1887

Chapter 14 : The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap14-2.gif

Abstract:

This chapter discusses the organization of Tn3-family transposons and their transposition (the formation and resolution of the cointegrate intermediate). The bulk of the chapter, however, is concerned with the process of cointegrate resolution as performed by the resolvase (serine recombinase) class of site-specific recombinases, since this is both the most novel feature of Tn3-family transposons and the feature about which we know the most. While initial studies failed to identify the resolvase, they led to the proposal that cointegrates were an intermediate in the complete transposition pathway and that an internal site, deleted in this subset, was needed for the conversion of cointegrates to simple insertions. This proposal was subsequently proved correct, and it became apparent that Tn3 intermolecular transposition proceeded in two distinct and separable steps: formation of a cointegrate, involving the combined action of the transposase and the host cell replication machinery, followed by cointegrate resolution using the distinct site-specific recombination activity of resolvase. Taking a slightly different perspective (from that of the resolution systems), two transposons with very similar resolvases, Tn5501 and Tn(pTF5), have dramatically different transposases, suggesting that two different transposons capture the same resolvase system. Finally, despite their similar organization, two TnpI-encoding transposons, Tn4430 and Tn5401, have transposases and TnpI recombinases that are so diverged that independent origins seem highly likely.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14

Key Concept Ranking

Gene Expression and Regulation
0.5023738
0.5023738
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Two stages of Tn3 transposition: the formation of the donor-target cointegrate and its subsequent resolution. Transposase, responsible for the first step, acts at the transposon ends. The site-specific recombinase, resolvase, acts at a site, res, shown as a stippled patch within the transposon.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Genetic organization of Tn3 family transposons. A selection of prototypical transposons is shown, divided into groups with distinctive patterns of tnpA and tnpR (or tnpI) placement and orientation. The crosshatched boxes are res sites; the striped boxes are IRSs (TnpI recombination sites). IS101 is a minimal, defective transposon of only 209 bp ( ). It consists of two terminal IRs flanking a res site and is activated by the transposon γδ. Note that Tn5502 and Tn1721 both have an extra, internal IR and are presumably derived from composite transposons. For more details, see the text.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The DDE motif of Tn3-family transposases. Sequences of selected TnpA proteins spanning the regions with the three conserved acidic side chains are aligned. The numbering is that for Tn3 transposase. The TnpA proteins are a selection of those listed in Table 1 , excluding those that show very little variation from a listed transposase (see Color Plate 26).

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Shapiro model for replicative transposition ( ). Transposase binds to the transposon ends, pairs them, and then makes single-stranded breaks at both transposon 3ʹ ends (3ʹ processing). The complex captures a target DNA, and the 3ʹ OH transposon ends directly attack the target phosphate backbone, linking them to the target and leaving a free 3ʹ-OH end in each target strand (strand transfer). Following disassembly of the complex, replication complexes are loaded on each three-way junction, and the entire transposon is duplicated (the broken line indicates a newly synthesized strand), forming the cointegrate.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

res sites. (A) γδ res site ( ). The three resolvase binding sites are shown as boxes, with the arrowheads representing the 12-bp resolvase recognition sequence. The actual sequence of site I is shown below, indicating the position of DNA cleavage. The numbers beneath each of the three binding sites indicate the size of the spacer, the DNA segment separating the two 12-bp recognition sequences. PA and PR indicate the promoters for tnpA and tnpR, respectively; both are repressed by the binding of resolvase. (B) Schematics of generic res sites, showing the typical three-site organization (i) and the unusual two-subsite organization found in Tn1546 and the pXO1 gerX transposon (ii). (i) The left half of site III is shown shaded (rather than black) because this half-site in many transposons is very poorly defined. (ii) Note that site II contains two recognition sequences in the same orientation and is thought to bind two resolvase monomers (S. J. Rowland, M. R. Boocock, and W. M. Stark, personal communication).

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Conserved sequence motifs in resolvase ( ). The bar represents the amino acid sequence of γδ resolvase (183 residues). Residues that are totally conserved are shown as black bars; those that are highly conserved (≤10% divergence amongst the 29 recombinases compared) are crosshatched. The 29 recombinases (see Color Plate 30 for the full list) include 25 transposon-encoded cointegrate resolvases (all those listed in Table 1 plus three from the Mu-like transposons Tn552, Tn5053, and Tn5090), two DNA invertases (Gin and Hin), and two β-recombinases from pAMβ1 and pSM19035.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Topological consequences of resolvase recombination. Shown in the top row from left to right are relaxed forms of the resolvase substrate and, in order of increasing complexity, the various observed products of resolution. The res sites divide the substrate into two domains, shown as thick and thin lines. Note that the res sites alternate between the parental and recombinant configurations. The bottom row shows how the observed products can be formed by a succession of single-recombination events if (i) synapsis traps three (−) interdomainal nodes (crossings of thick and thin lines) and (ii) each recombination event introduces one (+) node. (Adapted from reference )

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Synapsis and strand exchange. (A) Cartoon of the resolvase synaptic complex. The two substrate domains, separated by the two res sites, are shown as thick and thin lines. The only interdomainal DNA crossings are the three (−) nodes entrapped in the complex. One res (thick line) is bound by the stippled resolvase dimers; the other (thin line) is bound by the striped dimers. (B) Double-strand break–rotation model for strand exchange. Site I DNA segments (represented by planar ribbons) are aligned with either both major or both minor grooves facing one another. Double-strand breaks are made by resolvase (R) at both crossover points, and then one pair of duplexes is rotated by 180° in a right-hand direction about the twofold axis between the aligned sites. This rotation creates one () interdomainal node and adds half a turn for each duplex (relaxing one additional substrate supercoil). For further details, see the text.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Two-step model for res site synapsis and the topological filter ( ). (A) Two-step synapsis. Synapsis is initiated by antiparallel pairing of sites II and III, trapping three (−) nodes. This facilitates the productive pairing of both sites I. (B) Consequence of trapping two (−) interdomainal nodes at the initiation stage. To compensate for the wrapping of sites II and III around resolvase, three () intradomainal nodes must be introduced into one of the two substrate domains. (C) Consequence of pairing inverted res sites. To obtain antiparallel pairing of sites II and III, at least one interdomainal node must be formed. The subsequent interwrapping of the two res sites causes a further four interdomainal nodes to form. [Note that in panel C, nodes formed by the res interwrapping are (−) relative to the res site orientation but are () relative to the path of the DNA.]

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Integrase-related cointegrate resolution systems. (A) Alignment of the portions of the TnpI amino acid sequences that contain the essential active-site residues (in boldface type and marked with an asterisk). (B) Structure of the Tn5041 resolution site (IRS). The TnpI binding sites are indicated by the boxed arrowheads. Numbers indicate the distances (in base pairs) between the binding sites and the tnpI gene.

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap14
1. Adams, C. W.,, O. Nanassy,, R. C. Johnson,, and K. T. Hughes. 1997. Role of arginine-43 and arginine-69 of the Hin recombinase catalytic domain in the binding of Hin to the hix DNA recombination sites. Mol. Microbiol. 24: 1235 1247.
2. Adzuma, K.,, and K. Mizuuchi. 1988. Target immunity of Mu transposition reflects a differential distribution of Mu B protein. Cell 53: 257 266.
3. Allmeier, H.,, B. Cresnar,, M. Greck,, and R. Schmitt. 1992. Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111: 11 20.
4. Alonso, J. C.,, S. Ayora,, I. Canosa,, F. Weise,, and F. Rojo. 1996. Site-specific recombination in gram-positive theta-replicating plasmids. FEMS Microbiol. Lett. 142: 1 10.
5. Alonso, J. C.,, F. Weise,, and F. Rojo. 1995. The Bacillus subtilis histone-like protein Hbsu is required for DNA resolution and DNA inversion mediated by the beta recombinase of plasmid pSM19035. J. Biol. Chem. 270: 2938 2945.
6. Amemura, J.,, H. Ichikawa,, and E. Ohtsubo. 1990. Tn3 transposition immunity is conferred by the transposase-binding domain in the terminal inverted-repeat sequence of Tn3. Gene 88: 21 24.
7. Amemura-Maekawa, J.,, and E. Ohtsubo. 1991. Functional analysis of the two domains in the terminal inverted repeat sequence required for transposition of Tn3. Gene 103: 11 16.
8. Arnold, P. H.,, D. G. Blake,, N. D. F. Grindley,, M. R. Boocock,, and W. M. Stark. 1999. Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. EMBO J. 18: 1407 1414.
9. Arthur, A.,, and D. J. Sherratt. 1979. Dissection of the transposition process. Mol. Gen. Genet. 175: 267 274.
10. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn 1546, a Tn 3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175: 117 127.
11. Baum, J. A. 1994. Tn 5401, a new class II transposable element from Bacillus thuringiensis. J. Bacteriol. 176: 2835 2845.
12. Baum, J. A. 1995. TnpIrecombinase: identification of sites within Tn 5401 required for TnpIbinding and site-specific recombination. J. Bacteriol. 177: 4036 4042.
13. Baum, J. A.,, A. J. Gilmer,, and A.-M. Light Mettus. 1999. Multiple roles for TnpIrecombinase in regulation of Tn 5401 transposition in Bacillus thuringiensis. J. Bacteriol. 181: 6271 6277.
14. Benjamin, H. W.,, and N. R. Cozzarelli. 1986. DNA-directed synapsis in recombination: slithering and random collision of sites. Proc. Robert A. Welch Found. Conf. Chem. Res. 29: 107 129.
15. Benjamin, H. W.,, and N. R. Cozzarelli. 1990. Geometric arrangements of Tn3 resolvase sites. J. Biol. Chem. 265: 6441 6447.
16. Benjamin, K. R.,, A. P. Abola,, R. Kanaar,, and N. R. Cozzarelli. 1996. Contributions of supercoiling to Tn3 resolvase and phage Mu Gin site-specific recombination. J. Mol. Biol. 256: 50 65.
17. Boocock, M. R.,, J. L. Brown,, and D. J. Sherratt. 1986. Structural and catalytic properties of specific complexes between Tn3 resolvase and the recombination site res. Biochem. Soc. Trans. 14: 214 216.
18. Boocock, M. R.,, J. L. Brown,, and D. J. Sherratt,. 1987. Topological specificity in Tn3 resolvase catalysis, p. 703 708. In T. J. Kelly, and R. McMacken (ed.), DNA Replication and Recombination. Alan R. Liss, New York, N.Y.
19. Boocock, M. R.,, X. Zhu,, and N. D. F. Grindley. 1995. Catalytic residues of γδ resolvase act in cis. EMBO J. 14: 5129 5140.
20. Brown, N. L.,, J. N. Winnie,, D. Fritzinger,, and R. D. Pridmore. 1985. The nucleotide sequence of the tnpA gene completes the sequence of the Pseudomonas transposon Tn501. Nucleic Acids Res. 13: 5657 5669.
21. Carrasco, C. D.,, K. S. Ramaswamy,, T. S. Ramasubramanian,, and J. W. Golden. 1994. Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev. 8: 74 83.
22. Chiou, C.-S.,, and A. L. Jones. 1993. Nucleotide sequence analysis of a transposon (Tn 5393) carrying streptomycin resistance genes in Erwinia amylovora and other gram-negative bacteria. J. Bacteriol. 175: 732 740.
23. Cozzarelli, N. R.,, M. A. Krasnow,, S. P. Gerrard,, and J. H. White. 1984. A topological treatment of recombination and topoisomerases. Cold Spring Harbor Symp. Quant. Biol. 49: 383 400.
24. Crellin, P. K.,, and J. I. Rood. 1997. The resolvase/invertase domain of the site-specific recombinase TnpX is functional and recognizes a target sequence that resembles the junction of the circular form of the Clostridium perfringens transposon Tn 4451. J. Bacteriol. 179: 5148 5156.
25. Davies, D. R.,, L. M. Braam,, W. S. Reznikoff,, and I. Rayment. 1999. The three-dimensional structure of a Tn5 transposaserelated protein determined to 2.9-Å resolution. J. Biol. Chem. 274: 11904 11913.
26. Davies, D. R.,, I. Y. Goryshin,, W. S. Reznikoff,, and I. Rayment. 2000. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate. Science 289: 77 85.
27. Diver, W. P.,, J. Grinsted,, D. C. Fritzinger,, N. L. Brown,, J. Altenbuchner,, P. Rogowsky,, and R. Schmitt. 1983. DNA sequences of and complementation by the tnpR genes of Tn21, Tn501 and Tn1721. Mol. Gen. Genet. 191: 189 193.
28. Dominy, C. N.,, N. J. Coram,, and D. E. Rawlings. 1998. Sequence analysis of plasmid pTF5, a 19.8-kb geographically widespread member of the Thiobacillus ferrooxidans pTFI91-like plasmid family. Plasmid 40: 50 57.
29. Dyda, F.,, A. B. Hickman,, T. M. Jenkins,, A. Engelman,, R. Craigie,, and D. R. Davies. 1994. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266: 1981 1986.
30. Eberl, L.,, C. S. Kristensen,, M. Givskov,, E. Grohmann,, M. Gerlitz,, and H. Schwab. 1994. Analysis of the multimer resolution system encoded by the parCBA operon of broad-hostrange plasmid RP4. Mol. Microbiol. 12: 131 141.
31. Evans, L. R.,, and N. L. Brown. 1987. Construction of hybrid Tn501/Tn21 transposases in vivo: identification of a region of transposase conferring specificity of recognition of the 38-bp terminal inverted repeats. EMBO J. 6: 2849 2853.
32. Gill, R.,, F. Heffron,, G. Dougan,, and S. Falkow. 1978. Analysis of sequences transposed by complementation of two classes of transposition-defective mutants of transposition element Tn3. J. Bacteriol. 136: 742 756.
33. Gill, R. E.,, F. Heffron,, and S. Falkow. 1979. Identification of the protein encoded by the transposable element Tn3 which is required for its transposition. Nature 282: 797 801.
34. Gopaul, D. N.,, F. Guo,, and G. D. Van Duyne. 1998. Structure of the Holliday junction intermediate in Cre- loxP site-specific recombination. EMBO J. 17: 4175 4187.
35. Grindley, N. D. F. 1993. Analysis of a nucleoprotein complex: the synaptosome of γδ resolvase. Science 262: 738 740.
36. Grindley, N. D. F., 1994. Resolvase-mediated site-specific recombination, p. 236 267. In F. Eckstein, and D. M. J. Lilley (ed.), Nucleic Acids and Molecular Biology, vol. 8. Springer-Verlag, Berlin, Germany.
37. Grindley, N. D. F. 1997. Site-specific recombination: synapsis and strand exchange revealed. Curr. Biol. 7: R608 R612.
38. Grindley, N. D. F. 1983. Transposition of Tn3 and related transposons. Cell 32: 3 5.
39. Grindley, N. D. F.,, M. R. Lauth,, R. G. Wells,, R. J. Wityk,, J. J. Salvo,, and R. R. Reed. 1982. Transposon-mediated site-specific recombination: identification of three binding sites for resolvase at the res sites of γδ and Tn3. Cell 30: 19 27.
40. Grinsted, J.,, F. de la Cruz,, and R. Schmitt. 1990. The Tn21 subgroup of bacterial transposable elements. Plasmid 24: 163 189.
41. Guo, F.,, D. N. Gopaul,, and G. D. Van Duyne. 1999. Asymmetric DNA bending in the Cre- loxP site-specific recombination synapse. Proc. Natl. Acad. Sci. USA 96: 7143 7148.
42. Guo, F.,, D. N. Gopaul,, and G. D. van Duyne. 1997. Structure of Cre recombinase complexed with DNA in a site-specific recombination synapse. Nature 389: 40 46.
43. Haffter, P.,, and T. A. Bickle. 1988. Enhancer-independent mutants of the Cin recombinase have a relaxed topological specificity. EMBO J. 7: 3991 3996.
44. Hallet, B.,, and D. J. Sherratt. 1997. Transposition and site-specific recombination: adapting DNA cut-and-paste mechanisms to a variety of genetic rearrangements. FEMS Microbiol. Rev. 21: 157 178.
45. Haren, L.,, B. Ton-Huang,, and M. Chandler. 1999. Integrating DNA: transposases and retroviral integrases. Annu. Rev. Microbiol. 53: 245 281.
46.. Hatfull, G. F.,, and N. D. F. Grindley. 1986. Analysis of γδ resolvase mutants in vitro: evidence for an interaction between serine-10 of resolvase and site Iof res. Proc. Natl. Acad. Sci. USA 83: 5429 5433.
47. Hatfull, G. F.,, and N. D. F. Grindley,. 1988. Resolvases and DNA-invertases: a family of enzymes active in site-specific recombination, p. 357 396. In R. Kucherlapati, and G. R. Smith (ed.), GeneticRec ombination. ASM Press, Washington, D.C.
48. Hatfull, G. F.,, S. M. Noble,, and N. D. F. Grindley. 1987. The γδ resolvase induces an unusual DNA structure at the recombinational crossover point. Cell 49: 103 110.
49. Haykinson, M. J.,, L. M. Johnson,, J. Soong,, and R. C. Johnson. 1996. The Hin dimer interface is critical for Fis-mediated activation of the catalytic steps of site-specificDNAinversion. Curr. Biol. 6: 163 177.
50. Heffron, F., 1983. Tn3 and its relatives, p. 223 260. In J. A. Shapiro (ed.), Mobile GeneticElements. Academic Press, New York, N.Y.
51. Heffron, F.,, P. Bedinger,, J. J. Champoux,, and S. Falkow. 1977. Deletions affecting the transposition of an antibiotic resistance gene. Proc. Natl. Acad. Sci. USA 74: 702 706.
52. Heffron, F.,, B. J. McCarthy,, H. Ohtsubo,, and E. Ohtsubo. 1979. DNA sequence analysis of the transposon Tn3: three genes and three sites involved in transposition of Tn3. Cell 18: 1153 1163.
53. Heffron, F.,, M. So,, and B. J. McCarthy. 1978. In vitro mutagenesis of a circular DNA molecule by using synthetic deoxyoligonucleotides. Proc. Natl. Acad. Sci. USA 75: 6012 6016.
54. Heichman, K. A.,, I. P. Moskowitz,, and R. C. Johnson. 1991. Configuration of DNA strands and mechanism of strand exchange in the Hin invertasome as revealed by analysis of recombinant knots. Genes Dev. 5: 1622 1634.
55. Hockings, S. C. 1997. DNA cyclization kinetics applied to GCN4 and gamma-delta resolvase. Ph.D. thesis. Yale University, New Haven, Conn.
56. Horak, R.,, and M. Kivisaar. 1998. Expression of the transposase gene tnpA of Tn 4652 is positively affected by integration host factor. J. Bacteriol. 180: 2822 2829.
57. Huang, C. C.,, M. Narita,, T. Yamagata,, Y. Itoh,, and G. Endo. 1999. Structure analysis of a class II transposon encoding the mercury resistance of the gram-positive bacterium Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234: 361 369.
58. Hughes, R. E.,, G. F. Hatfull,, P. Rice,, T. A. Steitz,, and N. D. F. Grindley. 1990. Cooperativity mutants of the γδ resolvase identify an essential interdimer interaction. Cell 63: 1331 1338.
59. Hughes, R. E.,, P. A. Rice,, T. A. Steitz,, and N. D. F. Grindley. 1993. Protein-protein interactions directing resolvase site-specific recombination: a structure-function analysis. EMBO J. 12: 1447 1458.
60. Ichikawa, H.,, K. Ikeda,, J. Amemura,, and E. Ohtsubo. 1990. Two domains in the terminal inverted-repeat sequence of transposon Tn3. Gene 86: 11 17.
61. Ishizaki, K.,, and E. Ohtsubo. 1985. Cointegration and resolution mediated by IS101 present in plasmid pSC101. Mol. Gen. Genet. 199: 388 395.
62. Johnson, R. C., 1994. Site-specific recombinases and their interactions with DNA, p. 141 176. In D. M. J. Lilley (ed.), DNA-Protein: Structural Interactions. IRL Press, Oxford, United Kingdom.
63. Kanaar, R.,, A. Klippel,, E. Shekhtman,, J. M. Dungan,, R. Kahmann,, and N. R. Cozzarelli. 1990. Processive recombination by the phageMuGin system: implications for the mechanisms of DNA strand exchange, DNA site alignment, and enhancer action. Cell 62: 353 366.
64. Kans, J. A.,, and M. J. Casadaban. 1989. Nucleotide sequence required for Tn 3 transposition immunity. J. Bacteriol. 171: 1904 1914.
65. Kersulyte, D.,, A. K. Mukhopadhyay,, M. Shirai,, T. Nakazawa,, and D. E. Berg. 2000. Functional organization and insertion specificity of IS 607, a chimeric element of Helicobacter pylori. J. Bacteriol. 182: 5300 5308.
66. Kholodii, G.,, O. Yurieva,, S. Mindlin,, Z. Gorlenko,, V. Rybochkin,, and V. Nikiforov. 2000. Tn5044, a novel Tn3 family transposon coding for temperature sensitive mercury resistance. Res. Microbiol. 151: 1 12.
67. Kholodii, G. Y.,, S. Z. Mindlin,, I. A. Bass,, O. V. Yurieva,, S. V. Minakhina,, and V. G. Nikiforov. 1995. Four genes, two ends, and a res region are involved in transposition of Tn5053: a paradigm for a novel family of transposons carrying either a mer operon or an integron. Mol. Microbiol. 17: 1189 1200.
68. Kholodii, G. Y.,, O. V. Yurieva,, Z. M. Gorlenko,, S. Z. Mindlin,, I. A. Bass,, O. L. Lomovskaya,, A. V. Kopteva,, and V. G. Nikiforov. 1997. Tn5041: a chimeric mercury resistance transposon closely related to the toluene degradative transposon Tn4651. Microbiology 143: 2549 2556.
69. Kilbride, E.,, M. R. Boocock,, and W. M. Stark. 1999. Topological selectivity of a hybrid site-specific recombination system with elements from Tn3 res/resolvase and bacteriophage P1 loxP/Cre. J. Mol. Biol. 289: 1219 1230.
70. Klippel, A.,, K. Cloppenborg,, and R. Kahmann. 1988. Isolation and characterization of unusual Gin mutants. EMBO J. 7: 3983 3989.
71. Klippel, A.,, G. Mertens,, T. Patschinsky,, and R. Kahmann. 1988. The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. 7: 1229 1237.
72. Krasnow, M. A.,, and N. R. Cozzarelli. 1983. Site-specific relaxation and recombination by the Tn3 resolvase: recogni tion of the DNA path between oriented res sites. Cell 32: 1313 1324.
73. Krasnow, M. A.,, M. M. Matzuk,, J. M. Dungan,, H. W. Benjamin,, and N. R. Cozzarelli,. 1983. Site-specific recombination by Tn3 resolvase: models for pairing of recombination sites, p. 637 659. In N. R. Cozzarelli (ed.), Mechanisms of DNA Replication and Recombination, vol. 10. Alan R. Liss, New York, N.Y.
74. Kuhstoss, S.,, and R. N. Rao. 1991. Analysis of the integration function of the streptomycete bacteriophage phi C31. J. Mol. Biol. 222: 897 908.
75. Lauf, U.,, C. Muller,, and H. Herrmann. 1998. The transposable elements resident on the plasmids of Pseudomonas putida strain H, Tn5501 and Tn5502, are cryptic transposons of the Tn3 family. Mol. Gen. Genet. 259: 674 678.
76. Lavoie, B. D.,, and G. Chaconas. 1996. Transposition of phage Mu DNA. Curr. Top. Microbiol. Immunol. 204: 83 102.
77. Lebrun, M.,, A. Audurier,, and P. Cossart. 1994. Plasmidborne cadmium resistance genes in Listeria monocytogenes are present on Tn 5422, a novel transposon closely related to Tn 917. J. Bacteriol. 176: 3049 3061.
78. Liu, C. C.,, R. Huhne,, J. Tu,, E. Lorbach,, and P. Dröge. 1998. The resolvase encoded by Xanthomonas campestris transposable element ISXc5 constitutes a new subfamily closely related to DNA invertases. Genes Cells 3: 221 233.
79. Liu, C. C.,, H. R. Wang,, H. C. Chou,, W. T. Chang,, and J. Tu. 1992. Analysis of the genes and gene products of Xanthomonas transposable elements ISXc5 and ISXc4. Gene 120: 99 103.
80. Maekawa, T.,, J. Amemura-Maekawa,, and E. Ohtsubo. 1993. DNA binding domains in Tn3 transposase. Mol. Gen. Genet. 236: 267 274.
81. Maekawa, T.,, and E. Ohtsubo. 1994. Identification of the region that determines the specificity of binding of the transposases encoded by Tn3 and gamma delta to the terminal inverted repeat sequences. Jpn. J. Genet. 69: 269 285.
82. Maekawa, T.,, K. Yanagihara,, and E. Ohtsubo. 1996. A cell-free system of Tn3 transposition and transposition immunity. Genes Cells 1: 1007 1016.
83. Maekawa, T.,, K. Yanagihara,, and E. Ohtsubo. 1996. Specific nicking at the 3′ ends of the terminal inverted repeat sequences in transposon Tn3 by transposase and an E. coli protein ACP. Genes Cells 1: 1017 1030.
84. Mahillon, J.,, and D. Lereclus. 1988. Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate resolution process. EMBO J. 7: 1515 1526.
85. Matsuura, M.,, T. Noguchi,, D. Yamaguchi,, T. Aida,, M. Asayama,, H. Takahashi,, and M. Shirai. 1996. The sre gene (ORF469) encodes a site-specific recombinase responsible for integration of the R4 phage genome. J. Bacteriol. 178: 3374 3376.
86. May, E. W.,, and N. D. F. Grindley. 1995. A functional analysis of the inverted repeat of the γδ transposable element. J. Mol. Biol. 247: 578 587.
87. McIlwraith, M. J.,, M. R. Boocock,, and W. M. Stark. 1997. Tn3 resolvase catalyses multiple recombination events without intermediate rejoining of DNA ends. J. Mol. Biol. 266: 108 121.
88. Michiels, T.,, G. Cornelis,, K. Ellis,, and J. Grinsted. 1987. Tn 2501, a component of the lactose transposon Tn 951, is an example of a new category of class II transposable elements. J. Bacteriol. 169: 624 631.
89. Mizuuchi, K. 1997. Polynucleotidyl transfer reactions in site-specific DNA recombination. Genes Cells 2: 1 12.
90. Mizuuchi, K. 1992. Transpositional recombination: mechanistic insights from studies of Mu and other elements. Annu. Rev. Biochem. 61: 1011 1051.
91. Mizuuchi, K.,, M. Gellert,, R. A. Weisberg,, and H. A. Nash. 1980. Catenation and supercoiling in the products of bacteriophage λ integrative recombination in vitro. J. Mol. Biol. 141: 485.
92. Moskowitz, I. P.,, K. A. Heichman,, and R. C. Johnson. 1991. Alignment of recombination sites in Hin-mediated site-specific DNA recombination. Genes Dev. 5: 1635 1645.
93. Murley, L. L.,, and N. D. F. Grindley. 1998. Architecture of the γδ resolvase synaptosome: oriented heterodimers identity interactions essential for synapsis and recombination. Cell 95: 553 562.
94. Nakatsu, C.,, J. Ng,, R. Singh,, N. Straus,, and C. Wyndham. 1991. Chlorobenzoate catabolic transposon Tn5271 is a composite class Ielement with flanking class IIinsertion sequences. Proc. Natl. Acad. Sci. USA 88: 8312 8316.
95. Nash, H. A., 1996. Site-specific recombination: integration, excision, resolution, and inversion of defined DNA segments, p. 2363 2376. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
96. Nicholls, A.,, R. Bharadwaj,, and B. Honig. 1993. GRASP: graphical representation and analysis of surface properties. Biophys. J. 64: A166.
97. Okinaka, R. T.,, K. Cloud,, O. Hampton,, A. R. Hoffmaster,, K. K. Hill,, P. Keim,, T. M. Koehler,, G. Lamke,, S. Kumano,, J. Mahillon,, D. Manter,, Y. Martinez,, D. Ricke,, R. Svensson,, and P. J. Jackson. 1999. Sequence and organization of pXO1, the large Bacillus anthracis plasmid harboring the anthrax toxin genes. J. Bacteriol. 181: 6509 6515.
98. Osbourn, S. E.,, A. K. Turner,, and J. Grinsted. 1995. Nucleotide sequence within Tn3926 confirms this as a Tn21-like transposable element and provides evidence for the origin of the mer operon carried by plasmid pKLH2. Plasmid 33: 65 69.
99. Pollock, T. J.,, and H. A. Nash. 1983. Knotting of DNA caused by a genetic rearrangement. J. Mol. Biol. 170: 1 18.
100. Radstrom, P.,, O. Skold,, G. Swedberg,, J. Flensburg,, P. H. Roy,, and L. Sundstrom. 1994. Transposon Tn 5090 of plasmid R751, which carries an integron, is related to Tn 7, Mu, and the retroelements. J. Bacteriol. 176: 3257 3268.
101. Reed, R. R. 1981. Resolution of cointegrates between transposons γδ and Tn3 defines the recombination site. Proc. Natl. Acad. Sci. USA 78: 3428 3432.
102. Reed, R. R. 1981. Transposon-mediated site-specific recombination: a defined in vitro system. Cell 25: 713 719.
103. Reed, R. R.,, and N. D. F. Grindley. 1981. Transposon-mediated site-specific recombination in vitro: DNA cleavage and protein-DNA linkage at the recombination site. Cell 25: 721 728.
104. Reed, R. R.,, and C. D. Moser. 1984. Resolvase-mediated recombination intermediates contain a serine residue covalently linked to DNA. Cold. Spring. Harbor Symp. Quant. Biol. 49: 245 249.
105. Rice, P. A.,, and K. Mizuuchi. 1995. Structure of the bacteriophage Mu transposase core: a common structural motif for DNA transposition and retroviral integration. Cell 82: 209 220.
106. Rice, P. A.,, and T. A. Steitz. 1994. Model for a DNA-mediated synaptic complex suggested by crystal packing of γδ resolvase subunits. EMBO J. 13: 1514 1524.
107. Rice, P. A.,, and T. A. Steitz. 1994. Refinement of γδ resolvase reveals a strikingly flexible molecule. Structure 2: 371 384.
108. Rimphanitchayakit, V.,, G. F. Hatfull,, and N. D. F. Grindley. 1989. The 43 residue DNA binding domain of γδ resolvase binds adjacent major and minor grooves of DNA. Nucleic Acids Res. 17: 1035 1050.
109. Rinkel, M.,, J. C. Hubert,, B. Roux,, and M. C. Lett. 1994. Identification of a new transposon Tn5403 in a Klebsiella pneumoniae strain isolated from a polluted aquatic environment. Curr. Microbiol. 29: 249 254.
110. Rowland, S. J.,, and K. G. Dyke. 1989. Characterization of the staphylococcal β-lactamase transposon Tn552. EMBO J. 8: 2761 2773.
111. Rowland, S. J.,, and K. G. Dyke. 1990. Tn552, a novel transposable element from Staphylococcus aureus. Mol. Microbiol. 4: 961 975.
112. Salvo, J. J.,, and N. D. F. Grindley. 1988. The γδ resolvase bends the res site into a recombinogenic complex. EMBO J. 7: 3609 3616.
113. Salvo, J. J.,, and N. D. F. Grindley. 1987. Helical phasing betweenDNAbends and the determination of bend direction. Nucleic Acids Res. 15: 9771 9779.
114. Sanderson, M. R.,, P. S. Freemont,, P. A. Rice,, A. Goldman,, G. F. Hatfull,, N. D. F. Grindley,, and T. A. Steitz. 1990. The crystal structure of the catalytic domain of the site-specific recombination enzyme γδ resolvase at 2.7Å resolution. Cell 63: 1323 1329.
114a.. Sarkis, G. J.,, L. L. Murley,, A. E. Leschziner,, M. R. Boocock,, W. M. Stark,, and N. D. F. Grindley. 2001. A model for the γδ resolvase synaptic complex. Mol. Cell 8: 623 631.
115. Sato, T.,, Y. Samori,, and Y. Kobayashi. 1990. The cisA cistron of Bacillus subtilis sporulation gene spoIVC encodes a protein homologous to a site-specific recombinase. J. Bacteriol. 172: 1092 1098.
116. Schneider, F.,, M. Schwikardi,, G. Muskhelishvili,, and P. Dröge. 2000. A DNA-binding domain swap converts the invertase Gin into a resolvase. J. Mol. Biol. 295: 767 775.
117. Shapiro, J. A. 1979. Molecular model for the transposition and replication of bacteriophage Mu and other transposable elements. Proc. Natl. Acad. Sci. USA 76: 1933 1937.
118. Sharpe, P. L.,, and N. L. Craig. 1998. Host proteins can stimulate Tn7 transposition: a novel role for the ribosomal protein L29 and the acyl carrier protein. EMBO J. 17: 5822 5831.
119. Sherratt, D., 1989. Tn 3 and related transposable elements: site-specific recombination and transposition, p. 163 184. In D. Berg, and M. Howe (ed.), Mobile DNA. ASM Press, Washington, D.C.
120. Siemieniak, D. R.,, J. L. Slightom,, and S. T. Chung. 1990. Nucleotide sequence of Streptomyces fradiae transposable element Tn4556: a class-II transposon related to Tn3. Gene 86: 1 9.
121. Stark, W. M.,, and M. R. Boocock. 1994. The linkage change of a knotting reaction catalyzed by Tn3 resolvase. J. Mol. Biol. 239: 25 36.
122. Stark, W. M.,, and M. R. Boocock,. 1995. Topological selectivity in site-specific recombination, p. 101 129. In D. J. Sherratt (ed.), Mobile GeneticElements. Oxford University Press, Oxford, United Kingdom.
123. Stark, W. M.,, M. R. Boocock,, and D. J. Sherratt. 1992. Catalysis by site-specific recombinases. Trends Genet. 8: 432 439.
124. Stark, W. M.,, M. R. Boocock,, and D. J. Sherratt. 1989. Site-specific recombination by Tn3 resolvase. Trends Genet. 5: 304 309.
125. Stark, W. M.,, N. D. F. Grindley,, G. F. Hatfull,, and M. R. Boocock. 1991. Resolvase-catalysed reactions between res sites differing in the central dinucleotide of subsite I. EMBO J. 10: 3541 3548.
126. Stark, W. M.,, C. N. Parker,, S. E. Halford,, and M. R. Boocock. 1994. Stereoselectivity of DNA catenane fusion by resolvase. Nature 368: 76 78.
127. Stark, W. M.,, D. J. Sherratt,, and M. R. Boocock. 1989. Site-specific recombination by Tn3 resolvase: topological changes in the forward and reverse reactions. Cell 58: 779 790.
128. Stellwagen, A. E.,, and N. L. Craig. 1997. Avoiding self: two Tn7-encoded proteins mediate target immunity in Tn7 transposition. EMBO J. 16: 6823 6834.
129. Tsuda, M.,, and T. Iino. 1987. Genetic analysis of a transposon carrying toluene degrading genes on a TOL plasmid pWW0. Mol. Gen. Genet. 210: 270 276.
130. Turner, A. K.,, and J. Grinsted. 1989. DNA sequence of the transposase gene of the class II transposon, Tn3926. Nucleic Acids Res. 17: 1757.
131. Ulrich, A.,, and A. Puhler. 1994. The new class II transposon Tn163 is plasmid-borne in two unrelated Rhizobium leguminosarum biovar viciae strains. Mol. Gen. Genet. 242: 505 516.
132. Ward, E.,, and J. Grinsted. 1987. The nucleotide sequence of the tnpA gene of Tn21. Nucleic Acids Res. 15: 1799 1806.
133. Wasserman, S. A.,, and N. R. Cozzarelli. 1985. Determination of the stereostructure of the product of Tn3 resolvase by a general method. Proc. Natl. Acad. Sci. USA 82: 1079 1083.
134. Wasserman, S. A.,, J. M. Dungan,, and N. R. Cozzarelli. 1985. Discovery of a predicted DNA knot substantiates a model for site-specific recombination. Science 229: 171 174.
135. Wiater, L. A.,, and N. D. F. Grindley. 1988. γδ transposase and integration host factor bind cooperatively at both ends of γδ. EMBO J. 7: 1907 1911.
136. Wiater, L. A.,, and N. D. F. Grindley. 1991. γδ transposase. Purification and analysis of its interaction with a transposon end. J. Biol. Chem. 266: 1841 1849.
137. Wiater, L. A.,, and N. D. F. Grindley. 1990. Uncoupling of transpositional immunity from γδ transposition by a mutation at the end of γδ. J. Bacteriol. 172: 4959 4963.
138. Wu, S. W.,, H. de Lencastre,, and A. Tomasz. 1999. The Staphylococcus aureus transposon Tn551: complete nucleotide sequence and transcriptional analysis of the expression of the erythromycin resistance gene. Microb. Drug Resist. 5: 1 7.
139. Yang, W.,, and T. A. Steitz. 1995. Crystal structure of the site-specific recombinase γδ resolvase complexed with a 34 bp cleavage site. Cell 82: 193 207.
140. Yeo, C. C.,, J. M. Tham,, S. M. Kwong,, S. Yiin,, and C. L. Poh. 1998. Tn5563, a transposon encoding putative mercuric ion transport proteins located on plasmid pRA2 of Pseudomonas alcaligenes. FEMS Microbiol. Lett. 165: 253 260.
141. Yurieva, O.,, and V. Nikiforov. 1996. Catalytic center quest: comparison of transposases belonging to the Tn3 family reveals an invariant triad of acidic amino acid residues. Biochem. Mol. Biol. Int. 38: 15 20.
142. Zeig, J.,, and M. Simon. 1980. Analysis of the nucleotide sequence of an invertible controlling element. Proc. Natl. Acad. Sci. USA 77: 4196 4200.

Tables

Generic image for table
Table 1

Tn family transposons

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Generic image for table
Table 2

Site-specific recombination systems used for cointegrate resolution: a comparison

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14
Generic image for table
Table 3

Site-specific recombinases of the resolvase (serine recombinase) family

Citation: Grindley N. 2002. The Movement of Tn-Like Elements: Transposition and Cointegrate Resolution, p 272-302. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error