1887

Chapter 13 : Bacterial Site-Specific DNA Inversion Systems

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bacterial Site-Specific DNA Inversion Systems, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap13-2.gif

Abstract:

Specialized recombination reactions involving DNA inversions have evolved as a mechanism to generate genetic diversity within a population. They often function to preadapt a portion of a population to a sudden change in the environment or to allow a portion of a population to take advantage of a new situation. Site-specific DNA inversion reactions are characterized by recombination events which occur at defined sites and are usually catalyzed by an enzyme dedicated to that particular reaction. The low rate of inversion is believed to be primarily limited by the extremely low amounts of the Hin protein present in cells since overexpressing Hin coordinately increases inversion rates. In vivo studies have demonstrated that integration host factor (IHF) and leucine-responsive regulatory protein (LRP) participate in the inversion reaction. These two DNA bending proteins are believed to function together to help promote synapsis between IRL and IRR. FimB- and FimE-promoted inversion rates are also decreased in mutants. LRP is a moderately abundant DNA binding and bending protein that functions as a global regulator of various genes involved in amino acid metabolism and fimbria biosynthesis. Recombination catalyzed by the Hin and Gin DNA invertases has been intensively studied in vitro, and the basic outline of the reaction is well understood. DNA inversion occurs in a simple buffered salt solution without the need for a high-energy cofactor other than the requirement for a negatively supercoiled substrate.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13

Key Concept Ranking

Gene Expression and Regulation
0.5410827
Type IV Pili
0.43299556
Urinary Tract Infections
0.40732497
0.5410827
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

DNA inversions in and bacteriophages. (A) H-inversion region from serovar Typhimurium controlling flagellar phase variation ( ). The and recombination sites are denoted with the half-arrowhead symbol designating their relative orientation. An inversion of the 996-bp invertible segment switches the orientation of the sigma 28 promoter from transcribing as depicted in the figure to transcribing away from . encodes the H2 flagellin, and encodes a repressor of the H1 flagellin. When is not transcribed, is active and H1 flagellin is synthesized. The location of the recombinational enhancer is depicted as an unshaded box within the shaded recombinase gene. (B) G-inversion region from phage Mu controlling the alternating expression of phage tail fiber genes ( ). A constant 5′ region of the S gene is alternatively linked with the 3′ region of the or gene depending upon the orientation of the 3,015-bp invertible segment. The relative orientations of the genes are designated by their locations above (left to right) or below (right to left) the line depicting the DNA. (C) C-inversion region from phage P1 controlling the alternating expression of phage tail fiber genes ( ). The organization is similar to that of phage Mu except that 620-bp inverted repeat sequences designated with an unfilled rectangle are present at the boundaries of the 4.2-kb invertible segment. The gene is also inverted with respect to .

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Amino acid sequences of members of the DNA invertase family together with several other serine recombinases. The amino acid sequences were aligned relative to Hin using the program CLUSTAL W (http://workbench.sdsc.edu). Gin (phage Mu), PinD (), PinB (), Min (plasmid p15A), Pin (prophage in ), and Cin (phage P7 and P1) are DNA invertases discussed in the text. Rin is an uncharacterized DNA invertase from pKY1. BinRfrom Tn and β-recombinase from pSM19035 can promote both inversions and deletions ( ). ISXc5 from promotes only deletions even though its sequence is very similar to the DNA invertases ( ). ISXc5 resolvase residues 202 to 307 were excluded from the alignment. The sequence of the well-characterized γδ resolvase from Tn is also included (reference and chapter 14). Residues shown on a black background are identical in all the listed serine recombinases, residues shown in white on a dark gray background are identical in all the DNA invertases, and residues shown black on a light gray background are identical in most of the DNA invertases. The secondary structures for the catalytic domain (residues 1 to 134) discerned from the crystal structure of γδ resolvase ( ) and those obtained from crystal structures of the Hin DNA binding domain (residues 139 to 190) ( ) are denoted beneath the sequence alignment.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Sequence of DNA invertase recombination sites. The DNA sequences surrounding the recombination sites for Hin (), Gin (), Cin P1 (), Pin (), and two of the Min sites ( and ʺ) are given. The sequences in lowercase letters on either end are outside the minimal 26-bp recombination site. The 26-bp consensus based on sequence comparisons is given at the top, and residues that match the consensus within the half-site regions are shown on a shaded background. In the cases tested, the different DNA invertases can catalyze inversion on each other's substrate.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Multiple DNA inversion systems. (A) Min DNA invertase system from plasmid p15B, a cryptic prophage ( ). A promoter on one side of the multiple inversion region transcribes the Rand constant 5′ region of the gene. Depending on the particular arrangement of the inversion region, any one of the six variable gene segments can be linked in-frame to the gene. The R, S, and T genes encode phage tail fiber components or assembly factors. The DNA invertase gene is located on the other side and contains a recombinational enhancer sequence (open bar) within the first part of its coding region. (B) Shufflon from plasmid R64 ( ). The gene encodes a component of the mating pilus that specifies the host range for the plasmid transfer. Any one of the seven 3′ ends can be linked to the constant portion of located outside of the multiple inversion region, though in some cases multiple inversion reactions are required from a particular starting arrangement. The inversion sites are characterized by a 19-bp related sequence that has been shown to constitute a minimal recombination site. The recombinase gene is located on one side of the inversion region. Shufflons of varying complexities exist on many plasmids within the IncI group. (C) inversion locus in serovar Typhi ( ). A simple shufflon-like inversion system is located within a pathogenicity island in the chromosome of serovar Typhi. The organization is the same as that for the R64 shufflon except that only one 0.5-kb invertible segment is present. (D) inversion locus in ( ). A 497-bp invertible segment within the center of the locus contains a promoter and encodes the constant N-terminal portion of Omp1 (gray rectangle), a major surface protein that is associated with type IV pili. Any one of the four 3′ ends of () can be linked to the constant region by a process involving one or more inversions at the four different recombination sites. The sequences at the boundaries of the invertible segments, called to bear a strong resemblance to the 26-bp DNA invertase recombination site sequence. The recombinase responsible for catalyzing inversion within the locus is not known.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Fimbrial phase variation systems. (A) Organization of the locus in . A 314-bp invertible segment bounded by the and recombination sites contains the promoter responsible for transcription of the gene encoding type I pilin ( ). Two separate recombinase genes, and , are transcribed by separate promoters ( ). The locations of IHF and LRP binding sites that participate in the inversion reaction are denoted ( ). (B) Organization of the region surrounding the invertible segment controlling expression in . A 252-bp invertible segment containing a promoter is flanked by 21-bp inverted repeat sequences where DNA exchange occurs ( ). encodes the recombinase, and is the first gene of an operon encoding the MR-P fimbria. The locations of the recombination sites in this and subsequent figures are depicted by the half-arrowhead symbol.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Pilin phase variation in . and have a very similar organization of their 2.1-kb invertible segment that controls type IV pilin expression ( ). A sigma 54 promoter transcribes a very short constant region which is linked to either the or gene, depending on the orientation of the invertible segment. Because the locus contains mutations in the and genes that render them inactive, pilin expression oscillates between the “on” or “off” states. and designate the 26-bp sequence where DNA exchange occurs. The recombinase gene is transcribed by a sigma 70 promoter.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Multiple DNA inversions in . (A) Segment (20-kb) from the strain KD735-15 region ( ). The genes encode lipoproteins that are involved in mycoplasma-host interactions and also can function as phage receptors. The expression site is in black, the expressed gene is cross hatched, and the silent gene fragments are shaded in gray. Most of the genes contain repetitive sequence blocks and probably arose from extensive gene duplications. Unfilled rectangles represent non- genes interspersed within the locus. The region probably extends to the right of the segment shown to contain the remaining portion of the gene and potentially additional unidentified genes. Inversion sites consisting of 34-bp boxes are located at the 5′ ends of each of the genes. (B) locus of encoding a type 1 restriction and modification system ( ). There are two copies in inverted orientation of the gene whose product specifies the DNA binding site of the HsdS-HsdR-HsdM holoenzyme complex. Inversions at two classes of recombination sites, designated and result in many different arrangements of the genes. In the DNA configuration shown here, the nuclease () and methylase () gene are not transcribed and so the locus would not express a functional restriction-modification complex. The locus (not shown) has a nearly identical organization. The recombinases that catalyze inversions in the and systems have not been identified.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

DNA cleavage and strand transfer by the DNA invertases. (A) All four DNA ends are cleaved and esterified with a serine near the N terminus of the DNA invertase prior to strand transfer in the activated synaptic complex ( ). In this figure, strand transfer is shown accompanied by an exchange of one subunit from each dimer followed by reversal of the serine-ester linkage back to the phosphodiester linkage of the DNA. While topological evidence is consistent with an exchange of subunits, direct experimental support is lacking. (B) Chemistry of DNA exchange. The hydroxyl group of the active site serine on the invertase attacks the phosphodiester bond on DNA to form a protein-DNA ester linkage. A second transesterification step involving a 3′ hydroxyl on a partner DNA strand reverses the protein-DNA linkage and restores the DNA phosphodiester bond. Only one DNA strand is shown for simplicity.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Nucleoprotein complexes formed during the Hin-catalyzed recombination reaction ( ). Schematic representation and electron micrograph of an invertasome (top of figure) containing the Fis-bound enhancer associated with the two Hin-bound recombination sites. Schematic representation of one topological form and an electron micrograph of a Hin- synaptic complex (bottom of figure) containing the two Hin-bound recombination sites associated without the enhancer. The complexes were stabilized by protein cross-linking and then relaxed by a topoisomerase prior to spreading on the grid. The cross-linked Hin- synaptic complex was also treated with RV that cuts once within the invertible segment as shown in the drawing. In the drawings, the recombination sites are depicted as dark arrows, the enhancer is a black segment, the Hin proteins are spheres, and the Fis proteins are ovals.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Schematic representation of complexes formed and the reaction pathway leading to DNA inversion, by the DNA invertases. The supercoiled starting DNA substrate (a) contains two recombination sites (labeled [light shading] and [dark shading]) in inverted orientation plus a recombinational enhancer that contains two Fis binding sites. Complex b represents the invertasome structure assembled at the base of a supercoiled branch in the presence of the DNA invertase (Hin) and Fis. HU is required for invertasome assembly when the enhancer is located within 100 bp from a recombination site in the Hin system. Complex c represents the structure after DNA exchange leading to inversion of the DNA segment between the recombination sites (complex d). DNA invertases can form synaptic complexes with the two recombination sites in a variety of topological forms: complex e has trapped two negative supercoils, complex f has no negative supercoils trapped, and complex g has trapped four negative supercoils. Complex e could be an intermediate in the formation of the invertasome (complex b).

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 11
Figure 11

(A) Linear representation of the Hin protein depicting the N-terminal 134 amino acids that constitute the catalytic and dimerization domain and the C-terminal 52 amino acids that constitute the DNA binding domain. Two regions that are highly conserved among serine recombinases and believed to contribute to the catalytic pocket are shaded gray. Within these patches, residues are noted where mutations resulting in catalytically inactive Hin proteins have been isolated, primarily by random mutagenesis and screening methods ( ; Johnson et al., unpublished). Serine 10, the nucleophile that cleaves and forms an ester linkage with the DNA, is highlighted in boldface type. The α-helix E region, whose N-terminal segment is involved in dimeric interactions and C-terminal part is involved in nonspecific DNA interactions, is denoted by the dark shading. Italicized amino acids are where mutations have been isolated in Hin which lead to hyperactive Fis-independent mutants ( ; Sanders and Johnson, unpublished). (B) A similar diagram of the Tn or Tn (γδ) resolvase, including mutation sites leading to catalytically defective or hyperactive mutants, is shown for comparison ( ) (chapter 14). Note that resolvase numbers are increased by two relative to Hin between positions 67 and 124 ( Fig. 2 ).

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 12
Figure 12

Topological changes in DNA that accompany inversion. The DNA is schematically shown as a relaxed ribbon, though negative DNA supercoiling is required for the reaction. (A) Configuration of DNA strands in the invertasome. Two negative nodes (DNA crossings) are trapped at the base of the plectonemic branch, where the two recombination sites (arrows) cross the enhancer (highlighted in black). The structure is stabilized by interactions between invertase dimers, interactions between the invertase and Fis, and DNA supercoiling. (B) Configuration of DNA strands after a single exchange that results in inversion of the intervening DNA. The inversion causes a change in the sign of the entrapped nodes. In addition, the 180° clockwise rotations create a −1 node plus a half-twist on each DNA strand connected to the recombination sites. These changes cancel each other, leaving an overall Δ of +4 because of the switch from −2 to +2 of the entrapped nodes. The node sign is determined by tracing the entire path of the DNA molecule. A node is defined as negative when the DNA strand in front is pointed upwards and the strand underneath crosses in a rightward direction. Likewise, crossing of the underneath strand in the leftward direction is considered a positive node ( ). The switch in node sign upon inversion reflects the change in connectivity of the DNA strands after exchange. (Modified from reference )

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 13
Figure 13

DNA knotting by invertases resulting from processive recombination. A single exchange resulting from a 180° rotation of DNA strands results in an unknotted inverted product ( Fig. 12 ). If two iterative exchanges occur, the invertible segment is switched back to the parental orientation, but three negative nodes are introduced, generating a knot. Additional exchanges result in alternating inverted and noninverted knotted products with increasing numbers of nodes. Whereas a single exchange results in a loss of four negative supercoils ( Fig. 12 ), two or more exchanges result in DNA molecules that have lost two supercoils and the windings from each additional exchange are converted exclusively to knot nodes. Note that if one of theDNAsegments between the enhancer and a recombination site is short, multiple windings of theDNAwould be inhibited.

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 15
Figure 15

Recombination products formed on substrates containing directly repeated recombination sites. The majority of activated synaptic complexes are assembled in an invertasome structure as diagrammed on the top pathway, but the recombination sites are in an antiparallel orientation. The resulting unpaired core nucleotides after a single DNA exchange ( Fig. 14C ) prevent ligation, and a second exchange occurs. Ligation after two exchanges results in a three-noded (trefoil) knot (see Fig. 13 ) as shown in the micrograph of a negative trefoil generated by Hin. In the rare bottom pathway, the recombination sites have assembled in an invertasome-like structure but in a parallel orientation requiring an additional DNA loop. A single exchange within this complex results in a singly linked catenated deletion product as shown in the micrograph. The DNA molecules have been coated with RecA protein to facilitate visualization of the DNA crossings (nodes).

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 14
Figure 14

Synapsis and DNAexchange of wild-type recombination sites in the standard configuration (A), recombination sites in which one site has a mutation within one of the core base pairs (B), and wild-type recombination sites oriented in a direct repeat configuration and synapsed in an antiparallel orientation (C). Cleavages induced by the DNA invertase within the core nucleotides are indicated. Ligation of mismatched core base pairs after DNA exchange is inhibited, leading to an additional exchange to regenerate the parental recombination site sequence. Two or more exchanges lead to knots introduced into the DNA as diagrammed in Fig. 13

Citation: Johnson R. 2002. Bacterial Site-Specific DNA Inversion Systems, p 230-271. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap13
1. Abdel-Meguid, S. S.,, N. D. F. Grindley,, N. S. Templeton,, and T. A. Steitz. 1984. Cleavage of the site-specific recombination protein gamma delta resolvase: the smaller of two fragments binds DNA specifically. Proc. Natl. Acad. Sci. USA 81:20012005.
2. Abraham, J. M.,, C. S. Freitag,, J. R. Clements,, and B. I. Eisenstein. 1985. An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc. Natl. Acad. Sci. USA 82:57245727.
3. Adams, C. W.,, O. Nanassy,, R. C. Johnson,, and K. T. Hughes. 1997. Role of arginine-43 and arginine-69 of the Hin recombinase catalytic domain in the binding of Hin to the hix DNA recombination sites. Mol. Microbiol. 24:12351247.
4. Ali Azam, T.,, A. Iwata,, A. Nishimura,, S. Ueda,, and A. Ishihama. 1999. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 181:63616370.
5. Alonso, J. C.,, C. Gutierrez,, and F. Rojo. 1995. The role of chromatin-associated protein Hbsu in beta-mediated DNA recombination is to facilitate the joining of distant recombination sites. Mol. Microbiol. 18:471478.
6. Alonso, J. C.,, F. Weise,, and F. Rojo. 1995. The Bacillus subtilis histone-like protein Hbsu is required for DNA resolution and DNA inversion mediated by the beta recombinase of plasmid pSM19035. J. Biol. Chem. 270:29382945.
7. Andrewes, F. W. 1922. Studies in group-agglutination: the Salmonella group and its antigenic structure. J. Pathol. Bacteriol. 25:505521.
8. Arnold, P. H.,, D. G. Blake,, N. D. Grindley,, M. R. Boocock,, and W. M. Stark. 1999. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. 18:14071414.
9. Bahrani, F. K.,, G. Massad,, C. V. Lockatell,, D. E. Johnson,, R. G. Russell,, J. W. Warren,, and H. L. Mobley. 1994. Construction of an MR/P fimbrial mutant of Proteus mirabilis: role in virulence in a mouse model of ascending urinary tract infection. Infect. Immun. 62:33633371.
10. Bahrani, F. K.,, and H. L. Mobley. 1994. Proteus mirabilis MR/P fimbrial operon: genetic organization, nucleotide sequence, and conditions for expression. J. Bacteriol. 176:34123419.
11. Ball, C. A.,, and R. C. Johnson. 1991. Efficient excision of phage lambda from the Escherichia coli chromosome requires the Fis protein. J. Bacteriol. 173:40274031.
12. Ball, C. A.,, and R. C. Johnson. 1991. Multiple effects of Fis on integration and the control of lysogeny in phage lambda. J. Bacteriol. 173:40324038.
13. Ball, C. A.,, R. Osuna,, K. C. Ferguson,, and R. C. Johnson. 1992. Dramatic changes in Fis levels upon nutrient upshift in Escherichia coli. J. Bacteriol. 174:80438056.
14. Bates, D. B.,, E. Boye,, T. Asai,, and T. Kogoma. 1997. The absence of effect of gid or mioC transcription on the initiation of chromosomal replication in Escherichia coli. Proc. Natl. Acad. Sci. USA 94:1249712502.
15. Bellomy, G. R.,, and M. T. J. Record. 1990. StableDNAloops in vivo and in vitro: roles in gene regulation at a distance and in biophysical characterization of DNA. Prog. Nucleic Acid Res. Mol. Biol. 39:81127.
16. Benjamin, K. R.,, A. P. Abola,, R. Kanaar,, and N. R. Cozzarelli. 1996. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J. Mol. Biol. 256:5065.
17. Bhugra, B.,, L. L. Voelker,, N. Zou,, H. Yu,, and K. Dybvig. 1995. Mechanism of antigenic variation in Mycoplasma pulmonis: interwoven, site-specificDNAinversions. Mol. Microbiol. 18:703714.
18. Bliska, J. B.,, and N. R. Cozzarelli. 1987. Use of site-specific recombination as a probe of DNA structure and metabolism in vivo. J. Mol. Biol. 194:205218.
19. Blomfield, I. C.,, P. J. Calie,, K. J. Eberhardt,, M. S. McClain,, and B. I. Eisenstein. 1993. Lrp stimulates phase variation of type 1 fimbriation in Escherichia coli K-12. J. Bacteriol. 175:2736.
20. Blomfield, I. C.,, D. H. Kulasekara,, and B. I. Eisenstein. 1997. Integration host factor stimulates both FimB- and FimE-mediated site-specific DNA inversion that controls phase variation of type 1 fimbriae expression in Escherichia coli. Mol. Microbiol. 23:705717.
21. Blomfield, I. C.,, M. S. McClain,, J. A. Princ,, P. J. Calie,, and B. I. Eisenstein. 1991. Type 1 fimbriation and fimE mutants of Escherichia coli K-12. J. Bacteriol. 173:52985307.
22. Bokal, A. J.,, W. Ross,, T. Gaal,, R. C. Johnson,, and R. L. Gourse. 1997. Molecular anatomy of a transcription activation patch: FIS-RNA polymerase interactions at the Escherichia coli rrnB P1 promoter. EMBO J. 16:154162.
23. Boles, T. C.,, J. H. White,, and N. R. Cozzarelli. 1990. Struc ture of plectonemically supercoiled DNA. J. Mol. Biol. 213:931951.
24. Boocock, M. R.,, X. Zhu,, and N. D. F. Grindley. 1995. Catalytic residues of gammadelta resolvase act in cis. EMBO J. 14:51295140.
25. Borst, P.,, and D. R. Greaves. 1987. Programmed gene rearrangements altering gene expression. Science 235:658667.
26. Brinton, C. C. 1959. Non-flagellar appendages of bacteria. Nature 183:782786.
27. Bruand, C.,, E. Le Chatelier,, S. D. Ehrlich,, and L. Janniere. 1993. A fourth class of theta-replicating plasmids: the pAM beta 1 family from gram-positive bacteria. Proc. Natl. Acad. Sci. USA 90:1166811672.
28. Bruist, M. F.,, A. C. Glasgow,, R. C. Johnson,, and M. I. Simon. 1987. Fis binding to the recombinational enhancer of the Hin DNA inversion system. Genes Dev. 1:762772.
29. Bruist, M. F.,, S. J. Horvath,, L. E. Hood,, T. A. Steitz,, and M. I. Simon. 1987. Synthesis of a site-specific DNA-binding peptide. Science 235:777780.
30.Reference deleted.
31. Bruist, M. F.,, and M. I. Simon. 1984. Phase variation and the Hin protein: in vivo activity measurements, protein overproduction, and purification. J. Bacteriol. 159:7179.
32. Burns, L. S.,, S. G. Smith,, and C. J. Dorman. 2000. Interaction of the FimB integrase with the fimS invertible DNA element in Escherichia coli in vivo and in vitro. J. Bacteriol. 182:29532959.
33. Calvo, J. M.,, and R. G. Matthews. 1994. The leucine-responsive regulatory protein, a global regulator of metabolism in Escherichia coli. Microbiol. Rev. 58:466490.
34. Canosa, I.,, R. Lurz,, F. Rojo,, and J. C. Alonso. 1998. β Recombinase catalyzes inversion and resolution between two inversely oriented six sites on a supercoiled DNA substrate and only inversion on relaxed or linear substrates. J. Biol. Chem. 273:1388613891.
35. Canosa, I.,, F. Rojo,, and J. C. Alonso. 1996. Site-specific recombination by the beta protein from the Streptococcal plasmid pSM19035: minimal recombination sequences and crossing over site. Nucleic Acids Res. 24:27122717.
36. Carrasco, C. D.,, K. S. Ramaswamy,, T. S. Ramasubramanian,, and J. W. Golden. 1994. Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev. 8:7483.
37. Carrick, C. S.,, J. A. Fyfe,, and J. K. Davies. 1998. Neisseria gonorrhoeae contains multiple copies of a gene that may encode a site-specific recombinase and is associated with DNA rearrangements. Gene 220:2129.
38. Cassler, M. R.,, J. E. Grimwade,, and A. C. Leonard. 1995. Cell cycle-specific changes in nucleoprotein complexes at a chromosomal replication origin. EMBO J. 14:58335841.
39. Ceglowski, P.,, and J. C. Alonso. 1994. Gene organization of the Streptococcus pyogenes plasmid pDB101: sequence analysis of the orf eta-copS region. Gene 145:3339.
40. Cheng, Y.-S.,, W. Z. Yang,, R. C. Johnson,, and H. S. Yuan. 2000. Structural analysis of the transcriptional activation region on Fis: crystal structures of six Fis mutants with different activation properties. J. Mol. Biol. 302:11391151.
41. Chiu, T. K.,, C. Sohn,, R. E. Dickerson,, and R. C. Johnson. Testing water-mediated DNA recognition by the Hin recombinase. EMBO J., in press.
42. Chow, L. T.,, and A. I. Bukhari. 1976. The invertible DNA segments of coliphages Mu and P1 are identical. Virology 74:242248.
43. Connell, I.,, W. Agace,, P. Klemm,, M. Schembri,, S. Marild,, and C. Svanborg. 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc. Natl. Acad. Sci. USA 93:98279832.
44. Cozzarelli, N. R.,, M. A. Krasnow,, S. P. Gerrard,, and J. H. White. 1984. A topological treatment of recombination and topoisomerases. Cold Spring Harbor Symp. Quant. Biol. 49:383400.
45. Crellin, P. K.,, and J. I. Rood. 1997. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn4451. J. Bacteriol. 179:51485156.
46. Crisona, N. J.,, R. Kanaar,, T. N. Gonzalez,, E. L. Zechiedrich,, A. Klippel,, and N. R. Cozzarelli. 1994. Processive recombination by wild-type Gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. J. Mol. Biol. 243:437457.
47. Daniell, E.,, J. Abelson,, J. S. Kim,, and N. Davidson. 1973. Heteroduplex structures of bacteriophage Mu DNA. Virology 51:237239.
48. Donato, G. M.,, M. J. Lelivelt,, and T. H. Kawula. 1997. Promoter-specific repression of fimB expression by the Escherichia coli nucleoid-associated protein H-NS. J. Bacteriol. 179:66186625.
49. Dorgai, L.,, J. Oberto,, and R. A. Weisberg. 1993. Xis and Fis proteins prevent site-specific DNA inversion in lysogens of phage HK022. J. Bacteriol. 175:693700.
50. Dorman, C. J.,, and C. F. Higgins. 1987. Fimbrial phase variation in Escherichia coli: dependence on integration host factor and homologies with other site-specific recombinases. J. Bacteriol. 169:38403843.
51. Dove, S. L.,, and C. J. Dorman. 1996. Multicopy fimB gene expression in Escherichia coli: binding to inverted repeats in vivo, effect on fimA gene transcription and DNA inversion. Mol. Microbiol. 21:11611173.
52. Dove, S. L.,, and C. J. Dorman. 1994. The site-specific recombination system regulating expression of the type 1 fimbrial subunit gene of Escherichia coli is sensitive to changes in DNA supercoiling. Mol. Microbiol. 14:975988.
53. Dybvig, K. 1993. DNA rearrangements and phenotypic switching in prokaryotes. Mol. Microbiol. 10:465471.
54. Dybvig, K.,, J. Alderete,, H. L. Watson,, and G. H. Cassell. 1988. Adsorption of Mycoplasma virus P1 to host cells. J. Bacteriol. 170:43734375.
55. Dybvig, K.,, J. W. Simecka,, H. L. Watson,, and G. H. Cassell. 1989. High-frequency variation in Mycoplasma pulmonis colony size. J. Bacteriol. 171:51655168.
56. Dybvig, K.,, R. Sitaraman,, and C. T. French. 1998. A family of phase-variable restriction enzymes with differing specificities generated by high-frequency gene rearrangements. Proc. Natl. Acad. Sci. USA 95:1392313928.
57. Dybvig, K.,, and H. Yu. 1994. Regulation of a restriction and modification system via DNA inversion in Mycoplasma pulmonis. Mol. Microbiol. 12:547560.
58. Eisenstein, B. I.,, D. S. Sweet,, V. Vaughn,, and D. I. Friedman. 1987. Integration host factor is required for the DNA inversion that controls phase variation in Escherichia coli. Proc. Natl. Acad. Sci. USA 84:65066510.
59. Faelen, M.,, M. Mergeay,, J. Gerits,, A. Toussaint,, and N. Lefebvre. 1981. Genetic mapping of a mutation conferring sensitivity to bacteriophage Mu in Salmonella typhimurium LT2. J. Bacteriol. 146:914919.
60. Feng, J.-A.,, R. E. Dickerson,, and R. C. Johnson. 1994. Proteins which promote DNA inversion and deletion. Curr. Opin. Struct. Biol. 4:6066.
61. Feng, J. A.,, R. C. Johnson,, and R. E. Dickerson. 1994. Hin recombinase bound to DNA: the origin of specificity in major and minor groove interactions. Science 263:348355.
62. Filutowicz, M.,, W. Ross,, J. Wild,, and R. L. Gourse. 1992. Involvement of Fis protein in replication of the Escherichia coli chromosome. J. Bacteriol. 174:398407.
63. Finkel, S. E.,, and R. C. Johnson. 1992. The Fis protein: it’s not just for DNA inversion anymore. Mol. Microbiol. 6:32573265.
64. Fujita, H.,, S. Yamaguchi,, and T. Iino. 1973. Studies on H-O variants in Salmonella in relation to phase variation. J. Gen. Microbiol. 76:127134.
65. Fulks, K. A.,, C. F. Marrs,, S. P. Stevens,, and M. R. Green. 1990. Sequence analysis of the inversion region containing the pilin genes of Moraxella bovis. J. Bacteriol. 172:310316.
66. Furuichi, T.,, T. Komano,, and T. Nisioka. 1984. Physical and genetic analyses of the Inc-I alpha plasmid R64. J. Bacteriol. 158:9971004.
67. Futcher, A. B. 1986. Copy number amplification of the 2 micron circle plasmid of Saccharomyces cerevisiae. J. Theor. Biol. 119:197204.
68. Gally, D. L.,, J. A. Bogan,, B. I. Eisenstein,, and I. C. Blomfield. 1993. Environmental regulation of the fim switch controlling type 1 fimbrial phase variation in Escherichia coli K-12: effects of temperature and media. J. Bacteriol. 175:61866193.
69. Gally, D. L.,, J. Leathart,, and I. C. Blomfield. 1996. Interaction of FimB and FimE with the fim switch that controls the phase variation of type 1 fimbriae in Escherichia coli K-12. Mol. Microbiol. 21:725738.
70. Gally, D. L.,, T. J. Rucker,, and I. C. Blomfield. 1994. The leucine-responsive regulatory protein binds to the fim switch to control phase variation of type 1 fimbrial expression in Escherichia coli K-12. J. Bacteriol. 176:56655672.
71. Gille, H.,, J. B. Egan,, A. Roth,, and W. Messer. 1991. The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res. 19:41674172.
72. Gillen, K. L.,, and K. T. Hughes. 1991. Negative regulatory loci coupling flagellin synthesis to flagellar assembly in Salmonella typhimurium. J. Bacteriol. 173:23012310.
73. Giphart-Gassler, M.,, R. H. Plasterk,, and P. van de Putte. 1982. G inversion in bacteriophage Mu: a novel way of gene splicing. Nature 297:339342.
74. Glasgow, A. C.,, M. F. Bruist,, and M. I. Simon. 1989. DNAbinding properties of the Hin recombinase. J. Biol. Chem. 264:1007210082.
75. Glasgow, A. C.,, K. T. Hughes,, and M. I. Simon,. 1989. Bacterial DNA inversion systems, p. 637659. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C.
76. Golden, J. W.,, M. E. Mulligan,, and R. Haselkorn. 1987. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature 327:526529.
77. Gonzalez-Gil, G.,, P. Bringmann,, and R. Kahmann. 1996. FIS is a regulator of metabolism in Escherichia coli. Mol. Microbiol. 22:2129.
78. Goshima, N.,, Y. Kano,, H. Tanaka,, K. Kohno,, T. Iwaki,, and F. Imamoto. 1994. IHF suppresses the inhibitory effect of HNS on HU function in the Hin inversion system. Gene 141:1723.
79. Graham, K. S.,, and P. B. Dervan. 1990. Structural motif of the DNA binding domain of gamma delta-resolvase characterized by affinity cleaving. J. Biol. Chem. 265:1653416540.
80. Grindley, N. D. F., 1993. Resolvase-mediated site-specific recombination, p. 236267. In F. A. L. Eckstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology, vol. 8. Springer-Verlag, New York, N.Y.
81. Grundy, F. J.,, and M. M. Howe. 1984. Involvement of the invertible G segment in bacteriophage Mu tail fiber biosynthesis. Virology 134:296317.
82. Guo, F.,, D. N. Gopaul,, and G. D. van Duyne. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389:4046.
83. Gyohda, A.,, N. Funayama,, and T. Komano. 1997. Analysis of DNA inversions in the shufflon of plasmid R64. J. Bacteriol. 179:18671871.
84. Gyohda, A.,, and T. Komano. 2000. Purification and characterization of the R64 shufflon-specific recombinase. J. Bacteriol. 182:27872792.
85. Haffter, P.,, and T. A. Bickle. 1988. Enhancer-independent mutants of the Cin recombinase have a relaxed topological specificity. EMBO J. 7:39913996.
86. Haffter, P.,, and T. A. Bickle. 1987. Purification and DNAbinding properties of FIS and Cin, two proteins required for the bacteriophage P1 site-specific recombination system, cin. J. Mol. Biol. 198:579587.
87. Haren, L.,, B. Ton-Hoang,, and M. Chandler. 1999. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53:245281.
88. Hatfull, G. F.,, and N. D. Grindley. 1986. Analysis of gamma delta resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site I of res. Proc. Natl. Acad. Sci. USA 83:54295433.
89. Hatfull, G. F.,, S. M. Noble,, and N. D. Grindley. 1987. The gamma delta resolvase induces an unusual DNA structure at the recombinational crossover point. Cell 49:103110.
90. Haykinson, M. J.,, L. M. Johnson,, J. Soong,, and R. C. Johnson. 1996. The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specificDNAinversion. Curr. Biol. 6:163177.
91.Reference deleted.
92. Haykinson, M. J.,, and R. C. Johnson. 1993. DNA looping and the helical repeat in vitro and in vivo: effect ofHUprotein and enhancer location on Hin invertasome assembly. EMBO J. 12:25032512.
93. Heichman, K. A.,, and R. C. Johnson. 1990. The Hin invertasome: protein-mediated joining of distant recombination sites at the enhancer. Science 249:511517.
94. Heichman, K. A.,, I. P. Moskowitz,, and R. C. Johnson. 1991. Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots. Genes Dev. 5:16221634.
95. Heinrich, D. W.,, and A. C. Glasgow. 1997. Transcriptional regulation of type 4 pilin genes and the site-specific recombinase gene, piv, in Moraxella lacunata and Moraxella bovis. J. Bacteriol. 179:72987305.
96. Henderson, I. R.,, P. Owen,, and J. P. Nataro. 1999. Molecular switches—theONand OFF of bacterial phase variation. Mol. Microbiol. 33:919932.
97. Hengen, P. N.,, S. L. Bartram,, L. E. Stewart,, and T. D. Schneider. 1997. Information analysis of Fis binding sites. Nucleic Acids Res. 25:49945002.
98. Hiestand-Nauer, R.,, and S. Iida. 1983. Sequence of the sitespecific recombinase gene cin and of its substrates serving in the inversion of the C segment of bacteriophage P1. EMBO J. 2:17331740.
99. Hillyard, D. R.,, M. Edlund,, K. T. Hughes,, M. Marsh,, and N. P. Higgins. 1990. Subunit-specific phenotypes of Salmonella typhimurium HU mutants. J. Bacteriol. 172:54025407.
100. Hodges-Garcia, Y.,, P. J. Hagerman,, and D. E. Pettijohn. 1989. DNA ring closure mediated by protein HU. J. Biol. Chem. 264:1462114623.
101. Howe, M. M.,, J. W. Schumm,, and A. L. Taylor. 1979. The S and U genes of bacteriophage Mu are located in the invertible G segment of Mu DNA. Virology 92:108124.
102. Huber, H. E.,, S. Iida,, W. Arber,, and T. A. Bickle. 1985. Sitespecific DNA inversion is enhanced by a DNA sequence element in cis. Proc. Natl. Acad. Sci. USA 82:37763780.
103. Hubner, P.,, and W. Arber. 1989. Mutational analysis of a prokaryotic recombinational enhancer element with two functions. EMBO J. 8:577585.
104. Hughes, K. T.,, P. C. Gaines,, J. E. Karlinsey,, R. Vinayak,, and M. I. Simon. 1992. Sequence-specific interaction of the Salmonella Hin recombinase in both major and minor grooves of DNA. EMBO J. 11:26952705.
105. Hughes, K. T.,, P. Youderian,, and M. I. Simon. 1988. Phase variation in Salmonella: analysis of Hin recombinase and hix recombination site interaction in vivo. Genes Dev. 2:937948.
106. Hughes, R. E.,, G. F. Hatfull,, P. Rice,, T. A. Steitz,, and N. D. Grindley. 1990. Cooperativity mutants of the gamma delta resolvase identify an essential interdimer interaction. Cell 63:13311338.
107. Hughes, R. E.,, P. A. Rice,, T. A. Steitz,, and N. D. Grindley. 1993. Protein-protein interactions directing resolvase sitespecific recombination: a structure-function analysis. EMBO J. 12:14471458.
108. Iida, S.,, and R. Hiestand-Nauer. 1986. Localized conversion at the crossover sequences in the site-specific DNA inversion system of bacteriophage P1. Cell 45:7179.
109. Iida, S.,, and R. Hiestand-Nauer. 1987. Role of the central dinucleotide at the crossover sites for the selection of quasi sites in DNA inversion mediated by the site-specific Cin recombinase of phage P1. Mol. Gen. Genet. 208:464468.
110. Iida, S.,, R. Hiestand-Nauer,, J. Meyer,, and W. Arber. 1985. Crossover sites cix for inversion of the invertible DNA segment C on the bacteriophage P7 genome. Virology 143:347351.
111. Iida, S.,, H. Huber,, R. Hiestand-Nauer,, J. Meyer,, T. A. Bickle,, and W. Arber. 1984. The bacteriophage P1 site-specific recombinase Cin: recombination events and DNA recognition sequences. Cold Spring Harbor Symp. Quant. Biol. 49:769777.
112. Iida, S.,, J. Meyer,, K. E. Kennedy,, and W. Arber. 1982. A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1:14451453.
113. Iida, S.,, H. Sandmeier,, P. Hubner,, R. Hiestand-Nauer,, K. Schneitz,, and W. Arber. 1990. The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T: a new member of the Din family of site-specific recombinases. Mol. Microbiol. 4:991997.
114. Janniere, L.,, S. McGovern,, C. Pujol,, M. A. Petit,, and S. D. Ehrlich. 1996. In vivo analysis of the plasmid pAM beta 1 resolution system. Nucleic Acids Res. 24:34313436.
115. Johnson, R. C. 1991. Mechanism of site-specific DNA inversion in bacteria. Curr. Opin. Genet. Dev. 1:404411.
116. Johnson, R. C., 1995. Site-specific recombinases and their interactions with DNA, p. 141176. In D. Lilley (ed.), Frontiers in Molecular Biology: DNA-Protein: Structural Interactions. IRL Press, Oxford, United Kingdom.
117. Johnson, R. C.,, C. A. Ball,, D. Pfeffer,, and M. I. Simon. 1988. Isolation of the gene encoding the Hin recombinational enhancer binding protein. Proc. Natl. Acad. Sci. USA 85:34843488.
118. Johnson, R. C.,, and M. F. Bruist. 1989. Intermediates in Hinmediated DNA inversion: a role for Fis and the recombinational enhancer in the strand exchange reaction. EMBO J. 8:15811590.
119. Johnson, R. C.,, M. F. Bruist,, M. B. Glaccum,, and M. I. Simon. 1984. In vitro analysis of Hin-mediated site-specific recombination. Cold Spring Harbor Symp. Quant. Biol. 49:751760.
120. Johnson, R. C.,, M. F. Bruist,, and M. I. Simon. 1986. Host protein requirements for in vitro site-specific DNA inversion. Cell 46:531539.
121.Reference deleted.
122. Johnson, R. C.,, A. C. Glasgow,, and M. I. Simon. 1987. Spatial relationship of the Fis binding sites for Hin recombinational enhancer activity. Nature 329:462465.
123. Johnson, R. C.,, and M. I. Simon. 1987. Enhancers of sitespecific recombination. Trends Genet. 3:262267.
124. Johnson, R. C.,, and M. I. Simon. 1985. Hin-mediated sitespecific recombination requires two 26 bp recombination sites and a 60 bp recombinational enhancer. Cell 41:781791.
125. Kahmann, R.,, G. Mertens,, A. Klippel,, B. Brauer,, R. Rudt,, and C. Koch,. 1987. The mechanism of G inversion, p. 681689. In: R. McMacken, and T. J. Kelly (ed.),DNA Replication and Recombination. UCLA Symposium on Molecular and Cellular Biology, vol. 47, Alan R. Liss, Inc., New York, N.Y.
126. Kahmann, R.,, F. Rudt,, C. Koch,, and G. Mertens. 1985. G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell 41:771780.
127. Kahmann, R.,, F. Rudt,, and G. Mertens. 1984. Substrate and enzyme requirements for in vitro site-specific recombination in bacteriophage Mu. Cold Spring Harbor Symp. Quant. Biol. 49:285294.
128. Kamp, D.,, and R. Kahmann. 1981. The relationship of two invertible segments in bacteriophage Mu and Salmonella typhimurium DNA. Mol. Gen. Genet. 184:564566.
129. Kamp, D.,, R. Kahmann,, D. Zipser,, T. R. Broker,, and L. T. Chow. 1978. Inversion of the G DNA segment of phage Mu controls phage infectivity. Nature 271:577580.
130. Kamp, D.,, E. Kardas,, W. Ritthaler,, R. Sandulache,, R. Schmucker,, and B. Stern. 1984. Comparative analysis of invertible DNA in phage genomes. Cold Spring Harbor Symp. Quant. Biol. 49:301311.
131. Kanaar, R.,, and N. R. Cozzarelli. 1992. Roles of supercoiled DNA structure in DNA transactions. Curr. Opin. Struct. Biol. 2:369379.
132. Kanaar, R.,, A. Klippel,, E. Shekhtman,, J. M. Dungan,, R. Kahmann,, and N. R. Cozzarelli. 1990. Processive recombination by the phageMuGin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62:353366.
133. Kanaar, R.,, P. van de Putte,, and N. R. Cozzarelli. 1988. Ginmediated DNA inversion: product structure and the mechanism of strand exchange. Proc. Natl. Acad. Sci. USA 85:752756.
134. Kanaar, R.,, P. van de Putte,, and N. R. Cozzarelli. 1989. Ginmediated recombination of catenated and knotted DNA substrates: implications for the mechanism of interaction between cis-acting sites. Cell 58:147159.
135. Kanaar, R.,, J. P. van Hal,, and P. van de Putte. 1989. The recombinational enhancer for DNA inversion functions independent of its orientation as a consequence of dyad symmetry in the Fis-DNA complex. Nucleic Acids Res. 17:60436053.
136. Kawula, T. H.,, and P. E. Orndorff. 1991. Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS. J. Bacteriol. 173:41164123.
137. Keith, B. R.,, L. Maurer,, P. A. Spears,, and P. E. Orndorff. 1986. Receptor-binding function of type 1 pili effects bladder colonization by a clinical isolate of Escherichia coli. Infect. Immun. 53:693696.
138. Kennedy, K. E.,, S. Iida,, J. Meyer,, M. Stalhammar-Carlemalm,, R. Hiestand-Nauer,, and W. Arber. 1983. Genome fusion mediated by the site specific DNA inversion system of bacteriophage P1. Mol. Gen. Genet. 189:413421.
139. Klemm, P. 1984. The fimA gene encoding the type-1 fimbrial subunit of Escherichia coli. Nucleotide sequence and primary structure of the protein. Eur. J. Biochem. 143:395399.
140. Klemm, P. 1986. Two regulatory fim genes, fimB and fimE, control the phase variation of type 1 fimbriae in Escherichia coli. EMBO J. 5:13891393.
141. Klippel, A.,, K. Cloppenborg,, and R. Kahmann. 1988. Isolation and characterization of unusual gin mutants. EMBO J. 7:39833989.
142. Klippel, A.,, R. Kanaar,, R. Kahmann,, and N. R. Cozzarelli. 1993. Analysis of strand exchange and DNA binding of enhancer-independent Gin recombinase mutants. EMBO J. 12:10471057.
143.. Klippel, A.,, G. Mertens,, T. Patschinsky,, and R. Kahmann. 1988. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. 7:12291237.
144. Koch, C.,, and R. Kahmann. 1986. Purification and properties of the Escherichia coli host factor required for inversion of the G segment in bacteriophage Mu. J. Biol. Chem. 261:1567315678.
145. Koch, C.,, G. Mertens,, F. Rudt,, R. Kahmann,, R. Kanaar,, R. H. Plasterk,, P. van de Putte,, R. Sandulache,, and D. Kamp,. 1987. The invertible G segment, p. 7591. In N. Symonds,, A. Toussaint,, P. van de Putte,, and M. M. Howe (ed.), Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
146. Koch, C.,, O. Ninnemann,, H. Fuss,, and R. Kahmann. 1991. The N-terminal part of the E. coli DNA binding protein FIS is essential for stimulating site-specific DNA inversion but is not required for specific DNA binding. Nucleic Acids Res. 19:59155922.
147. Koch, C.,, J. Vandekerckhove,, and R. Kahmann. 1988. Escherichia coli host factor for site-specific DNA inversion: cloning and characterization of the fis gene. Proc. Natl. Acad. Sci. USA 85:42374241.
148. Komano, T. 1999. Shufflons: multiple inversion systems and integrons. Annu. Rev. Genet. 33:171191.
149. Komano, T.,, S. R. Kim,, and T. Nisioka. 1987. Distribution of shufflon among IncI plasmids. J. Bacteriol. 169:53175319.
150. Komano, T.,, S. R. Kim,, T. Yoshida,, and T. Nisioka. 1994. DNA rearrangement of the shufflon determines recipient specificity in liquid mating of IncI1 plasmid R64. J. Mol. Biol. 243:69.
151. Komano, T.,, A. Kubo,, T. Kayanuma,, T. Furuichi,, and T. Nisioka. 1986. Highly mobile DNA segment of IncI alpha plasmid R64: a clustered inversion region. J. Bacteriol. 165:94100.
152. Komano, T.,, A. Kubo,, and T. Nisioka. 1987. Shufflon: multiinversion of four contiguous DNA segments of plasmid R64 creates seven different open reading frames. Nucleic Acids Res. 15:11651172.
153. Kostrewa, D.,, J. Granzin,, C. Koch,, H. W. Choe,, S. Raghunathan,, W. Wolf,, J. Labahn,, R. Kahmann,, and W. Saenger. 1991. Three-dimensional structure of the E. coli DNA-binding protein FIS. Nature 349:178180.
154. Kostrewa, D.,, J. Granzin,, D. Stock,, H. W. Choe,, J. Labahn,, and W. Saenger. 1992. Crystal structure of the factor for inversion stimulation FIS at 2.0 Å resolution. J. Mol. Biol. 226:209226.
155. Kubo, A.,, A. Kusukawa,, and T. Komano. 1988. Nucleotide sequence of the rci gene encoding shufflon-specific DNA recombinase in the IncI1 plasmid R64: homology to the sitespecific recombinases of integrase family. Mol. Gen. Genet. 213:3035.
156. Kulasekara, H. D.,, and I. C. Blomfield. 1999. The molecular basis for the specificity of fimE in the phase variation of type 1 fimbriae of Escherichia coli K-12. Mol. Microbiol. 31:11711181.
157. Kunkel, B.,, R. Losick,, and P. Stragier. 1990. The Bacillus subtilis gene for the development transcription factor sigma K is generated by excision of a dispensable DNA element containing a sporulation recombinase gene. Genes Dev. 4:525535.
158. Kutsukake, K.,, and T. Iino. 1980. Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu. Proc. Natl. Acad. Sci. USA 77:73387341.
159. Kutsukake, K.,, T. Nakao,, and T. Iino. 1985. A gene for DNA invertase and an invertible DNA in Escherichia coli K-12. Gene 34:343350.
160. Laundon, C. H.,, and J. D. Griffith. 1988. Curved helix segments can uniquely orient the topology of supertwisted DNA. Cell 52:545549.
161. Le Chatelier, E.,, S. D. Ehrlich,, and L. Janniere. 1993. Biochemical and genetic analysis of the unidirectional theta replication of the S. agalactiae plasmid plP501. Plasmid 29:5056.
162. Lederberg, J.,, and P. Edwards. 1953. Serotypic recombination in Salmonella. J. Immunol. 71:323340.
163. Lederberg, J.,, and T. Iino. 1956. Phase variation in Salmonella. Genetics 41:743757.
164. Lee, D. H.,, and R. F. Schleif. 1989. In vivo DNA loops in araCBAD: size limits and helical repeat. Proc. Natl. Acad. Sci. USA 86:476480.
165. Lee, S. Y.,, H. J. Lee,, H. Lee,, S. Kim,, E. H. Cho,, and H. M. Lim. 1998. In vivo assay of protein-protein interactions in Hin-mediated DNA inversion. J. Bacteriol. 180:59545960.
166. Lenich, A. G.,, and A. C. Glasgow. 1994. Amino acid sequence homology between Piv, an essential protein in site-specific DNA inversion in Moraxella lacunata, and transposases of an unusual family of insertion elements. J. Bacteriol. 176:41604164.
167. Li, X.,, D. E. Johnson,, and H. L. Mobley. 1999. Requirement of MrpH for mannose-resistant Proteus-like fimbria-mediated hemagglutination by Proteus mirabilis. Infect. Immun. 67:28222833.
168. Lim, H. M. 1994. Analysis of subunit interaction by introducing disulfide bonds at the dimerization domain of Hin recombinase. J. Biol. Chem. 269:3113431142.
169. Lim, H. M.,, K. T. Hughes,, and M. I. Simon. 1992. The effects of symmetrical recombination site hixC on Hin recombinase function. J. Biol. Chem. 267:1118311190.
170. Lim, H. M.,, H. J. Lee,, C. Jaxel,, and M. Nadal. 1997. Hinmediated inversion on positively supercoiled DNA. J. Biol. Chem. 272:1843418439.
171. Lim, H. M.,, and M. I. Simon. 1992. The role of negative supercoiling in Hin-mediated site-specific recombination. J. Biol. Chem. 267:1117611182.
172. Lim, J. K.,, N. W. Gunther IV,, H. Zhao,, D. E. Johnson,, S. K. Keay,, and H. L. T. Mobley. 1998. In vivo phase variation of Escherichia coli type 1 fimbrial genes in women with urinary tract infection. Infect. Immun. 66:33033310.
173. Liu, C. C.,, R. Huhne,, J. Tu,, E. Lorbach,, and P. Dröge. 1998. The resolvase encoded by Xanthomonas campestris transposable element ISXc5 constitutes a new subfamily closely related to DNA invertases. Genes Cells 3:221233.
174. Mack, D. P.,, J. P. Sluka,, J. A. Shin,, J. H. Griffin,, M. I. Simon,, and P. B. Dervan. 1990. Orientation of the putative recognition helix in the DNA-binding domain of Hin recombinase complexed with the hix site. Biochemistry 29:65616567.
175. Mahillon, J.,, and M. Chandler. 1998. Insertion sequences. Microbiol. Mol. Biol. Rev. 62:725774.
176. Makela, P. H. 1964. Flagellar homologies between E. coli and Salmonella. J. Gen. Microbiol. 35:503510.
177. Marrs, C. F.,, F. W. Rozsa,, M. Hackel,, S. P. Stevens,, and A. C. Glasgow. 1990. Identification, cloning, and sequencing of piv, a new gene involved in inverting the pilin genes of Moraxella lacunata. J. Bacteriol. 172:43704377.
178. Marrs, C. F.,, W. W. Ruehl,, G. K. Schoolnik,, and S. Falkow. 1988. Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. J. Bacteriol. 170:30323039.
179. Marrs, C. F.,, W. W. Ruehl,, G. K. Schoolnik,, and S. Falkow. 1988. Pilin-gene phase variation of Moraxella bovis is caused by an inversion of the pilin genes. J. Bacteriol. 170:30323039.
180. Marrs, C. F.,, G. Schoolnik,, J. M. Koomey,, J. Hardy,, J. Rothbard,, and S. Falkow. 1985. Cloning and sequencing of a Moraxella bovis pilin gene. J. Bacteriol. 163:132139.
181. Martinez, J. J.,, M. A. Mulvey,, J. D. Schilling,, J. S. Pinkner,, and S. J. Hultgren. 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J. 19:28032812.
182. Mattick, J. S.,, B. J. Anderson,, M. R. Mott,, and J. R. Egerton. 1984. Isolation and characterization of Bacteroides nodosus fimbriae: structural subunit and basal protein antigens. J. Bacteriol. 160:740747.
183. McClain, M. S.,, I. C. Blomfield,, K. J. Eberhardt,, and B. I. Eisenstein. 1993. Inversion-independent phase variation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 175:43354344.
184. McClain, M. S.,, I. C. Blomfield,, and B. I. Eisenstein. 1991. Roles of fimB and fimE in site-specific DNA inversion associated with phase variation of type 1 fimbriae in Escherichia coli. J. Bacteriol. 173:53085314.
185. McIlwraith, M. J.,, M. R. Boocock,, and W. M. Stark. 1996. Site-specific recombination by Tn3 resolvase, photocrosslinked to its supercoiled DNA substrate. J. Mol. Biol. 260:299303.
186. McIlwraith, M. J.,, M. R. Boocock,, and W. M. Stark. 1997. Tn3 resolvase catalyses multiple recombination events without intermediate rejoining of DNA ends. J. Mol. Biol. 266:108121.
187. McLeod, S. M.,, J. Xu,, S. E. Cramton,, T. Gaal,, R. L. Gourse,, and R. C. Johnson. 1999. Localization of amino acids required for Fis to function as a class II transcriptional activator at the RpoS-dependent proP P2 promoter. J. Mol. Biol. 294:333346.
188. Merickel, S. K.,, M. J. Haykinson,, and R. C. Johnson. 1998. Communication between Hin recombinase and Fis regulatory subunits during coordinate activation of Hin-catalyzed sitespecific DNA inversion. Genes Dev. 12:28032816.
189. Mertens, G.,, H. Fuss,, and R. Kahmann. 1986. Purification and properties of the DNA invertase gin encoded by bacteriophage Mu. J. Biol. Chem. 261:1566815672.
190. Mertens, G.,, A. Klippel,, H. Fuss,, H. Blocker,, R. Frank,, and R. Kahmann. 1988. Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. 7:12191227.
191. Messer, W.,, and C. Weigel,. 1996. Initiation of chromosomal replication, p. 15791601. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
192. Meyer, J.,, M. Stalhammar-Carlemalm,, M. Streiff,, S. Iida,, and W. Arber. 1986. Sequence relations among the IncY plasmid p15B, P1, and P7 prophages. Plasmid 16:8189.
193. Mizuuchi, K. 1997. Polynucleotidyl transfer reactions in sitespecific DNA recombination. Genes Cells 2:112.
194. Moses, E. K.,, R. T. Good,, M. Sinistaj,, S. J. Billington,, C. J. Langford,, and J. I. Rood. 1995. A multiple site-specific DNAinversion model for the control of Omp1 phase and antigenic variation in Dichelobacter nodosus. Mol. Microbiol. 17:183196.
195. Moskowitz, I. P.,, K. A. Heichman,, and R. C. Johnson. 1991. Alignment of recombination sites in Hin-mediated site-specific DNA recombination. Genes Dev. 5:16351645.
196. Mulvey, M. A.,, Y. S. Lopez-Boado,, C. L. Wilson,, R. Roth,, W. C. Parks,, J. Heuser,, and S. J. Hultgren. 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282:14941497.
197. Murley, L. L.,, and N. D. Grindley. 1998. Architecture of the gamma delta resolvase synaptosome: oriented heterodimers identity interactions essential for synapsis and recombination. Cell 95:553562.
198. Nanassy, O. Z.,, and K. T. Hughes. 1998. In vivo identification of intermediate stages of the DNA inversion reaction catalyzed by the Salmonella Hin recombinase. Genetics 149:16491663.
199. Nash, H. A., 1996. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments, p. 23632376. In F. C. Neidhardt (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
200. Newman, E. B.,, and R. Lin. 1995. Leucine-responsive regulatory protein: a global regulator of gene expression in E. coli. Annu. Rev. Microbiol. 49:747775.
201. Nilsson, L.,, A. Vanet,, E. Vijgenboom,, and L. Bosch. 1990. The role of FIS in trans activation of stable RNA operons of E. coli. EMBO J. 9:727734.
202. Numrych, T. E.,, R. I. Gumport,, and J. F. Gardner. 1992. Characterization of the bacteriophage lambda excisionase (Xis) protein: the C-terminus is required for Xis-integrase cooperativity but not for DNA binding. EMBO J. 11:37973806.
203. Numrych, T. E.,, R. I. Gumport,, and J. F. Gardner. 1991. A genetic analysis of Xis and FIS interactions with their binding sites in bacteriophage lambda. J. Bacteriol. 173:59545963.
204. Nunes-Duby, S. E.,, H. J. Kwon,, R. S. Tirumalai,, T. Ellenberger,, and A. Landy. 1998. Similarities and differences among 105 members of the Int family of site-specific recombinases. Nucleic Acids Res. 26:391406.
205. O’Gara, J. P.,, and C. J. Dorman. 2000. Effects of local transcription and H-NS on inversion of the fim switch of Escherichia coli. Mol. Microbiol. 36:457466.
206. Olsen, P. B.,, and P. Klemm. 1994. Localization of promoters in the fim gene cluster and the effect of H-NS on the transcription of fimB and fimE. FEMS Microbiol. Lett. 116:95100.
207. Olsen, P. B.,, M. A. Schembri,, D. L. Gally,, and P. Klemm. 1998. Differential temperature modulation by H-NS of the fimB and fimE recombinase genes which control the orientation of the type 1 fimbrial phase switch. FEMS Microbiol. Lett. 162:1723.
208. Osuna, R.,, S. E. Finkel,, and R. C. Johnson. 1991. Identification of two functional regions in Fis: the N-terminus is required to promote Hin-mediated DNA inversion but not lambda excision. EMBO J. 10:15931603.
209. Osuna, R.,, D. Lienau,, K. T. Hughes,, and R. C. Johnson. 1995. Sequence, regulation, and functions of fis in Salmonella typhimurium. J. Bacteriol. 177:20212032.
210. Pan, C. Q.,, J. A. Feng,, S. E. Finkel,, R. Landgraf,, D. Sigman,, and R. C. Johnson. 1994. Structure of the Escherichia coli Fis-DNA complex probed by protein conjugated with 1,10-phenanthroline copper(I) complex. Proc. Natl. Acad. Sci. USA 91:17211725.
211. Pan, C. Q.,, S. E. Finkel,, S. E. Cramton,, J. A. Feng,, D. S. Sigman,, and R. C. Johnson. 1996. Variable structures of Fis- DNA complexes determined by flanking DNA-protein contacts. J. Mol. Biol. 264:675695.
212. Paull, T. T.,, M. J. Haykinson,, and R. C. Johnson. 1994. HU and functional analogs in eukaryotes promote Hin invertasome assembly. Biochimie 76:9921004.
213. Paull, T. T.,, M. J. Haykinson,, and R. C. Johnson. 1993. The nonspecific DNA-binding and -bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev. 7:15211534.
214. Paull, T. T.,, and R. C. Johnson. 1995. DNA looping by Saccharomyces cerevisiae high mobility group proteins NHP6A/ B. J. Biol. Chem. 270:87448754.
215. Perkins-Balding, D.,, D. P. Dias,, and A. C. Glasgow. 1997. Location, degree, and direction of DNA bending associated with the Hin recombinational enhancer sequence and Fisenhancer complex. J. Bacteriol. 179:47474753.
216. Petit, M. A.,, D. Ehrlich,, and L. Janniere. 1995. pAM beta 1 resolvase has an atypical recombination site and requires a histone-like protein HU. Mol. Microbiol. 18:271282.
217. Pettijohn, D. E.,, and O. Pfenninger. 1980. Supercoils in prokaryotic DNA restrained in vivo. Proc. Natl. Acad. Sci. USA 77:13311335.
218. Plasterk, R. H.,, T. A. Ilmer,, and P. van de Putte. 1983. Sitespecific recombination by Gin of bacteriophage Mu: inversions and deletions. Virology 127:2436.
219. Plasterk, R. H.,, R. Kanaar,, and P. van de Putte. 1984. A genetic switch in vitro: DNA inversion by Gin protein of phage Mu. Proc. Natl. Acad. Sci. USA 81:26892692.
220. Plasterk, R. H.,, and P. van de Putte. 1984. Genetic switches by DNA inversions in prokaryotes. Biochim. Biophys. Acta 782:111119.
221. Plasterk, R. H.,, and P. van de Putte. 1984. Inversion of DNA in vivo and in vitro by Gin and Pin proteins. Cold Spring Harbor Symp. Quant. Biol. 49:295300.
222. Plasterk, R. H.,, and P. van de Putte. 1985. The invertible PDNA segment in the chromosome of Escherichia coli. EMBO J. 4:237242.
223. Pontiggia, A.,, A. Negri,, M. Beltrame,, and M. E. Bianchi. 1993. Protein HU binds specifically to kinked DNA. Mol. Microbiol. 7:343350.
224. Ptashne, M.,, and A. Gann. 1997. Transcriptional activation by recruitment. Nature 386:569577.
225. Reed, R. R.,, and C. D. Moser. 1984. Resolvase-mediated recombination intermediates contain a serine residue covalently linked to DNA. Cold Spring Harbor Symp. Quant. Biol. 49:245249.
226. Rice, P. A.,, and T. A. Steitz. 1994. Model for a DNA-mediated synaptic complex suggested by crystal packing of gamma delta resolvase subunits. EMBO J. 13:15141524.
227. Rice, P. A.,, and T. A. Steitz. 1994. Refinement of gamma delta resolvase reveals a strikingly flexible molecule. Structure 2:371384.