1887

Chapter 22 : The Tc1/mariner Family of Transposable Elements

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Tc1/mariner Family of Transposable Elements, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817954/9781555812096_Chap22-2.gif

Abstract:

This chapter describes the family of Tc1/ mariner elements, their mechanism of transposition, and the regulation of transposition. It also talks about a few applications of this family of transposable element in forward and reverse genetics. The transposase proteins contain the typical DDE or DDD motif found in most transposases and integrases. Excision of P elements in has been used as a trigger to initiate introduction of new sequences into the original P element-containing site; it has been shown also for Tc1 that an ectopic transgenic template (marked by polymorphisms) can be used by the repair process. For several members of the Tc1/mariner transposase family a smaller truncated version of the transposase was seen. Possibly it is the way of reconstructing Sleeping Beauty transposase that is responsible for generating a protein that is more active than any element found in nature, where it is not in the best interest of the parasite transposable element to encode a transposase that is too active and might kill the host. The Tc1 as well as the Tc3 elements were studied for their target choice in vivo. Most mariner-type elements are known only from their sequences obtained through homology-based PCR screens or by sequence analysis (genomic or expressed sequence tag). There are two reasons to think that Tc1/mariner-type transposons may be good vectors for transgenesis: they have spread by horizontal transfer between species and are thus probably not host restricted, and they require only the transposase protein for complete transposition.

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22

Key Concept Ranking

Single Nucleotide Polymorphism
0.41127092
0.41127092
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Structure of the most studied members of the Tc1/mariner family. The terminal inverted repeats (hatched boxes) and the open reading frames (open boxes) are indicated for Tc1, Tc3, Mos1, Himar1, and Sleeping Beauty. Black boxes indicate introns in the transposase gene.

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Phylogeny of the Tc1/mariner family (adapted from reference ).

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Model for Tc1/mariner transposition. A schematic model for transposition is presented explaining the excision and the integration of the element and the TA target duplication. Black arrows indicate the positions of the cleavage sites at the ends of the transposon (note, for some elements the 5′ cleavage is thought to occur three nucleotides from the end) and also indicate where strand transfer reactions take place during integration.

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4.
Figure 4.

Templated double-strand break repair after excision of the transposon. After excision the double-strand break can be repaired using a template: either the sister chromatid, the homologous chromosome, or, if present, an ectopic template. Template repair of homo-allelic mutants will result in copying back the excised transposon from the sister chromatid or the homologous chromosome. In the case of a heteroallelic mutant it depends which template is used: if the sister chromatid is used, then the transposon is copied back; if the homologous chromosome is used, then the wild-type sequence will be restored. If the repair is interrupted or when the break is repaired by end-to-end joining, a typical footprint is obtained (not shown).

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5.
Figure 5.

Structure of the Tc3 transposase. (A) Members of the Tc1/mariner family all have a similar structure with a bipartite specific DNA binding domain, an aspecific DNA binding domain (amino acids 98 to 159 [ ]), and a catalytic domain with a DDE (or DDD) motif. (B) The structure of the first specific DNA binding domain of Tc3A (amino acids 1 to 65 [dotted area in panel A]) has been resolved (at 2.45Å ) bound to synthetic oligonucleotides representing the specific transposase binding site at the termini of Tc3 ( ). The dimer shown in the structure might be a crystallization artifact or might indicate the formation of a transposase dimer in the active transposition complex.

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817954.chap22
1. Abad, P.,, C. Quiles,, S. Tares,, C. Piotte,, P. Castagnone-Sereno,, M. Abadon,, and A. Dalmasso. 1991. Sequences homologous to Tc(s) transposable elements of Caenorhabditis elegans are widely distributed in the phylum nematoda. J. Mol. Evol. 33:251258.
2. Auge-Gouillou, C.,, Y. Bigot,, N. Pollet,, M. Hamelin,, M. Meunier- Rotival,, and G. Periquet. 1995. Human and other mammalian genomes contain transposons of the mariner family. FEBS Lett. 368:541546.
3. Bass, B. L. 2000. Double-stranded RNA as a template for gene silencing. Cell 101:235238.
4. Bigot, Y.,, M. Hamelin,, P. Capy,, and G. Periquet. 1994. Mariner- like elements in hymenopteran species: insertion site and distribution. Proc. Natl. Acad. Sci. USA 91:34083412.
5. Bosher, J. M.,, and M. Labouesse. 2000. RNA interference: genetic wand and genetic watchdog. Nat. Cell Biol. 2:3136.
6. Brezinsky, L.,, G. V. L. Wang,, T. Humphreys,, and J. Hunt. 1990. The transposable element Uhu from Hawaiian Drosophila— member of the widely dispersed class of Tc1-like transposons. Nucleic Acids Res. 18:20532059.
7. Bryan, G.,, D. Graza,, and D. Hartl. 1990. Insertion and excision of the transposable element mariner in Drosophila. Genetics 125:103114.
8. Caizzi, R.,, C. Caggese,, and S. Pimpinelli. 1993. Bari-1, a new transposon-like family in Drosophila melanogaster with a unique heterochromatic organization. Genetics 133: 335345.
9. Capy, P.,, D. Anxolabehere,, and T. Langin. 1994. The strange phylogenies of transposable elements: are horizontal transfers the only explanation? Trends Genet. 10:712.
10. Capy, P.,, A. Koga,, J. R. David,, and D. L. Hartl. 1992. Sequence analysis of active mariner elements in natural populations of Drosophila simulans. Genetics 130:499506.
11. Catteruccia, F.,, T. Nolan,, C. Blass,, H. M. Muller,, A. Crisanti,, F. C. Kafatos,, and T. G. Loukeris. 2000. Toward Anopheles transformation: Minos element activity in anopheline cells and embryos. Proc. Natl. Acad. Sci. USA 97:21572162.
12. Coates, C. J.,, N. Jasinskiene,, L. Miyashiro,, and A. A. James. 1998. Mariner transposition and transformation of the yellow fever mosquito, Aedes aegypti. Proc. Natl. Acad. Sci. USA 95:37483751.
13. Coates, C. J.,, C. L. Turney,, M. Frommer,, D. A. O’Brochta,, D. W. Warren,, and P. W. Atkinson. 1995. The transposable element mariner can excise in non-drosophilid insects. Mol. Gen. Genet. 249:246252.
14. Cogoni, C.,, and G. Macino. 1999. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399:166169.
15. Collins, J.,, E. Forbes,, and P. Anderson. 1989. The Tc3 family of transposable elements in Caenorhabditis elegans. Genetics 121:4755.
16. Collins, J.,, B. Saari,, and P. Anderson. 1987. Activation of a transposable element in the germ-line but not the soma of Caenorhabditis elegans. Nature 328:726728.
17. Colloms, S. D.,, H. G. A. M. Van Luenen,, and R. H. A. Plasterk. 1994. DNA binding activities of the Caenorhabditis elegans Tc3 transposase. Nucleic Acids Res. 22:55485554.
18. Daboussi, M.,, T. Langin,, and Y. Brygoo. 1992. Fot1, a new family of fungal transposable elements. Mol. Gen. Genet. 232:1216.
19. Doak, T. G.,, F. P. Doerder,, C. L. Jahn,, and G. Herrick. 1994. A proposed superfamily of transposase genes: transposonlike elements in ciliated protozoa and a common ‘‘D35E’’ motif. Proc. Natl. Acad. Sci. USA 91:942946.
20. Eide, D.,, and P. Anderson. 1985. Transposition of Tc1 in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 82:17561760.
21. Eide, D.,, and P. Anderson. 1988. Insertion and excision of Caenorhabditis elegans transposable element Tc1. Mol. Cell Biol. 8:737746.
22. Emmons, S. W.,, M. R. Klass,, and D. Hirsh. 1979. Analysis of the constancy of DNA sequences during development and evolution of the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 76:13331337.
23. Emmons, S. W.,, and L. Yesner. 1984. High-frequency excision of transposable element Tc1 in the nematode Caenorhabditis elegans is limited to somatic cells. Cell 36:599605.
24. Emmons, S. W.,, L. Yesner,, K. Ruan,, and D. Katzenberg. 1983. Evidence for a transposon in Caenorhabditis elegans. Cell 32:5565.
25. Engels, W. R.,, D. M. Johnson-Schlitz,, W. B. Eggleston,, and J. Sved. 1990. High frequency P element loss in Drosophila is homolog dependent. Cell 62:515525.
26. Fadool, J. M.,, D. L. Hartl,, and J. E. Dowling. 1998. Transposition of the mariner element from Drosophila mauritiana in zebrafish. Proc. Natl. Acad. Sci. USA 95:51825186.
27. Fayet, O.,, P. Ramond,, P. Polard,, M. F. Prére,, and M. Chandler. 1990. Functional similarities between retroviruses and the IS3 family of bacterial insertion sequences? Mol. Microbiol. 4:17711777.
28. Fischer, S. E.,, H. G. A. M. Van Luenen,, and R. H. A. Plasterk. 1999. Cis requirements for transposition of Tc1-like transposons in C. elegans. Mol. Gen. Genet. 262:268274.
28.a. Fischer, S. E. J.,, E. Wienholds,, and R. H. A. Plasterk. 2001. Regulated transposition of a fish transposon in the mouse germ line. Proc. Natl. Acad. Sci. USA 98:67596764.
29. Franz, G.,, T. G. Loukeris,, G. Dialektaki,, C. R. L. Thompson,, and C. Savakis. 1994. Mobile Minos elements from Drosophila hydei encode a two-exon transposase with similarity to the paired DNA-binding domain. Proc. Natl. Acad. Sci. USA 91:47464750.
30. Garza, D.,, M. M. Medhora,, A. Koga,, and D. L. Hartl. 1991. Introduction of the transposable element mariner into the germline of Drosophila melanogaster. Genetics 128: 303310.
31. Gloor, G. B.,, N. A. Nassif,, D. M. Johnson-Schlitz,, C. R. Preston,, and W. R. Engels. 1991. Targeted gene replacement in Drosophila via P element-induced gap repair. Science 253: 11101117.
32. Goodier, J. L.,, and W. S. Davidson. 1994. Tc1 transposonlike sequences are widely distributed in salmonids. J. Mol. Biol. 241:2634.
33. Gottgens, B.,, L. M. Barton,, D. Grafham,, M. Vaudin,, and A. R. Green. 1999. Tdrs, a new zebrafish transposon of the Tc1 family. Gene 239:373379.
34. Greenwald, I. 1985. lin-12, a nematode homeotic gene, is homologous to a set of mammalian proteins that include epidermal growth factor. Cell 43:583590.
35. Grishok, A.,, H. Tabara,, and C. C. Mello. 2000. Genetic requirements for inheritance of RNAi in C. elegans. Science 287:24942497.
36. Grossman, G. L.,, A. J. Cornel,, C. S. Rafferty,, H. M. Robertson,, and F. H. Collins. 1999. Tsessebe, Topi and Tiang: three distinct Tc1-like transposable elements in the malaria vector, Anopheles gambiae. Genetica 105:6980.
37. Gueiros-Filho, F. J.,, and S. M. Beverley. 1997. Trans-kingdom transposition of the Drosophila element mariner within the protozoan Leishmania. Science 276:17161719.
38. Hammond, S. M.,, E. Bernstein,, D. Beach,, and G. J. Hannon. 2000. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404: 293296.
39. Harris, L. J.,, D. L. Baillie,, and A. M. Rose. 1988. Sequence identity between an inverted repeat family of transposable elements in Drosophila and Caenorhabditis. Nucleic Acids Res. 16:59915998.
40. Hartl, D. L.,, A. R. Lohe,, and E. R. Lozovskaya. 1997. Modern thoughts on an ancyent marinere: function, evolution, regulation. Annu. Rev. Genet. 31:337358.
41. Heierhorst, J.,, K. Lederis,, and D. Richter. 1992. Presence of a member of the Tc1-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc. Natl. Acad. Sci. USA 89:67986802.
42. Henikoff, S. 1992. Detection of Caenorhabditis transposon homologs in diverse organisms. New Biol. 4:382388.
43. Hunter, C. P. 2000. Gene silencing: shrinking the black box of RNAi. Curr. Biol. 10:137140.
44. Ivics, Z. D. G.,, P. B. Hackett,, R. H. A. Plasterk,, and Z. Izsvak. 1997. Molecular reconstruction of Sleeping Beauty, a Tc1- like transposon from fish, and its transposition in human cells. Cell 91:120.
45. Ivics, Z. D. G.,, Z. Izsvak,, A. Minter,, and P. B. Hackett. 1996. Identification of functional domains and evolution of Tc1- like transposable elements. Proc. Natl. Acad. Sci. USA 93: 50085013.
46. Izsvak, Z.,, Z. D. G. Ivics,, and P. B. Hackett. 1995. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol. Gen. Genet. 247:312322.
47. Izsvak, Z.,, Z. D. G. Ivics,, and R. H. A. Plasterk. 2000. Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates. J. Mol. Biol. 302:93102.
48. Jacobson, J. W.,, M. M. Medhora,, and D. Hartl. 1986. Molecular structure of a somatically unstable transposable element in Drosophila. Proc. Natl. Acad. Sci. USA 83:86848688.
49. Jansen, G.,, E. Hazendonk,, K. L. Thijssen,, and R. H. A. Plasterk. 1997. Reverse genetics by chemical mutagenesis in Caenorhabditis elegans. Nat. Genet. 17:119121.
50. Johnston-Schlitz, D. M.,, and W. R. Engels. 1993. P-elementinduced interallelic gene conversion of insertions and deletions in Drosophila melanogaster. Mol. Cell Biol. 13: 70067018.
51. Ketting, R. F.,, S. E. Fischer,, and R. H. A. Plasterk. 1997. Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res. 25:40414047.
52. Ketting, R. F.,, T. H. A. Haverkamp,, H. G. A. M. Van Luenen,, and R. H. A. Plasterk. 1999. mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 99:133141.
53. Ketting, R. F.,, and R. H. A. Plasterk. 2000. A genetic link between co-suppression and RNA interference in C. elegans. Nature 404:296298.
54. Khan, E.,, J. P. G. Mack,, R. A. Katz,, J. Kulkosky,, and A. M. Skalka. 1990. Retroviral integrase domains: DNA binding and the recognition of LTR sequences. Nucleic Acids Res. 19:851860.
55. Korswagen, H. C.,, R. M. Durbin,, M. T. Smits,, and R. H. A. Plasterk. 1996. Transposon Tc1-derived, sequence-tagged sites in Caenorhabditis elegans as markers for gene mapping. Proc. Natl. Acad. Sci. USA 93:1468014685.
56. Lam, W. L.,, T. S. Lee,, and W. Gilbert. 1996. Active transposition in zebrafish. Proc. Natl. Acad. Sci. USA 93: 1087010875.
57. Lam, W. L.,, P. Seo,, K. Robison,, S. Virk,, and W. Gilbert. 1996. Discovery of amphibian Tc1-like transposon family. J. Mol. Biol. 257:359366.
58. Lampe, D. J.,, B. J. Akerley,, E. J. Rubin,, J. J. Mekalanos,, and H. M. Robertson. 1999. Hyperactive transposase mutants of the Himar1 mariner transposon. Proc. Natl. Acad. Sci. USA 96:1142811433.
59. Lampe, D. J.,, M. E. A. Churchill,, and H. M. Robertson. 1996. A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J. 15:54705479.
60. Lampe, D. J.,, T. E. Grant,, and H. M. Robertson. 1998. Factors affecting transposition of the Himar1 mariner transposon in vitro. Genetics 149:179187.
61. Langin, T.,, P. Capy,, and M. Daboussi. 1995. The transposable element impala, a fungal member of the Tc1/mariner superfamily. Mol. Gen. Genet. 246:1928.
62. Li, Y. X.,, M. J. Farrell,, R. Lui,, N. Mohanty,, and M. L. Kirby. 2000. Double-stranded RNA injections produces null phenotypes in zebrafish. Dev. Biol. 217:394405.
63. Li, Z. H.,, D. P. Liu,, J. Wang,, Z. C. Guo,, W. X. Yin,, and C. C. Liang. 1998. Inversion and transposition of Tc1 transposon of C. elegans in mammalian cells. Somat. Cell Mol. Genet. 24:363369.
64. Liao, L. W.,, B. Rosenzweig,, and D. Hirsh. 1983. Analysis of a transposable element in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 80:35853589.
65. Lidholm, D.,, G. H. Gudmundsson,, and H. G. Boman. 1991. A highly repetitive, mariner-like element in the genome of Hyalophora cecropia. J. Biol. Chem. 266:1151811521.
66. Lidholm, D.,, A. R. Lohe,, and D. L. Hartl. 1993. The transposable element mariner mediates germ line transformation in Drosophila melanogaster. Genetics 134:859868.
67. Liu, L. X.,, J. M. Spoerke,, E. L. Mulligan,, J. Chen,, B. Reardon,, B. Westlund,, L. Sun,, K. Abel,, B. Armstrong,, G. Hardiman,, J. King,, L. McCague,, M. Basson,, R. Clover,, and C. D. Johnson. 1999. High-throughput isolation of Caenorhabditis elegans deletion mutants. Genome Res. 9:859867.
68. Lohe, A. R.,, D. De Aguiar,, and D. L. Hartl. 1997. Mutations in the mariner transposase: the D,D(35)E consensus sequence is nonfunctional. Proc. Natl. Acad. Sci. USA 94:12931297.
69. Lohe, A. R.,, and D. L. Hartl. 1996. Germline transformation of Drosophila virilis with the transposable element mariner. Genetics 143:365374.
70. Lohe, A. R.,, and D. L. Hartl. 1996. Autoregulation of mariner transposase activity by overproduction and dominant-negative complementation. Mol. Biol. Evol. 13:549555.
71. Lohe, A. R.,, D. T. Sullivan,, and D. L. Hartl. 1996. Genetic evidence for subunit interactions in the transposase of the transposable element mariner. Genetics 144:10871095.
72. Loukeris, T. G.,, B. Arca,, I. Livadaras,, G. Dialektaki,, and C. Savakis. 1995. Introduction of the transposable element Minos into the germ line of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 92:94859489.
73. Loukeris, T. G.,, I. Livadaras,, S. Zabalou,, and C. Savakis. 1995. Gene transfer into the medfly, Ceratitis capitata, with a Drosophila hydei transposable element. Science 270:20022005.
74. Luo, G.,, Z. Ivics,, Z. Izsvak,, and A. Bradley. 1998. Chromosomal transposition of a Tc1/mariner-like element in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 95: 1076910773.
75. Manseau, L.,, A. Baradaran,, D. Brower,, A. Budhu,, F. Elefant,, H. Phan,, A. V. Philp,, M. Yang,, and D. Glover. 1997. GAL4 enhancer traps expressed in the embryo, larval brain, imaginal discs, and ovary of Drosophila. Dev. Dyn. 209: 310322.
76. Maruyama, K.,, and D. L. Hartl. 1991. Evolution of the transposable element mariner in Drosophila species. Genetics 128: 319329.
77. Maruyama, K.,, K. D. Schoor,, and D. L. Hartl. 1991. Identification of nucleotide substitutions necessary for trans-activation of mariner transposable elements in Drosophila: analysis of naturally occurring elements. Genetics 128:777784.
78. Medhora, M. M.,, A. H. MacPeek,, and D. L. Hartl. 1988. Excision of the Drosophila transposable element mariner: identification and characterization of the Mos factor. EMBO J. 7:21852189.
79. Medhora, M. M.,, K. Maruyama,, and D. L. Hartl. 1991. Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. Genetics 128:311318.
80. Moerman, D. G.,, G. M. Benian,, and R. H. Waterston. 1986. Molecular cloning of the muscle gene unc-22 in Caenorhabditis elegans by Tc1 transposon tagging. Proc. Natl. Acad. Sci. USA 83:25792583.
81. Moerman, D. G.,, and R. H. Waterston. 1984. Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. Genetics 108:859877.
82. Moerman, D. G.,, and R. H. Waterston,. 1989. Mobile elements in Caenorhabditis elegans and other nematodes, p. 537556. In D. E. Berg, and M. M. Howe (ed.), Mobile DNA. American Society for Microbiology, Washington, D.C..
83. Morgan, G. T. 1995. Identification in the human genome of mobile elements spread by DNA-mediated transposition. J. Mol. Biol. 254:15.
84. Mori, I.,, D. G. Moerman,, and R. H. Waterston. 1988. Analysis of a mutator activity necessary for germ-line transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics 120:397407.
85. Napoli, C.,, C. Lemieux,, and R. A. Jorgensen. 1990. Introduction of a chimeric chalcone synthase gene in petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279289.
86. Oosumi, T.,, W. R. Belknap,, and B. Garlick. 1995. Mariner transposons in humans. Nature 378:672.
87. Petrov, D. A.,, J. L. Schutzman,, D. L. Hartl,, and E. R. Lozovskaya. 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl. Acad. Sci. USA 92:80508054.
88. Plasterk, R. H. A. 1987. Differences between Tc1 elements from the C. elegans strain Bergerac. Nucleic Acids Res. 15:10050.
89. Plasterk, R. H. A. 1991. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 10:19191925.
90. Plasterk, R. H. A., 1996. The Tc1/mariner transposon family, p. 125143. In H. Saedler, and A. Gierl (ed.), Current Topics in Microbiology and Immunology, vol. 204. Transposable Elements. Springer-Verlag, Berlin, Germany.
91. Plasterk, R. H. A.,, and J. T. M. Groenen. 1992. Targeted alterations of the Caenorhabditis elegans genome by transgene instructed DNA double strand break repair following Tc1 excision. EMBO J. 11:287290.
92. Plasterk, R. H. A.,, Z. Izsvak,, and Z. D. G. Ivics. 1999. Resident aliens, the Tc1/mariner superfamily of transposable elements. Trends Genet. 15:326332.
93. Plasterk, R. H. A., and H. G. A. M. Van Luenen,. 1997. Transposons, p. 97116. In D. Riddle,, T. Blumenthal,, B. J. Meyer,, and J. Pries (ed.), The Nematode C. elegans, II. Cold Spring Harbor Laboratory Press, New York, N.Y..
94. Prasad, S. S.,, L. J. Harris,, D. L. Baillie,, and A. M. Rose. 1991. Evolutionary conserved regions in Caenorhabditis transposable elements deduced by sequence comparison. Genome 34: 612.
95. Radice, A. R.,, B. Bugaj,, D. H. A. Fitch,, and S. W. Emmons. 1994. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol. Gen. Genet. 244: 606612.
96. Raz, E.,, H. G. A. M. Van Luenen,, B. Schaerringer,, R. H. A. Plasterk,, and W. Driever. 1998. Transposition of the nematode Caenorhabditis elegans Tc3 element in the zebrafish Danio rerio. Curr. Biol. 8:8288.
97. Robertson, H. M. 1993. The mariner transposable element is widespread in insects. Nature 362:241245.
98. Robertson, H. M. 1995. The Tc1/mariner superfamily of transposons in animals. J. Insect Phys. 41:99105.
99. Robertson, H. M. 1996. Members of the pogo superfamily of DNA-mediated transposons in the human genome. Mol. Gen. Genet. 252:761766.
100. Robertson, H. M.,, and D. J. Lampe. 1995. Recent horizontal transfer of a mariner transposable element among and between Diptera and Neuroptera. Mol. Biol. Evol. 12:850862.
101. Robertson, H. M.,, D. J. Lampe,, and E. G. Macleod. 1992. A mariner transposable element from a lacewing. Nucleic Acids Res. 20:6409.
102. Robertson, H. M.,, and E. G. Macleod. 1993. Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods. Insect Mol. Biol. 2:125139.
103. Robertson, H. M.,, and R. Martos. 1997. Molecular evolution of the second ancient human mariner transposon, Hsmar2, illustrates patterns of neutral evolution in the human genome lineage. Gene 205:219228.
104. Robertson, H. M.,, and K. L. Zumpano. 1997. Molecular evolution of an ancient mariner transposon, Hsmar1, in the human genome. Gene 205:203217.
105. Romans, P.,, R. K. Bhattacharyya,, and A. Colavita. 1998. Ikirara, a novel transposon family from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 7:110.
106. Rosenzweig, B.,, L. W. Liao,, and D. Hirsh. 1983. Sequence of the C. elegans transposable element Tc1. Nucleic Acids Res. 11:42014209.
107. Rosenzweig, B.,, L. W. Liao,, and D. Hirsh. 1983. Target sequences for the C. elegans transposable element Tc1. Nucleic Acids Res. 11:71377140.
108. Rubin, E. J.,, B. J. Akerley,, V. N. Novik,, D. J. Lampe,, R. N. Husson,, and J. J. Mekalanos. 1999. In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc. Natl. Acad. Sci. USA 96:16451650.
109. Rushforth, A. M.,, and P. Anderson. 1996. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol. Cell Biol. 16:422429.
110. Rushforth, A. M.,, B. Saari,, and P. Anderson. 1993. Site-selected insertion of the transposon Tc1 into a Caenorhabditis elegans myosin light chain gene. Mol. Cell Biol. 13:902910.
111. Schouten, G. J.,, H. G. A. M. Van Luenen,, N. C. V. Verra,, D. Valerio,, and R. H. A. Plasterk. 1998. Transposon Tc1 of the nematode Caenorhabditis elegans jumps in human cells. Nucleic Acids Res. 26:30133017.
112. Schukkink, R. F.,, and R. H. A. Plasterk. 1990. TcA, the putative transposase of the C. elegans Tc1 transposon, has an Nterminal DNA binding domain. Nucleic Acids Res. 18: 895900.
113. Sedensky, M. M.,, S. J. Hudson,, B. Everson,, and P. G. Morgan. 1994. Identification of a mariner-like repetitive sequence in C. elegans. Nucleic Acids Res. 22:17191723.
114. Sharp, P. A. 1999. RNAi and double stranded RNA. Genes Dev. 13:139141.
115. Sharp, P. A.,, and P. D. Zamore. 2000. RNA interference. Science 287:24312433.
116. Sherman, A.,, A. Dawson,, C. Mather,, H. Gilhooley,, Y. Li,, R. Mitchell,, D. J. Finnegan,, and H. Sang. 1998. Transposition of the Drosophila element mariner into the chicken germ line. Nat. Biotechnol. 16:10501053.
117. Smit, A. F. A.,, and A. D. Riggs. 1996. Tiggers and other DNA transposon fossils in the human genome. Proc. Natl. Acad. Sci. USA 93:14431448.
118. Tabara, H.,, M. Sarkissian,, W. G. Kelly,, J. Fleenor,, A. Grishok,, L. Timmons,, A. Fire,, and C. C. Mello. 1999. The rde- 1 gene, RNA interference, and transposon silencing in C. elegans. Cell 99:123132.
119.The C. elegans Sequencing Consortium. 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:20122018.
120. Tosi, L. R. O.,, and S. M. Beverley. 2000. Cis and trans factors affecting Mos1 mariner evolution and transposition in vitro, and its potential for functional genomics. Nucleic Acids Res. 28:784790.
121. Tudor, M.,, M. Lobocka,, M. Goodell,, J. Pettitt,, and K. O’Hare. 1992. The pogo transposable element family of Drosophila melanogaster. Mol. Gen. Genet. 232:126134.
122. Van der Krol, A. R.,, L. A. Mur,, M. Beld,, J. N. Mol,, and A. R. Stuitje. 1990. Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291299.
123. Van Luenen, H. G. A. M.,, S. D. Colloms,, and R. H. A. Plasterk. 1993. Mobilization of quiet, endogenous Tc3 transposons of Caenorhabditis elegans by forced expression of Tc3 transposase. EMBO J. 12:25132520.
124. Van Luenen, H. G. A. M.,, S. D. Colloms,, and R. H. A. Plasterk. 1994. The mechanism of transposition of Tc3 in Caenorhabditis elegans. Cell 79:293301.
125. Van Luenen, H. G. A. M.,, and R. H. A. Plasterk. 1994. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res. 22:262269.
126. Van Pouderoyen, G.,, R. F. Ketting,, A. Perrakis,, R. H. A. Plasterk,, and T. K. Sixma. 1997. Crystal structure of the specific DNA-binding domain of Tc3 transposase of C. elegans in complex with transposon DNA. EMBO J. 16: 60446054.
127. Vos, J. C.,, I. de Baere,, and R. H. A. Plasterk. 1996. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 10:755761.
128. Vos, J. C.,, and R. H. A. Plasterk. 1994. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 13:61256132.
129. Vos, J. C.,, H. G. A. M. Van Luenen,, and R. H. A. Plasterk. 1993. Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev. 7:12441253.
130. Wargelius, A.,, S. Ellingsen,, and A. Fjose. 1999. Doublestranded RNA induces specific developmental defects in zebrafish embryos. Biochem. Biophys. Res. Commun. 263: 156161.
131. Wianny, F.,, and M. Zernicka-Goetz. 2000. Specific interference with gene function by double-stranded RNA in early mouse development. Nat. Cell Biol. 2:7075.
132. Wicks, S. R.,, C. J. De Vries,, H. G. A. M. Van Luenen,, and R. H. A. Plasterk. 2000. CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev. Biol. 221:295307.
133. Williams, B. D.,, B. Schrank,, C. Huynh,, R. Shownkeen,, and R. H. Waterston. 1992. A genetic mapping system in Caenorhabditis elegans based on polymorphic sequence-tagged sites. Genetics 131:609624.
134. Zamore, P. D.,, T. Tuschl,, P. A. Sharp,, and D. P. Bartel. 2000. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101: 2533.
135. Zhang, L.,, U. Sankar,, D. J. Lampe,, H. M. Robertson,, and F. L. Graham. 1998. The Himar1 mariner transposase cloned in a recombinant adenovirus is functional in mammalian cells. Nucleic Acids Res. 26:36873693.
136. Zwaal, R. R.,, A. Broeks,, J. Van Meurs,, J. T. M. Groenen,, and R. H. A. Plasterk. 1993. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci. USA 90:74317435.

Tables

Generic image for table
Table 1.

Experimental horizontal transfer of Tc1/mariner elements

Citation: Plasterk R, van Luenen H. 2002. The Tc1/mariner Family of Transposable Elements, p 519-532. In Craig N, Craigie R, Gellert M, Lambowitz A (ed), Mobile DNA II. ASM Press, Washington, DC. doi: 10.1128/9781555817954.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error