.
83. Senghas, E.,, J. M. Jones,, M. Yamamoto,, C. Gawron-Burke,, and D. B. Clewell. 1988. Genetic organization of the bacterial conjugative transposon Tn916. J. Bacteriol. 170:245249.
84. Shoemaker, N. B.,, M. D. Smith,, and W. R. Guild. 1980. DNase-resistant transfer of chromosomal cat and tet insertions by filter mating in pneumococcus. Plasmid 3:8087.
85. Shoemaker, N. B.,, G.-R. Wang,, and A. A. Salyers. 1996. NBU1, a mobilizable site-specific integrated element from Bacteroides spp., can integrate nonspecifically in Escherichia coli. J. Bacteriol. 178:36013607.
86. Shoemaker, N. B.,, G.-R. Wang,, and A. A. Salyers. 2000. Multiple gene products and sequences required for excision of the mobilizable integrated Bacteroides element NBU1. J. Bacteriol. 182:928936.
87. Shoemaker, N. B.,, G. R. Wang,, and A. A. Salyers. 1996. The Bacteroides mobilizable insertion element, NBU1, integrates into the 3′ end of a Leu-tRNA gene and has an integrase that is a member of the lambda integrase family. J. Bacteriol. 178:35943600.
88. Showsh, S. A.,, and R. E. Andrews. 1992. Tetracycline enhances Tn916-mediated conjugal transfer. Plasmid 28:213224.
89. Smith, C. J.,, and A. C. Parker. 1993. Identification of a circular intermediate in the transfer and transposition of Tn4555, a mobilizable transposon from Bacteroides spp. J. Bacteriol. 175:26822691.
90. Smith, C. J.,, G. D. Tribble,, and D. P. Bayley. 1998. Genetic elements of Bacteroides species: a moving story. Plasmid 40:1229.
91. Speer, B. S.,, N. B. Shoemaker,, and A. A. Salyers. 1992. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5:387399.
92. Srinivas, P.,, A. O. Kilic,, and M. N. Vijayakumar. 1997. Sitespecific nicking in vitro at oriT by the DNA relaxase of Tn5252. Plasmid 37:4250.
93. Stevens, A. M.,, N. B. Shoemaker,, L.-Y. Li,, and A. A. Salyers. 1993. Tetracycline regulation of genes on Bacteroides conjugative transposons. J. Bacteriol. 175:61346141.
94. Storrs, M. J.,, C. Carlier,, C. Poyart-Salmeron,, P. Trieu-Cuot,, and P. Courvalin. 1991. Conjugative transposition of Tn916 requires the excisive and integrative activities of the transposon-encoded integrase. J. Bacteriol. 173:43474352.
95. Su, Y. A.,, P. He,, and D. B. Clewell. 1992. Characterization of the tet(M) determinant of Tn916: evidence for regulation by transcription attenuation. Antimicrob. Agents Chemother. 36:769778.
96. Taylor, K.,, and G. Churchward. 1997. Specific DNA cleavage mediated by the integrase of conjugative transposon Tn916. J. Bacteriol. 179:11171125.
97. Tribble, G. D.,, A. C. Parker,, and C. J. Smith. 1997. The Bacteroides mobilizable transposon Tn4555 integrates by a site-specific recombination mechanism similar to that of the gram-positive bacterial element Tn916. J. Bacteriol. 179:27312739.
98. Tribble, G. D.,, A. C. Parker,, and C. J. Smith. 1999. Transposition genes of the bacteroides mobilizable transposon Tn4555: role of a novel targeting gene. Mol. Microbiol. 34:385394.
99. Trieu-Cuot, P.,, C. Poyart-Salmeron,, C. Carlier,, and P. Courvalin. 1993. Sequence requirements for target activity in sitespecific recombination mediated by the Int protein of transposon Tn1545. Mol. Microbiol. 8:179185.
100. Vijayakumar, M. N.,, and S. Ayalew. 1993. Nucleotide sequence analysis of the termini and chromosomal locus involved in site-specific integration of the streptococcal conjugative transposon Tn5252. J. Bacteriol. 175:27132719.
101. Waldor, M. K.,, H. Tschape,, and J. J. Mekalanos. 1996. A new type of conjugative transposon encodes resistance to sulfamthoxazole, trimethoprim and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178:41574165.
102. Wang, H.,, A. P. Roberts,, D. Lyras,, J. I. Rood,, M. Wilks,, and P. Mullaney. 2000. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182:37753783.
103. Wang, H.,, A. P. Roberts,, D. Lyras,, J. I. Rood,, M. Wilks,, and P. Mullany. 2000. Characterization of the ends and target sites of the novel conjugative transposon Tn5397 from Clostridium difficile: excision and circularization is mediated by the large resolvase, TndX. J. Bacteriol. 182:37753783.
104. Weisberg, R. A.,, L. W. Enquist,, C. Foeller,, and A. Landy. 1983. A role for DNA homology in site-specific recombination: the isolation and characterization of a site-affinity mutant of coliphage lambda. J. Mol. Biol. 170:319342.
105. Wojciak, J. M.,, K. M. Connolly,, and R. T. Clubb. 1999. Solution structure of the Tn916 integrase-DNA complex: specific binding using a three-strand beta-sheet. Nat. Struct. Biol. 6:366373.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error